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Abstract: Phosphorus (P) is an essential nutrient to boost crop yields, but P runoff can cause nutrient
over-enrichment in agricultural watersheds and can lead to irreversible effects on aquatic ecosystems
and their biodiversity. Lake Erie is one prominent example as this watershed has experienced multiple
episodes of harmful algal blooms over the last decades. Annual P loads crucially depend on yearly
weather variations, which can create the risk of years with high runoff and excessive nutrient loads.
Here we apply stochastic modeling to derive sustainable management strategies that balance crop
yield optimization with environmental protection, while accounting for weather variability as well as
weather trends as a result of climate change. We demonstrate that ignoring annual weather variations
results in mitigation efforts for environmental pollution that are largely insufficient. Accounting
explicitly for future variations in precipitation allows us to control the risk of emissions exceeding
the P target loads. When realistic risk targets are imposed, we find that a package of additional
measures is required to avoid P over-enrichment in the Lake Erie watershed. This package consists of
a substantial reduction of P inputs (approximately 30% for different accepted risk levels), adoption of
cover crops throughout the near- and mid-century, and cultivation of less nutrient-intensive crops
(30% more soy at the expense of corn). Although climate change reinforces these conclusions, we
find that the accepted risk level of exceeding P target loads is the predominant factor in defining a
sustainable nutrient management policy.

Keywords: nutrient management; pollution control; Lake Erie; climate change; decisions under
uncertainty; stochastic optimization

1. Introduction

Agricultural and industrial development has led to nutrient over-enrichment or eu-
trophication in surface waters in the last decades [1]. This anthropogenically induced
abundance of nutrients can favor cyanobacteria, and result in harmful algal blooms (HABs).
HABs, in turn, negatively affect the habitat of many fish species and can result in excessive
fish mortality through oxygen depletion. Other ecosystem services where HABs have
negative outcomes include the use of fresh water for irrigation or drinking water, and recre-
ational activities. HABs are a threat to the integrity of water bodies all over the globe,
including Lake Victoria in Africa [2], Lake Erie in the US and Canada [3], Lake Taihu in
China [4], the Baltic Sea in Europe [5], or the Caspian Sea in West Asia [6].

Lake Erie is the shallowest among the Great Lakes of North America and is particularly
vulnerable to eutrophication and resulting HABs. In this study, we concentrate on the
Western Lake Erie Basin (WLEB), which spreads across three states and spans nearly seven
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million acres. We focus in particular on the Maumee River watershed, which is the largest
watershed of Lake Erie. This is a highly agricultural area (≥80%) and is shown to be the
largest contributor of agricultural P to Lake Erie. Several studies have confirmed that the
Maumee River is the dominant source of P loading causing cyanobacteria outbreaks in
the WLEB, and bloom sizes over the past decades have been closely related to external
P loading from the Maumee River [7–9]. Over the last decades, continuous efforts were
made to protect the biotic integrity of Lake Erie [10]. Point source policies had a large
effect on soluble P concentrations in the 1970s and 1980s [11]. While agricultural policies
have historically been centered around sediments, the scope of agricultural policies has
broadened starting from the 1980s [12]. In order to combat the observed re-eutrophication
since the mid-1990s, the Objectives and Targets Task Team for Lake Erie recommended a P
load reduction of 40% in the Western Basin tributaries with respect to the 2008 water year
loads, based on a range of modeling load-response analyses [13].

In addition to the intensification of agriculture, climate change poses serious threats
to aquatic ecosystems [14]. Rising temperatures have a non-linear effect on P nutrient
uptake [15], and can favor cyanobacterial growth and occurrence of HABs [1]. Climate
change will also concur with hydrologic changes through modified patterns, intensity,
and duration of precipitation events. The growing intensity of precipitation will increase
both nutrient runoff from agricultural fields and groundwater discharge, ultimately leading
to more nutrient enrichment of the surface waters. In fact, climate studies have predicted the
trend of increasing P loads under climate change [14,16], and the increasing frequency and
magnitude of rain events have been indicated as the most important factor in the increase
of soluble P loads [12,17]. As P transfers will increase, the implications for agricultural
practices to mitigate these future emissions are still unclear. The P target loads chosen by
the Objectives and Targets Task Team are all based on the assumption that precipitation
patterns do not change in the future [13], which is debatable given the anticipated changes
in the Lake Erie ecosystem due to climate change [18]. Concerns that climate change will
exacerbate the frequency and magnitude of extreme weather events, therefore, necessitate
the development of adaptive nutrient management strategies.

Several simulation studies exist that evaluate the effectiveness of nutrient management
in reducing nutrient loading under various climate scenarios [19,20]. Nutrient management
models are typically deterministic and have limited ability to account for weather variability
in the definition of optimal farming practices, balancing farmers’ income with environ-
mental impacts. Although deterministic models are able to present a diversity of nutrient
management practices under different scenarios, this diversity can only be obtained under
conditions of perfect foresight. In real-life conditions where the amount of precipitation in
future years is unknown, the ability of these models to define optimal nutrient manage-
ment strategies is more limited. This study contributes to the literature by evaluating how
weather variations in a changing climate, unknown at the moment that decisions are taken,
affect sustainable nutrient management practices. To this purpose, we draw on methods
from stochastic optimization, which have recently been applied in the field of agricultural
hydrology and irrigation management [21,22]. A small number of stochastic optimization
models exist that deal with nutrient pollution, for instance for Lake Balaton in Central
Europe and Erhai Lake in China, but these studies do not consider climate change [23,24].
In this work, we develop a decision-making framework that provides optimal packages of
sustainable agricultural practices according to different preferences regarding accepted risk
levels. Specifically, we integrate a risk-averse strategy that accounts a priori for weather
variability and allows to set reliability targets for environmental protection. In addition, we
include a deterministic, risk-neutral strategy that provides optimal farming practices based
on expected precipitation levels, indifferent to the variability in precipitation that inevitably
will affect the P loading into the surface waters. As random precipitation patterns play a
crucial role in nutrient runoff, this framework allows us to quantify unplanned excess P
loads that result from ignoring weather variability. Furthermore, the developed framework
enables us to benchmark the package of nutrient management practices that results from a
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model that ignores risks versus a model that anticipates risks. Finally, as climate change will
alter P loadings in the agricultural watershed, we quantify its effect on future phosphorus
transfers, and analyse to what extent the package of nutrient management practices has to
change to contain the risk of excessive phosphorus pollution.

