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Abstract: For smart, sustainable cities and urban planning, building extraction through satellite 
images becomes a crucial activity. It is challenging in the medium spatial resolution. This work 
proposes a novel methodology named ‘6+’ for improving building extraction in 10 m medium 
spatial resolution multispectral satellite images. Data resources used are Sentinel-2A satellite images 
and OpenStreetMap (OSM). The proposed methodology merges the available high-resolution 
bands, super-resolved Short-Wave InfraRed (SWIR) bands, and an Enhanced Normalized 
Difference Impervious Surface Index (ENDISI) built-up index-based image to produce enhanced 
multispectral satellite images that contain additional information on impervious surfaces for 
improving building extraction results. The proposed methodology produces a novel building 
extraction dataset named ‘6+’. Another dataset named ‘6 band’ is also prepared for comparison by 
merging super-resolved bands 11 and 12 along with all the highest spatial resolution bands. The 
building ground truths are prepared using OSM shapefiles. The models specific for extracting 
buildings, i.e., BRRNet, JointNet, SegUnet, Dilated-ResUnet, and other Unet based encoder-decoder 
models with a backbone of various state-of-art image segmentation algorithms, are applied on both 
datasets. The comparative analyses of all models applied to the ‘6+’ dataset achieve a better 
performance in terms of F1-Score and Intersection over Union (IoU) than the ‘6 band’ dataset. 

Keywords: deep learning; building extraction; built-up index; super-resolution; multispectral; 
satellite images 
 

1. Introduction 
The social and economic developments of society through good governance helps to 

create a better life. The developments that are done for smart living are backed-up by 
technical innovations and it helps to better serve the needs of people and creates a smart, 
sustainable city [1]. 

The planning of such cities needs efficient solutions along with good governance. For 
such governance and good planning of smart cities, the government needs to 
automatically track urban development activities. This monitoring can be done with the 
latest development in Geographical Information System (GIS) and Remote Sensing 
technologies. For example, the urban expansions happening in an area require monitoring 
and management, including the identification of densely populated or slum areas and 
understanding their social-economic condition [2], identifying the legal or illegal 
buildings in an area, building height estimation, identification of areas that are suitable 
for deployment of industries, the insurance and tax assessment of an area based on the 
population density [3], the estimation of population count based on the built-up areas [4], 
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the identification of  places in urban areas for green parks and artificial lakes, and short-
term economic forecasts [5]. Apart from that, another more important area is the use of 
renewable resources, such as the sun for energy supply. It is very useful for handling the 
climate conditions and preserves the nonrenewable resources of the earth. In smart cities, 
the deployment of multiple solar panel plants can serve the electricity needs of different 
local areas, to an extent. For identification of appropriate areas for the deployment of a 
solar panel plant, the extraction of the buildings of an area from remote sensing satellite 
images is an important activity [6]. 

Remote sensing is an area that is widely used for the monitoring of any 
environmental changes and various developments performed by human beings. Aerial 
and satellite images are tools used for such analysis, and are cost-effective. It saves time 
and the manual efforts used for performing these surveys on the ground. 

In the cases of natural disasters, such as earthquakes, tornados, tsunamis, floods due 
to heavy rains, snow cover monitoring [7], etc., the built-up area under the affected region 
is the one most impacted. The analysis of it helps to understand the actual impact of 
disasters on the urban population. Another important area is urban expansion that is 
dependent on humans and their societal needs. Monitoring, change detection, and 
planning can be done by utilizing satellite images for extracting the built-up areas of 
different regions. Built-up areas consist of impermeable surfaces where water cannot 
infiltrate to reach the soil, i.e., buildings, roads, parking areas [8,9], etc. Buildings are one 
of the important features of the built-up areas and its extraction is an active research area. 

Several challenges exist when extracting buildings from satellite images, including 
misclassification of pixels as different objects due to same spectral values, varying spatial 
resolution, occlusion presents near building structure, illumination condition, location of 
the study area, shooting angles, the material used on a rooftop, various kinds of shapes, 
sizes, and heights [10] etc. The problem of misclassification of pixel values impacts the 
building extraction algorithm performances and it happens due many reasons. One of the 
reasons is the similarity in spectral reflectance of the different class of objects present near 
the building structure. The usage of highly detailed satellite images can improve building 
segmentation performance. 