2. Materials and Methods

In order to define a sustainable nutrient management policy, we construct a modeling
framework around three building blocks: (i) an economic component that captures profits
from agriculture, (ii) a soil component that describes the phosphorus cycle, and (iii) an en-
vironmental component that reflects the decision-maker’s perception of environmental risk.
The framework provides a set of optimal agricultural management practices, i.e., land allo-
cation for different crops, fertilizer (P) application to the soil, and the use of cover crops in
the off-season. Decisions on land allocation, fertilizer application, and cover crop adoption
all contribute to the nutrient dynamics in the soil, and ultimately to the nutrient emissions
into the surface waters. The framework takes the perspective of a regional decision-maker
who protects both the interests of farmers and the environment. The decision-making
framework maximizes the profits of farmers, but provides different strategies for envi-
ronmental protection. In the risk-neutral strategy, the regional decision-maker uses the
best available estimates of the emission rates to make sure that the expected P loads do
not exceed the P target loads. In the risk-averse strategy, the regional decision-maker
accounts for the inherent uncertainty in emission rates due to random precipitation events,
and sets reliability targets for not overshooting the emission limits. The regional planner
using the risk-averse strategy aims for high reliability of the environmental protection,
or equivalently, low accepted risk levels of emissions beyond the P target loads.

2.1. Economic Component

The profit π(t) of crop production on a representative hectare can be decomposed
into contributions πi(t) of the considered crops i, i.e., corn, soy, and wheat, each under 4
different levels of conservation tillage. The profit function can be written as

π(t, δ, F, θ, ω) = ∑
i

δi(t) · πi(t, δ, F, θ, ω) , (1)

where δi(t) is the land allocation indicating the share of land per hectare allocated to each
of the crops. Crop profit πi is a function of three decision vectors: fertilizer application F(t)
in kg/ha, cover crop adoption θ(t) representing the share of a hectare used for cover crops
in the off-season, and land allocation δ(t). The argument ω is a realization of a random
vector capturing the random annual amount of heavy precipitation that results in random
emissions of P into the surface waters. The profit per crop can be written as

πi(t, δ, F, θ, ω) =
(

pi(t)− Cv,i(t)(1− a1,iRi)
)
·Yi(Pss(t, ω), Ri)

− (1− a2,iRi)Cf,i − (1 + a3,iRi)Cch,i − (1− a4,iRi)plHi

− pmM− pfFi(t)− Ccθi(t) . (2)

The profit function accounts for the income from crop production and multiple cost
terms. The income from crop production depends on the crop yield Yi, the price pi, and the
variable costs Cv,i. The variable costs are modified by the level of conservation tillage
indicated by the crop residue level Ri. Prices and variable costs are decreasing over time at
a decreasing rate (see Table A2 in Appendix B). The input costs are divided into two parts,
those affected by tillage practice (second line in (2)) and those that are not (third line in (2)).
Among costs that are influenced by tillage practices, in addition to the variable costs Cv,i
which vary with yield, we account for fixed costs Cf, chemical costs Cch, and labor costs,
which are modeled as the product of labor price pl and labor hours Hi. Since conservation
tillage reduces tilling operations, the parameters a1,i through a4,i are positive parameters
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that are calibrated to indicate the cost-effectiveness of conservation tillage. Note that
while conservation tillage is generally associated with lower input costs, chemical costs are
higher compared to conventional tillage [25,26], so the sign before a3,i is positive. The costs
unaffected by tillage practices include the cost for fertilizer application with P price pf,
the cost of animal manure M with application cost pm, and the cost of cover crops with
annual cost per hectare denoted by Cc.

Per hectare crop yields (in kg/ha) are defined as

Yi(Pss(t, ω), Ri) =
[
α1,i

(
1− α2,i · e−α3,i Pss(t,ω)

)]
· emi Ri . (3)

Crop yields are a function of soluble P reserves in the soil Pss and the crop residue
level Ri. Note that we do not consider annual yield growth related to improving farm-
ing practices.

2.2. Soil Component and the Phosphorus Cycle

Common nutrient management practices that can reduce P emissions from agricul-
tural land include precision nutrient management, conservation tillage, and cover crops.
Conservation tillage is defined as any practice that leaves at least 30% crop residue on
soil surface [27]. It has been widely promoted as an effective way to combat P runoff by
trapping P in soils on farm fields. Despite its widespread application in the US, the benefits
of conservation tillage are debated with regard to its effects on crop yields and efficiency in
controlling P runoff [26,28,29]. Conservation tillage likely reduces soil erosion, and hence
reduces sediment-attached P loss from agricultural fields [30]. There is mounting evidence,
however, showing that conservation tillage increases the export of total soluble phospho-
rus [28,31]. Since soluble P is almost 100% bioavailable [32,33], the effect of controlling P
export by conservation tillage could be offset by soluble P loss [34,35]. Planting cover crops
has also been shown to be an effective strategy to reduce P emissions from agricultural
land [36–38]. By absorbing the residual P, cover crops will reduce the number of nutrients
potentially available to be transported to surface waters. Cover crops can also reduce
attached P since they reduce soil erosion.