In most of the previous works in building extraction, high-resolution satellite images 
have been used, because there is more spatial information along with a higher texture and 
geometrical information [11] than medium spatial resolution multispectral satellite 
images. However, the high-resolution images only have three to four bands, which limits 
the probability of identifying the proper class of a pixel [12]. Also, the high-resolution 
building dataset that is publicly available belongs to specific areas. At the same time, 
multispectral images have a greater number of bands. These bands capture images of 
various wavelengths across the electromagnetic spectrum and highlight the different 
classes of features present on the earth surface. Also, these satellite images, such as 
Landsat-8/Sentinel-2 covers a much bigger area, which gives a broader view for smart city 
and urban planning. It gives a free to use privilege and these images are up-to-date due 
to temporal resolution of the satellites [13]. So, to better generalize the research for any 
area, the multi-spectral satellite images like Sentinel-2 have been used in this work. 
However, in the case of multi-spectral satellite images, the major challenge still seen in 
previous approaches comes from the side of spatial resolutions, the miss-classification of 
pixel values, proper segregation of building boundaries in closely situated buildings of an 
area, and a smaller number of training datasets [11,14]. So, to improve on the above-
mentioned challenges under building extraction, the proposed approach uses the multi-
spectral bands, which helps in discriminating a variety of features more clearly and 
reduces class confusion. Another important step in the proposed approach is the 
incorporation of additional information for enhancement of available bands information. 
This is important for supporting better spectral characteristics, texture, and shape 
information in medium spatial resolution [11]. This is very much reasonable and 
important for obtaining better results in building extraction. This helps in reducing the 
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probability of pixel misclassification and improving on building segregation boundaries. 
This additional data could be information rich with impervious surface features of the 
study areas. These impervious surface features can be extracted from the multispectral 
satellite images like Sentinel-2 by applying available built-up indices proposed in the 
literature. This additional information further helps the training model to learn better 
differentiation between buildings and other similar-looking objects. Also, it helps the 
model in emphasizing more on the buildings’ geometrical shape and size, their patterns, 
and segregation of building boundaries in dense building infrastructures. These 
impervious surfaces feature information along with available bands that will help in 
better urban feature extraction. Furthermore, it improves the building extraction 
performances. The deep, learning-based approaches have much better generalization 
capabilities with high accuracy and have proven to be very successful in computer vision 
research and remote sensing domain. This work uses deep learning, state-of-art, image 
segmentation techniques and algorithms, which are specifically tuned for building 
extraction for evaluating the proposed methodology. 

The major research objective of this work is to improve the performances of various 
deep learning models in building extraction for medium spatial resolution satellite 
images. This is achieved by enhancing the available multispectral image data using the 
proposed methodology. In this methodology, the available highest 10 m spatial resolution 
bands, super-resolved 20 m spatial resolution bands are merged with a built-up index 
image. The building shapefiles that are used in this work help the deep learning models 
to learn and extract the building structure features only. The deep learning models that 
are used for evaluating the quality of building extraction shows better performance in the 
case of enhanced data produced by the proposed methodology than the raw satellite 
image data. The following are the prime contributions of this work: 
(1) A novel approach named ‘6+’ is proposed for improving the building extraction 

performance of various deep learning models in medium spatial resolution, i.e., 10 
m satellite images. 

(2) A novel medium spatial resolution building extraction dataset is prepared using 
Sentinel-2 and OpenStreetMap (OSM) data. 

(3) Extensive experiments are drawn to validate the performance of the proposed work. 
The remaining part of the research work is organized as follows: The discussion on 

relevant literature is presented in Section 2. The details about the study areas and data 
resources, the proposed methodology, and the evaluation metrics used for this research 
work are mentioned in Section 3. Section 4 presents and discusses the statistical and visual 
results. Section 5 concludes the paper. 

2. Related Literature 
This section presents some of the relevant techniques from the literature for urban 

feature extraction. 
Due to the importance of built-up extraction from an urban area, several 

methodologies have been developed to perform land-use classification. Some techniques 
are based on supervised learning, e.g., neural network, object, knowledge, and contextual-
based classification [15]. These approaches need training, so it is time consuming. There 
are other quick techniques also based on built-up indices. 

These built-up index-based approaches do direct segmentation of the built-up area 
from the satellite image [16]. These built-up indices are simple and fast to implement. It 
generates an image by utilizing multiple bands and represents specific phenomena, such 
as vegetation, barren land, water bodies, built-up areas, etc. Several built-up indices have 
been proposed in the past for built-up extraction in previous works [8,13,17–20]. However, 
many factors affect or limit the performance of these built-up index methods. Some of 
these are varying spatial resolutions of satellite images, different environmental 
conditions and locations of study areas, dissimilarities in intra-urban structures, image 
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acquisition time, confusion in class types due to spectral similarity, and fewer 
generalization capabilities. 