The dynamics of P in the soil system are modeled via two state-equations for sediment
attached P and soluble P. The stochastic state equation for sediment attached P, Psa(t, ω), is
given by

Psa(t, ω) =ζ1Psa(t− 1, ω) + ∑
i

δi(t− 1)τAM− Esa(t− 1, ω)

− φAPsa(t− 1, ω) + φSPss(t− 1, ω) . (4)

The state variable Psa is assumed to be uniformly distributed in the representative
hectare of the farm. The carry-over coefficient ζ1 ∈ [0, 1] represents the proportion of
existing attached P reserves carried over from the last period to the current period. The pa-
rameter τA is the proportion of manure that goes into the attached P pool. Conversion be-
tween sediment attached P and soluble P is captured by the final two terms in Equation (4).
The fraction of attached P that converts to soluble P each year is given as φA, and the fraction
of soluble P that is converted to attached P each year is given as φS. Finally, the sediment
attached unit area P load Esa(t) from fields into river systems can be written as

Esa(t, ω) = Psa(t, ω)∑
i

δi(t) · γsa
i (t, ω) ·

[
(1− cA)θi(t) + (1− bARi)(1− θi(t))

]
. (5)

The parameter γsa
i (t, ω) is the uncertain emission rate at time t with ω capturing the

uncertainty of nature, in this case related to the amount of annual heavy precipitation. The
emission rate describes the share of P stock that results in the annual P load. Conservation
tillage traps sediment attached P by reducing soil erosion, which is captured by the term
(1− bARi), with Ri ∈ [0, 1] and bA accounting for the effectiveness of conservation tillage
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in reducing sediment-attached P loss. The effectiveness of cover crops in reducing attached
P loss is represented by the term (1− cA).

The dynamics of soluble P in the soil, Pss(t, ω), are represented by the following
stochastic state equation

Pss(t, ω) = ζ2Pss(t− 1, ω) + ∑
i

δi(t− 1)Fi(t− 1) + ∑
i

δi(t− 1)τSM

−∑
i

µiδi(t− 1)Yi

(
Pss(t− 1, ω), Ri

)
− Ess(t− 1, ω)

+ φAPsa(t− 1, ω)− φSPss(t− 1, ω) . (6)

The carry-over coefficient ζ2 ∈ [0, 1] represents the proportion of existing soluble P
reserves carried over to the next year. Fertilizer application Fi adds to the stock of soluble
P in the soil, and τS is the fraction of annual manure application that turns into soluble P.
Annual consumption of P by crops is given by ∑i µiδi(t)Yi(Pss(t, ω), Ri), with µi the crop
use coefficient of crop i. Similar to (4), the conversion between sediment attached P and
soluble P is governed by the parameters φA and φS. Finally, the unit area P load of soluble
P, Ess(t), into river systems is given by

Ess(t, ω) = Pss(t, ω)∑
i

δi(t) · γss
i (t, ω) ·

[
(1− cS)θi(t) + (1 + bSRi)(1− θi(t))

]
, (7)

which depends on the random emission rate γss
i (t, ω). Conservation tillage in this case

increases soluble P runoff, with bS the effect of conservation tillage on soluble P emission.
Cover crops act as a mechanism to reduce soluble P emissions, whose effectiveness is
captured by the parameter cS.

2.3. Risk-Neutral Nutrient Management

The risk-neutral regional decision-maker aims to maximize the profits of farmers while
ensuring that the P loads do not exceed the emission limits. In order to do so, a risk-neutral
decision-maker makes use of the best available estimate of the emission rates for sediment
attached P and soluble P. This problem can be formulated as the maximization of expected
profits under dynamic constraints (4) and (6), and P loading constraints that ensure that P
loads do not exceed the imposed P target loads ηsa and ηss. The optimization problem can
thus be written as

max
δ,F,θ

Nt

∑
t=1

∑
i

δi(t) · πi(δ(t), F(t), θ(t),E[ω]) (8)

s.t. (4) and (6)

Esa(t,E[ω]) < ηsa

Ess(t,E[ω]) < ηss

Pss(t, ω) ≥ 0, Psa(t, ω) ≥ 0, Pss(0, ω) = Pss,0 , Psa(0, ω) = Psa,0 .

In reality, emission rates can diverge from their expected values, but the risk-neutral
decision-maker does only account for nutrient emissions under expected precipitation
conditions.

2.4. Risk-Averse Nutrient Management

In every year with major algal outbreaks in Lake Erie, big spikes in discharge from
the Maumee watershed were observed [39]. A major part of the uncertainty in P loading
can therefore be attributed to stochastic weather events, which are captured in the model
by adjusting the nutrient emission rates. A risk-averse regional decision-maker aims to
hedge against the risk of environmental costs associated with heavy precipitation events.
A possible approach is to define nutrient management policies under worst emission
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conditions, but this strategy is likely to cause high losses in agricultural profits. Since
meeting the emission targets can be infeasible under certain circumstances, or can come at
an exceedingly high cost, the regional decision-maker can also impose a target reliability
level, i.e., the probability with which P emissions must be below the P target loads. In this
case, the optimization problem can be relaxed to a chance constrained problem with
reliability level ρsa and ρss, with 0 ≤ ρsa, ρss ≤ 1, and can be written as

max
δ,F,θ

Nt

∑
t=1

∑
i

δi(t) ·E
[
πi(δ(t), F(t), θ(t), ω)

]
(9)

s.t. (4) and (6)

P[ηsa − Esa(t, ω) > 0 | t ∈ {1, · · · , Nt}] ≥ ρsa

P[ηss − Ess(t, ω) > 0 | t ∈ {1, · · · , Nt}] ≥ ρss

Pss(t, ω) ≥ 0, Psa(t, ω) ≥ 0, Pss(0, ω) = Pss,0 , Psa(0, ω) = Psa,0 .

The risk-averse decision-maker maximizes expected profits and requires that the
emission targets are met with a high probability. This problem formulation is numerically
intractable, yet equivalent to a two-stage optimization problem, where strategic actions
(land allocation, fertilizer application, and cover crop adoption) are complemented with
adaptive actions in case the actual P loads exceed the P target loads. These adaptive actions
can correspond to a penalty for excess emissions, or to the cost for water treatment [40,41].
For more details on how to solve the chance-constrained optimization problem, we refer to
Appendix A.

2.5. Uncertainty under Different Climate Scenarios

Weather plays a crucial role in P loads predominantly through rainfall. In fact, the
weather has been estimated to account for about 50% of the higher soluble P loadings in
the period 1996–2011 [12]. In the soil component of the proposed framework, variable
emission rates are the considered source of uncertainty and are contingent on the amount
of yearly heavy precipitation. The P stock in the soil depends on the sequence of emission
rates, and therefore on the sequence of yearly precipitation. To compute the probability of
meeting the emission constraints, we need to construct uncertainty scenarios over the con-
sidered time period. In other words, we create realizations of the emission rates γsa

i (t, ωs)
and γss

i (t, ωs), where ωs represents a specific realization of the underlying uncertainty,
and where 1 < t < Nt and 1 < s < Ns.

Climate change may dramatically alter model parameters like crop growth rates,
nutrient emission rates, and the persistence of HABs [1,42,43]. In this work, we are mainly
interested in how climate change will affect precipitation patterns and the corresponding
emission rates. We consider three climate scenarios: a stationary climate, an intermediate
scenario corresponding to RCP 4.5, and a worst-case scenario corresponding to RCP 8.5.

To generate uncertainty scenarios in a stationary climate scenario, we sample from the
empirical probability distributions of the emission rates of sediment attached P and soluble
P. The distributions are derived from annual phosphorus loading data for the Maumee
River for water years 1975–2015 and historical soil test levels [44,45], and are depicted
in Figure 1. Note that the empirical distributions are asymmetric with longer right tails.
From the time series data, we observed a very high correlation between the emission rates
of sediment attached P and soluble P, and we assume here full correlation between both
emission rates.
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(a) (b)
Figure 1. Empirical probability distributions of the emission rates of sediment attached P (a) and
soluble P (b) when corn is cultivated.

To generate uncertainty scenarios under the RCP 4.5 and RCP 8.5 climate scenarios,
we make use of the Maumee River discharge projections in the 21st century [17]. Using the
SWAT hydrological model and an ensemble of global climate models, the river discharge
has been estimated under both climate scenarios for the near-century (NC: 2010–2039),
mid-century (MC: 2040–2069), and late century (LC: 2070–2099). We assume here that
the relative increase in annual discharge can be used as a proxy for the relative increase
in the emission rates. The annual discharge is projected to increase by 6.5% (12%) in the
near-century, and 7.7% (14%) by mid-century under RCP 4.5 (RCP 8.5). We model the
non-stationarity of the emission rates by shifting their respective distribution functions
according to the corresponding relative increase, both in the near- and mid-century.

3. Results

The decision-making framework described in the previous subsection is used over the
time window 2016 to 2050, under three climate scenarios and four different preferences for
environmental risk, i.e., the risk-neutral strategy and the risk-averse strategy with reliability
levels equal to 85%, 90%, and 95%, respectively.

The initial values for the P stock state variables are set equal to their historical observed
value. Target loads for both sediment attached P and soluble P are set according to the
recommendations by the Objectives and Targets Task Team. Specifically, their recommen-
dation is a 40% reduction of P loads with respect to the 2008 water year loads, aiming to
achieve a bloom size no greater than that observed in 2004 or 2012, 90% of the time [13]. We
study the three major crops in the watershed region (corn, soybean, and wheat), and assign
four conservation tillage categories within each crop. Specifically, we assign four values for
the residue levels Ri, according to minimum (0%), low (35%), high (75%) and maximum
(100%) [46]. Crop prices and variable costs are assumed to follow their historical trends
after 2015. Cropland proportions are also assumed to be bounded by a ±50% deviation
following historical patterns for the Maumee River basin, using county-level harvested
crop acre data (USDA-NASS, 2016). A list of the model variables and parameters can be
found in Tables A1 and A2.