At the same time, it is well seen that Convolution Neural Network (CNN)-based 
approaches have many more generalization capabilities and better protect the spatial 
characteristics of the objects. They have been proved successful in many areas, such as 
text [21], small object segmentation, such as counting the number of cars in a parking area 
for identifying the business done in a retail store [22], digits recognition [23], clouds 
detection [24], recognition of faces [25], detection of fasteners for railway tracks [26], 
classifying various crops [27], identifying temperature of water surfaces [28], and 
extracting roads from remote sensing imagery [29]. 

Deep learning techniques, such as convolution neural network (CNN) and its 
variants, have been proposed in the past for building extraction from remote sensing 
satellite images [14,30]. Reference [31] proposed a deep learning model EU-Net that deals 
with error ground truth labels with the help of the reverse focal loss function. Also, it 
extracts various features on multiple scales by using the proposed dense spatial pyramid 
pooling block (DSPPB), which uses a larger receptive field. Reference [32] proposed a deep 
learning model for building extraction named JointNet, which switches its loss function 
to extract both roads and buildings. This work also contributes to multi-scale feature 
extraction based on the utilization of dilated convolution for larger receptive field and 
dense connectivity blocks by proposing a dense atrous convolution block. While 
extracting large and complicated building structures, inaccuracy and incompleteness 
become a problem. Reference [33] proposed a deep learning model named BRRNet for a 
building extraction model that deals with this problem using multi-scale feature 
extraction, which is fused for obtaining enriched information. The prediction module of 
this model uses dilated convolution with different dilation factors for producing multi-
scale features. The model also consists of a residual refinement module for the 
improvement in its accuracy. In [34], the authors proposed an efficient building extraction 
named ‘RU-Unet’ based on the Unet encoder-decoder structure. The model combines the 
capabilities of residual learning for reducing the vanishing gradient problem and atrous 
spatial pyramid pooling for obtaining the multi-scale features and better context 
information. This model used focal loss function and worked on WHU aerial and Inria 
datasets. The authors of [35] proposed a deep learning model named B-FGC-Net for 
building extraction. This model has three main modules; the first, SA, is for obtaining 
spatial-level information about building features. Another module, GFIA, serves the 
contextual- and global-level information with the help of dilated-convolution and self-
attention mechanisms. The other module, CLFR, has been used for obtaining the cross-
level information through fusion technique. This work used two building datasets, i.e., 
WHU and Inria datasets. Reference [36] proposed a novel building extraction model 
named RSR-Net, which targets the problem of huge parameterization and extensive 
calculation in deep learning. For a better performance, this model assigns the channel 
weights to the low- and high-level features and fuses them. This process reduces the noise 
in the fusion of features produced by shallow features. The Dr-net [37] deep learning-
based building extraction model is specifically related to reducing the memory and 
training time of the learning models. Their model is based on encoder-decoder 
architecture and having a backbone of DeepLabv3+Net in composition of Residual 
network (ResNet) and densely connected CNN. This work utilized the two popular 
building datasets, i.e., WHU and Massachusetts. The Dilated-ResUnet deep learning 
model proposed by [10] extracts building structures from 10 m, i.e., medium spatial 
resolution multispectral satellite images. The Sentinel-2 satellite image and Open 
Streetmap (OSM) have been used in this work. Reference [12] proposed a deep learning 
model SegUnet that applies the combination of both SegNet and Unet for dealing with 
misclassification of pixels and salt-and-pepper noises while classifying pixel values. 
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Consequently, built-up index images better conserve the spectral characteristics of 
the targeted earth object. So, this work combines its capabilities with available satellite 
bands for better building using deep learning models. 

3. Materials and Methodology 
3.1. Study Areas and Data Resources 

The Copernicus Sentinel-2A [38] satellite launched on 23 June 2015. Its development 
and operation are handled by the European Space Agency (ESA). The Sentinel-2 satellite 
has 13 multi-spectral bands covering the range of spectrum from Visible, to Near-Infrared 
(NIR), to Short-Wave Infrared (SWIR). Its spatial resolution ranges between 10 m and 60 
m. These images are Bottom-Of-Atmosphere (BOA) corrected reflectance products and 
eradicate the various atmospheric conditions impacts. The details about the Sentinel-2 
bands that have been used in this work are shown in Table 1. The free usage of Sentinel-2 
satellite is provided by Copernicus Open Access Hub. It provides a privilege that 
encourages future researchers to choose any study area captured by Sentinel-2 satellite for 
their work [10]. This opportunity of free access to satellite data is crucial for conducting 
further research in the areas of land cover monitoring. It can also be helpful to replicate or 
apply the proposed methodology to the other study areas easily. In this work, the 
Bengaluru and Hyderabad cities are chosen as the study area because they are one of the 
largest cities of India. These cities consist of big area building structures due to the 
presence of multi-national companies and industries and consist of small-area building 
structures as well because of the dense population. 