3.1. Emissions for Different Reliability Targets and Climate Scenarios

The likelihoods of meeting the target loads for sediment attached P and soluble P
are very different (Figure 2). Using the risk-neutral strategy for sediment attached P,
the reliability of meeting the P target load is above 90%, and the risk-averse strategy further
increases the reliability up to approximately 100% (Figure 2a). The recommended emission
limit for sediment attached P is undemanding, but this is however not the case for soluble
P. In the remainder of the paper, our focus is therefore on soluble P loads. For this type of P
loading, the risk-neutral strategy only achieves a reliability level of 52% as can be observed
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from the cumulative distribution function of soluble P loads under a stationary climate
(Figure 2b). By introducing reliability targets in the risk-averse strategy, reliability levels
up to 95% can be achieved, which are observable by the strong shift of the distribution
function to lower P load values.
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Figure 2. P load distributions. Cumulative distributions of emissions of sediment attached P (a) and
soluble P (b) under a stationary climate. Vertical lines indicate the P target loads for both types of
P. (a) Using the risk-neutral strategy, a reliability of more than 90% is achieved, and introducing
reliability targets ensures that the entire distribution shifts to the left of the P target load. (b) For
soluble P, the risk-neutral strategy provides very low reliability of environmental protection (52%).
The P load distribution shifts to lower values as the reliability target increases.

Evaluating the magnitude of excess P loads, we find that the risk-neutral strategy
results in excesses between 43% and 48% on average above the P target load under RCP 8.5
and the stationary climate scenario, respectively (Figure 3). In other words, disregarding
the stochastic nature of the phosphorus cycle would produce emissions above the 2008
water year load levels approximately every second year. Conversely, acknowledging the
stochastic nature of the phosphorus cycle allows for setting reliability targets in the risk-
averse strategy, which reduces the magnitude of the average excess P loads substantially.
Specifically, with a reliability target of 95% the expected excess P load is marginally above
the P target load (<5%), and this result is robust under the three climate scenarios.

The regional planner with a risk-neutral approach towards environmental risk de-
termines solution pathways for P input, cover crop adoption, and land allocation, using
the best available estimate of the emission rates. Using the risk-neutral strategy, the P
target loads for soluble P are only achieved with a probability of 52%, which is largely
insufficient to fulfill the objective of a 40% reduction with respect to the 2008 P loads [13].
The risk-neutral strategy actually generates solutions that result in expected P loads beyond
the 2008 water year loads biennially. As a consequence, using the solutions as specified
by the risk-neutral strategy in a realistic environment with random weather variations
provides an unacceptable level of environmental protection.
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Figure 3. Magnitude of excess P loads. When P loading occurs beyond the P target load, these excess
emissions are on average between 43% and 48% higher than the P target load in the risk-neutral
strategy (i.e., these events happen each year with a likelihood of 48%). When a reliability target of
95% is imposed, the excess P loads are only marginally above the P target load.

3.2. Tradeoff between Farmer Profits and Reliability of Environmental Protection

The results from the former section call for the introduction of reliability targets and for
models that account explicitly for weather variability in the definition of reliable solution
pathways. In line with the loading targets of the Objectives and Targets Task Team, we
evaluate reliability levels between 85% and 95%. Meeting the reliability targets for P
loading comes however at a price in terms of farmer profit loss (Figure 4). With respect
to the risk-neutral strategy, the risk-averse strategy results in a 15% profit loss for an 85%
reliability level in a stationary climate, and a 28% profit loss for a 95% reliability level
under RCP 8.5. Farmers will endure substantial profit losses to meet the emission targets
recommended by the Objectives and Targets Task Team, and climate change aggravates
this effect moderately. To make sure that farmers adopt the reliable solution pathways
recommended by the risk-averse nutrient management scheme, farmer losses will need
to be compensated through crop price adjustments, subsidies, or compensations by other
interest groups.

Figure 4. Private farmer profits versus reliability of environmental protection. Private farmer profits
are represented on the vertical axis relative to the profit per hectare of the risk-neutral strategy in
a stationary climate. Note that private farmer profits do not include the environmental and social
costs due to intensive farming. We consider different risk preferences on the horizontal axis, and the
three considered climate scenarios are indicated by different colors. Meeting reliability targets for P
loading comes at a high cost. A reliability level of 95% corresponds with a profit loss of 23% under a
stationary climate, and a loss of 28% under RCP 8.5.
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3.3. P inputs, Land Allocation, and Cover Crops

Considering P inputs aggregated over the period 2016–2050, the risk-neutral strategy
under a stationary climate recommends on average P inputs of 22.5 kg/ha/y. The fertilizer
application rate in the Essex region at the shore of Lake Erie was 26 kg/ha/y in 2006 [47].
In other words, the risk-neutral strategy prescribes in this region an average reduction of P
inputs by 16% with respect to 2006. Application rates vary, however, and the USDA WLEB
CEAP assessment for 2012 reported an overall average application rate of approximately
19 kg/ha/y. Following the risk-neutral strategy, P inputs should drop by up to 7% with
respect to a stationary climate when we account for climate change (see Figure 5a under the
risk-neutral strategy). However, when environmental risk is considered in the risk-averse
strategy, P inputs need to be reduced by approximately 30% with respect to the risk-neutral
strategy under a stationary climate. The effect of introducing reliability targets dominates
the effects of climate change. Interestingly, with a reliability level of 95%, the recommended
P input can be higher under RCP 8.5 than under a stationary climate, but this result needs to
be considered in conjunction with the adoption of cover crops, which is considerably higher
under RCP 8.5 (Figure 5c). However, it stands out that the solution pathways produced by
a deterministic perspective on the phosphorus cycle in the risk-neutral approach provide
largely insufficient mitigation efforts to control nutrient pollution.