Table 1. Details of multi-spectral bands used in this work. 

Sr. No Study Area Sensor Bands Utilized Central Wavelength (nm) Spatial Resolution (m) 

1 Bengaluru 
Sentinel-2A 

Red, 
Green, 
Blue, 
NIR, 

SWIR-1 
SWIR-2 

664.6 (Red), 
559.8 (Green), 
492.4 (Blue), 
832.8 (NIR) 

10 m 

2 Hyderabad 1613.7 (SWIR-1), 
2202.4 (SWIR-2) 

20 m 

The Sentinel-2 satellite images for Bengaluru is acquired on 29 March 2020 with a 
cloud percentage of 0.07315 and for Hyderabad, it is 19 March 2020 with a cloud 
percentage of 0.057243. The OSM shapefiles and satellite images are geo-referenced to the 
projected coordinated system, i.e., the UTM zone 43 N/44 N. The Sentinel-2 satellite 
images in Figure 1a,b represents near-infrared (NIR) band by red, SWIR-1 band by green, 
and Enhanced Normalized Difference Impervious Surface Index (ENDISI)-based built-up 
information by blue. The Sentinel-2 bands with the highest spatial resolution and better 
spectral reflectance for the built-up areas are chosen for this work [17,19]. These bands are 
short wave infrared (SWIR-1 and SWIR-2) of 20m and near-infrared region (NIR), Red, 
Green, Blue bands of 10 m spatial resolution. The spectral profile for both the study areas 
is also presented in Figure 2a,b. These figures clearly show a better mean reflectance value 
for the built-up areas and justifies the importance and use of SWIR-1 (Band 11) and SWIR-
2 (Band 12) in this work. 
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(a) 

 

 
(b) 

Figure 1. (a) Bengaluru (b) Hyderabad satellite images and their corner coordinates in Degree, 
Minutes, and Seconds. 

″77°28′51.23″ E″, ″13°01′54.20″ N″ 
: 

″77°44′11.36″ E″, ″12°52′10.71″ N″ 

″78°15′14.75″ E″, ″17°34′42.12″ N″ 
: 

″78°46′20.14″ E″, ″17°16′15.38″ N″ 
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Figure 2. Spectral reflectance curve for (a) Bengaluru area and (b) Hyderabad area. 

3.2. Proposed Methodology 
The architecture of the proposed methodology, ‘6+’, is presented in Figure 3 under a 

light green compartment. It majorly focuses on improving the building extraction results 
for medium 10 m [39,40] spatial resolution satellite images. Mainly, three components are 
used in the proposed methodology as the input: First, all highest spatial resolution bands; 
second, short-wave infrared bands, i.e., SWIR-1 and 2; and third, a built-up index image. 
The first component, i.e., band-2, 3, 4, and 8 are easily available with Sentinel-2 data. The 
second component, i.e., bands 11 and 12, in their original form, are not very suitable for 
extraction of building structures due to their spatial resolution, which is 20 m, because  
20-m spatial resolution covers only structures that are at least 20 m2 or more. The building 
structures having such a size are big, which can be often seen in the case of 
companies/industrial building structures, etc. Such spatial resolution generally loses small 
building structures, such as houses, small offices, etc. At the same time, bands 11 and 12 
are important from the perspective of urban extraction as they have a high spectral 
reflectance value for built-up areas. To make these bands useful for this work, bands 11 
and 12 are super-resolved to a 10 m spatial resolution. Super-resolution is a way to 
enhance the resolution of a multispectral and multi-resolution image. These multispectral 
bands have shared information that consists of the band-dependent spectral reflectance 
of the constituent’s elements in nearby pixels and is represented by ‘Ŝ’ and are known as 
shared values. The proportion of these shared elements within each pixel represented by 
‘Ŵ ’ are known as weights. In this process [41], a mixing equation for shared values, i.e., 
Equation (1), is needed for computing the shared information between the neighboring 
pixels. In Equation (1), the term Ŝ ,  can be read as the reflectance of a shared part of 
high-resolution pixels and so on. Ô(x, y) = Ŵ (x, y)Ŝ , +  Ŵ (x, y)Ŝ , +  Ŵ (x, y)Ŝ , +  Ŵ (x, y)Ŝ ,   (1)

Ŝ  ,  Ŵ =  𝑎𝑟𝑔𝑚𝑖𝑛 ∑  𝒷∈Ô ⃦ Ô 𝒷, ,   −  Ôⁿ𝒷, ,   , ⃦   (2)
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Figure 3. The proposed methodology ‘6+’ for building extraction improvement. 