Evaluating the dynamics of P input over time provides more insight into the under-
lying processes (see Figure 5b for P input recommendations under the RCP 8.5 climate
scenario). During the initial years, all strategies recommend low P input levels to consume
the very high levels of P stock in the soil. From the 1960s to the 1990s, the recommended
level of P inputs for optimal crop nutrition was markedly higher than the amount that
crops could remove [48]. This trend was exacerbated under the promotion of conservation
practices in the WLEB during the past decades, especially in the form of sediment-attached
P, creating the legacy P problem [49–51]. Due to the high levels of P stock, optimal nutrient
management involves drawing down this legacy through the use of P already stored in
the agricultural systems. At the end of the time period, we observe again low levels of
P inputs. This could be partially related to the numerical effects of terminal conditions
over the considered time window. However, in the risk-averse strategy with a reliability
level of 95%, the decrease of P inputs by mid-century is clearly observable. The higher the
reliability level, the more conservative P inputs become by mid-century, even though in
combination with higher P inputs during the near-century.

The risk-neutral strategy recommends the adoption of cover crops only in the first
years to help reduce the P stock in the soil, and this recommendation holds for the different
considered climate scenarios (Figure 5c). Conversely, the risk-averse strategy recommends
cover crop adoption throughout the entire time period. In a stationary climate, cover
crops are initially used in 100% of the agricultural land, and cover crop adoption declines
to approximately 20% by mid-century. Under RCP 8.5, higher levels of cover crops are
maintained throughout the near-century, and cover crop adoption drops to approximately
30% by mid-century.

The risk-neutral and risk-averse strategies allocate around 2% of land to wheat, both in
the near- and mid-century and under different climatic assumptions (Figure 5d). However,
we observe that corn is substituted by soy by mid-century, and this effect is more prominent
under RCP 8.5. The risk-averse strategy allocates in general more land to soy than to
corn as part of the strategy to control nutrient emissions and move away from the most
nutrient-intensive crop, corn. Regarding conservation tillage, all strategies recommend
high residue levels throughout the near- and mid-century.
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Figure 5. Levers for pollution control. (a) The total P input over the considered time period should
be reduced by approximately 30% for the different considered reliability levels with respect to the
risk-neutral strategy. The risk-neutral strategy in a stationary climate requires 22.5 kg/ha/y on
average. (b) P input trajectories are shown under RCP 8.5. P input profiles are smoothed using a
6-point moving-average to reveal better the P input trends. All profiles of P input start with lower
levels to consume the existing level of P in the soil. When a reliability of 95% is imposed, the P input
is higher in near-century (NC), while the P input drops substantially by mid-century (MC) to adjust
for the increased amount of precipitation. (c) Under the risk-neutral strategy, cover crops are only
used initially to get rid of the high P concentrations in the soil. The 95% reliability strategy prescribes
however the continued use of cover crops up to 2050. Under RCP 8.5, high levels of cover crops are
maintained throughout the near-century. (d) Crop allocations exhibit interesting dynamics between
NC and MC. In the risk-neutral strategy, corn is substituted by soy and the effect is substantially more
prominent under RCP 8.5. Using the 95% reliability strategy, less corn is produced in favour of soy.

3.4. P Stocks for Different Reliability Targets and Climate Scenarios

As mentioned above, the nutrient management for sediment attached P is less critical
than for soluble P. The solution pathways obtained from the risk-neutral and risk-averse
strategies all result in gradually decreasing stocks of sediment attached P, with a reduction
of 25% by 2050 for the risk-neutral strategy and approximately 30% reduction for the
risk-averse strategies (Figure 6a–c). Apart from minor differences, these results hold for the
three considered climate scenarios. Soluble P in the soil follows a very different trajectory
and sustains a major drop over the first years, mainly thanks to reduced P inputs and also
through continued use of cover crops in the risk-averse strategies. In order to meet the
40% reduction of P loads, P stocks in the soil need to be lowered by 55% with respect to
2015 conditions according to the risk-neutral strategy. However, the risk-averse strategies
prescribe a reduction of P stock in the soil of 70% by mid-century (Figure 6b–d).
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Figure 6. P stock trajectories. (a–c) Sediment attached P stock in a stationary climate (a) and under
RCP 8.5 (c). Both trajectories show only minor differences, and the stock of sediment attached P
continues to decrease until 2050. (b–d) Soluble P stock in a stationary climate (b) and in RCP 8.5
(d). After an initial steep decline, the soluble P stock stabilizes around a value depending on the
imposed reliability target. In case of the 95% reliability strategy, there is a clear difference between
near-century and mid-century P stock values.

4. Conclusions and Discussion

The objective to reduce P loads in Lake Erie by 40% with respect to the 2008 emission
levels requires a coherent package of nutrient management policies. By means of a new
modeling framework that computes P loads originating from a representative hectare, we
demonstrate that the mitigation efforts to avoid excessive nutrient pollution are largely
insufficient if weather variability is not accounted for. A risk-neutral approach, ignorant
about deviations from the expected precipitation, results in nutrient management recom-
mendations that overshoot approximately every second year the emission limit by almost
50% on average. As variations in annual precipitation have a sizeable effect on P loads,
nutrient management schemes need to account for these uncertainties in order to reliably
meet the emission targets. Introducing reliability targets makes a substantial impact on
nutrient management. Specifically, compared to the risk-neutral strategy, a robust find-
ing is that nutrient management cognisant of weather uncertainties requires significantly
lower levels of P inputs (∼30%), higher adoption of cover crops throughout the near- and
mid-century, and land allocation for less nutrient-intensive crops. Climate change further
mediates these outcomes, and the effect of increased precipitation is mainly evident by
mid-century.

Meeting the emission targets with high levels of reliability comes at a price. Nutrient
management strategies that reliably limit P loads imply profit losses for farmers up to 28%
under RCP 8.5. However, the tradeoff between private farmer profits and the reliability of
environmental protection does not take into consideration the social and environmental
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costs that result from unsustainable nutrient management. In fact, private farmer profits
could also be benchmarked with the environmental cost of exceeding the P target loads
(for instance through the cost of clean-up actions), as well as the effects on fisheries and
the recreation sector. The chance-constrained optimization problem, which arises from
setting risk targets, can be solved by introducing a penalty for excess nutrient emissions.
The resulting penalty function problem, also known as a two-stage optimization problem,
incorporates the social and environmental costs in the search for optimal agricultural
policies. Once the strategic nutrient management is put into practice, emissions can still
exceed the safety limits in rare events, and these excess emissions are penalized by means of
a fine, tax, or cost for clean-up. In other words, the two-stage stochastic program maximizes
net profits, i.e., the private farmer profit adjusted for environmental costs, and internalizes
the externalities of intensive farming (social and environmental costs) in the definition of
optimal nutrient management strategies.

Proposing nutrient abatement strategies is a difficult task due to the complexity of
landscape processes and multiple uncertainties in input data, model structure, and model
parameters [14]. In light of these difficulties, the modeling framework developed in this
work does not capture the full range of complexities and is an aggregate model, attempting
to provide general guidelines. There are several avenues to make the framework more
realistic. For instance, the framework can be made geographically explicit, and provide
nutrient management strategies considering the spatial variation of parameters in much
more detail. Furthermore, a number of farming practices have not been considered in this
work, and if added could provide a completer perspective on nutrient management. As an
example, subsurface drainage and irrigation can have an important effect on surface runoff
and P transfers in agricultural watersheds [52]. Also, the effect of nutrient prices could
be included, as they have a non-negligible impact on nutrient concentrations in surface
waters [3]. Finally, solving stochastic optimization problems is computationally demanding,
and a balance needs to be struck between model complexity and computational feasibility
to solve this type of problem. Model relaxations or computational strategies need to be
explored to compute optimal management strategies using a reasonable time horizon in
combination with a sufficiently large set of scenarios.

This study proposes a nutrient management strategy that balances environmental
protection with agricultural profits. Although the results show that environmental protec-
tion is possible given the necessary mitigation efforts, agricultural profits are estimated to
go down up to 28% under a worst-case climate scenario. Since environmental costs are
spatially separated from where agricultural profits are made, incentives will be necessary
to achieve the required change in farming practices. In this paper, we are not specific
about how this behavioral change can be accomplished. Both rewards and penalties can
be used to motivate the adoption of the recommended nutrient control strategy. Farmers
can be compensated for their profit loss, or instead they can be made responsible for the
environmental damage through taxes or fines. A tax or fine that corresponds to the social
and environmental cost of excess P loads is also the interpretation of the two-stage opti-
mization problem as defined in Appendix A. Yet, in the context of nutrient pollution it is
not straightforward to hold polluters accountable. Nutrient concentration measurements
in the watershed do not allow us to allocate responsibility to specific farms. Nonetheless,
P stock levels are measurable, and monitoring the difference from recommended P stock
levels (see Figure 6) can be a useful tool to strengthen environmental governance.
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Appendix A. Reformulation of the Chance Constrained Optimization Problem

In order to solve optimization problems with probabilistic constraints, we typically
need to resort to numerical methods. In particular, in this study only the empirical distribu-
tions of the emission rates are available, which results in discontinuities in the probabilistic
constraints, making the problem numerically intractable. In the following steps, we re-
formulate (9) in order to attain a tractable form of the problem. Under some technical
conditions [53], it can be demonstrated that the chance constrained problem in (9) is asymp-
totically equivalent with the following penalty function problem

max
δ,F,θ

Nt

∑
t=1

(
∑

i
δi(t)E

[
πi(δ, F, θ, ω)

]
− α
(
E
[
Qsa(t, δ, F, θ, ω) + Qss(t, δ, F, θ, ω)

]))
s.t. (4) and (6)

Pss(t, ω) ≥ 0, Psa(t, ω) ≥ 0, Pss(0, ω) = Pss,0 , Psa(0, ω) = Psa,0 , (A1)

with Qsa(t, δ, F, θ, ω) = max{0, Esa(t, ω)− ηsa} and Qss(t, δ, F, θ, ω) = max{0, Ess(t, ω)−
ηss}. The variables Qsa(t, δ, F, θ, ω) and Qss(t, δ, F, θ, ω) represent the excess P loads beyond
the P target loads and are the optimal solution of the second stage problem

min y

s.t. y + ηx − Ex(t, ω) > 0

y ≥ 0 , (A2)

with x ∈ {sa, ss}. The second-stage problem introduces a buffer variable y that needs to
compensate for the excess P loads once the random weather events realize. The chance
constrained problem defined in (9) is therefore equivalent to a two-stage problem where
the management practices δ, F, and θ are anticipative or strategic decisions that are taken
before a specific weather pattern is realized. Anticipative actions take into account expected
excess P loads E[Qsa] and E[Qss]. In case the P target loads are not met, a recourse action
is taken proportional to the excess emissions, i.e., α(Qsa + Qss), with α the cost per unit of
excess emission. The equivalence between the problem with chance constraints and the
two-stage stochastic optimization problem is established through the relationship between
the reliability level ρ in the chance constraint problem and the penalty α in the two-stage
problem. Specifically, for a chosen reliability level ρsa and ρss, the corresponding value of α
can be found numerically.
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The problem defined in (A1) contains the non-smooth functions Qsa and Qss, which
can introduce numerical complications. We circumvent this issue by introducing auxiliary
non-negative functions µsa(t, ω) and µss(t, ω), which leads to the following problem

max
δ,F,θ,µsa,µss

Nt

∑
t=1

(
∑

i
δi(t)E[πi(δ(t), F(t), θ(t), ω)]− α

(
E[µsa(t, ω) + µss(t, ω)]

))
s.t. (4) and (6)

µsa(t, ω) ≥ Esa(t, ω)− ηsa, µsa ≥ 0

µss(t, ω) ≥ Ess(t, ω)− ηss, µss ≥ 0

Pss(t, ω) ≥ 0, Psa(t, ω) ≥ 0, Pss(0, ω) = Pss,0 , Psa(0, ω) = Psa,0 . (A3)

We assume independent realizations over time of the uncertainties γss
i (t, ω) and

γsa
i (t, ω). However, at each time t we assume full correlation between both random

variables. Taking the expected value over a stochastic process is typically intractable,
and therefore we approximate the expected values by a sample mean, over a set of Ns
scenarios. The problem can now be formulated as

max
δ,F,θ,µsa,µss

1
Ns

Ns

∑
s=1

Nt

∑
t=1

(
∑

i
δi(t)πi(δ(t), F(t), θ(t), ωs)− α

(
µsa(t, ωs) + µss(t, ωs)

))
s.t. (4) and (6)

µsa(t, ωs) ≥ Esa(t, ωs)− ηsa, µsa ≥ 0

µss(t, ωs) ≥ Ess(t, ωs)− ηss, µss ≥ 0

Pss(t, ωs) ≥ 0, Psa(t, ωs) ≥ 0, Pss(0, ωs) = Pss,0 , Psa(0, ωs) = Psa,0 . (A4)

The chance-constrained problem with discontinuous constraints in (9) is reformulated
as a penalty function problem with continuous constraints, which is in its current form
numerically tractable.

Appendix B. Notation

The notation used throughout the paper is summarized in Tables A1 and A2.

Table A1. Model variables.

Notation Description Unit

π(t, δ, F, θ, ω) profit at time t for a representative hectare $/ha
πi(t, δ, F, θ, ω) profit at time t corresponding to crop i $/ha

δ(t) land allocation vector at time t for all crops i unitless
F(t) P input vector at time t for all crops i kg/ha
θ(t) cover crop vector at time t for all crops i unitless

Yi(Pss, Ri) yield of crop i at time t kg/ha
Psa(t, ω) stock of sediment attached P in the soil at time t kg/ha
Pss(t, ω) stock of soluble P in the soil at time t kg/ha
Esa(t, ω) P load for sediment attached P at time t kg/ha
Ess(t, ω) P load for soluble P at time t kg/ha
γsa

i (t, ω) emission rate for sediment attached P at time t unitless
γss

i (t, ω) emission rate for soluble P at time t unitless
ω uncertainty vector representing random annual precipitation NA
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Table A2. Model parameters. Parameter values are based on [54] and references therein, and in-
formed by expert assessment. For Ri, 4 values corresponding to 4 different conservation tillage
practices are given. All other sets with 3 values correspond to the 3 considered crops: corn,
soy, and wheat. Both crop prices and variable costs are decreasing with time according to
pi(t) = pi(0) · exp(ηp,i/∆p · (1− exp(−∆pt))) and Cv,i(t) = Cv,i(0) · exp(ηc,i/∆c · (1− exp(−∆ct))),
with ηp,i = {−0.008,−0.007,−0.007}, ηc,i = {−0.01,−0.009,−0.01}, ∆p = 0.03, and ∆c = 0.03.

Notation Description Value

ηss target load per hectare for soluble P 0.3 kg/ha
ηsa target load per hectare for sediment attached P 0.99 kg/ha

Psa(0, ω) initial conditions for sediment attached P in the soil 1010 kg/ha
Pss(0, ω) initial conditions for soluble P in the soil 101 kg/ha

Ri residue level of crop i {0, 0.35, 0.75, 1}
M manure application 8 kg/ha
Cf,i fixed cost for crop i {522, 457, 433}

Cch,i chemical cost for crop i {56.08, 33.48, 13}
Cc cover crop adoption cost 99

Cv,i(0) variable cost for crop i at time t = 0 ($/kg) {0.072, 0.093, 0.08}
pi(0) price of crop i at time t = 0 ($/kg) {0.195, 0.349, 0.165}

pl labor price 15
pf price of P fertilizer 2.865
pm application cost of manure 2.865
Hi labor hours required for crop i {5.5, 3.67, 2.75}

ζ1, ζ2 carry-over coefficients for sediment-attached P and soluble P 0.98, 0.98
τA, τS share of manure that converts into Psa and Pss 0.6, 0.4
φA, φS share of attached P that converts into soluble P, and vice versa 0.01, 0.3
cA, cS effectiveness of cover crops at reducing Psa and Pss 0.8, 0.37
bA, bS effect of conservation tillage on Psa and Pss 0.75, 1

mi effect of residue level on crop yields {−0.17, 0.001, −0.17}
µi crop use coefficient of soluble P of crop i {0.0029, 0.0058, 0.0046}
Ns number of scenarios 200
a1,i cost-effectiveness parameter for conservation tillage {0.03, 0.005, 0.005}
a2,i cost-effectiveness parameter for conservation tillage {0.35, 0.36, 0.36}
a3,i cost-effectiveness parameter for conservation tillage { 0.8, 0.7, 0.6}
a4,i cost-effectiveness parameter for conservation tillage {0.4, 0.45, 0.4}
α1,i yield function parameter {9414, 3161, 4102}
α2,i yield function parameter {0.7, 0.7, 0.7}
α3,i yield function parameter {0.06, 0.06, 0.06}
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