Both the shared values, i.e., Ŝ  between high-resolution pixels for each band and 
weights common to all bands (Ŵ ) are calculated using Equation (2) iteratively. Here, Ô⁰ is the observed pixel value and Ôⁿ is the resolution-enhanced value. Here, 𝒷 ∈ Ô 
represents high-resolution band sets. For each coarse band, the corrected shared values 
are calculated and combined with band-independent weights for producing high-
resolution images [42]. In summary, the overall process of super-resolution has two steps; 
the first step separates the reflectance, which is the band-dependent information from the 
common band independent information, i.e., “geometry of scene elements”. Second, to 
unmix (super-resolve) the low-resolution bands, this model is applied, which uses the 
band-independent geometric information while preserving their overall reflectance to 
solve the super-resolution problem. The super-resolved images of SWIR bands for both 
study areas are generated from the SNAP tool [43] by utilizing the super-resolution plugin 
obtained from [41]. A sample, cropped image of an area in Bengaluru is shown in Figure 
4a, which presents the SWIR-1 band of Sentinel-2A satellite images. The Figure 4b shows 
its corresponding super-resolved image of 10 m spatial resolution. The third input 
component in the proposed methodology is a built-up index image. For this, the ENDISI 
[19] built-up index is used, and it is presented using Equations (3)–(5). This built-up index 
is applied to extract impervious surfaces information present in both study areas. 

𝐸𝑁𝐷𝐼𝑆𝐼 = ℛ  × [ℛℛ  ( )²]ℛ  × [ℛℛ  ( )²]  (3)

𝛼 =  × Ṁ(ℛ )Ṁ ℛℛ Ṁ[( )²]  (4)

𝑀𝑁𝐷𝑊𝐼 = ℛ  ℛℛ  ℛ   (5)
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Here, ℛ , ℛ , ℛ , ℛ  represent the surface reflectance of Blue, Green, 
SWIR-1, and SWIR-2 bands. Ṁ represents the mean value of the image and MNDWI 
stands for modified normalized difference water index. 

  
(a) (b) 

Figure 4. Visual analysis (a) SWIR-1 band and (b) corresponding super-resolved version. 

The ENDISI built-up index is used in the proposed methodology, as it provides a 
higher separability degree and eliminates the effect of water bodies. The other built-up 
indices, such as CBCI (combinational biophysical composition index), IBI (index-based 
built-up index), and NDBI, have influence based on the study areas. The other built-up 
indices, such as BCI (biophysical index) and CBI (combinational built-up index) are 
impacted by water bodies [19]. The ENDISI built-up index reduces the impact of arid land, 
bare rock, bare soil, and in this way it reduces the problem of spectral similarity b/w 
building and other objects. The ENDISI-generated built-up index image, as shown in 
Figure 5, highlights the impervious surfaces of the same study area which is shown in 
Figure 4a. Similarly, for the Hyderabad study area, such an image is also generated. 

 
Figure 5. ENDISI built-up index image. 

In the next step of the proposed methodology, the bands 2, 3, 4, 8, super-resolved 
bands 11 and 12, and the ENDISI built-up index image are normalized. They are merged 
to produce a multi-spectral image named ‘6+’. The merge operation is performed using 
QGIS Desktop 3.10.0 software. Since the range of values of bands 2, 3, 4, and 8 are different 
from the super-resolved bands 11 and 12 and ENDISI built-up image, all the data are 
normalized to a common range of 0 to 255. Here, normalization of data helps to better 
distribution of feature values for each of the features [44]. Therefore, the learning rate will 
not deviate from the weights of the network, and it helps by being a better and quicker 
training model. The ‘6+’ merged image has additional information about spectral 
characteristics of the impervious surface in the form of the ENDISI built-up index image. 
It helps in identifying and better training the model on impervious surfaces, such as 
building structures based on building ground truths. Apart from our proposed 
methodology-based ‘6+’ merged image, another multi-spectral image named ‘6 band’ is 
prepared. This image is produced by merging the bands 2, 3, 4, and 8, and the super-
resolved bands 11 and 12. This image does not merge the ENDISI built-up index image. 
This ‘6 band’ image is produced by comparing the performance with the proposed 
methodology-based ‘6+’ image using various deep learning models for building 
extraction. 
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In the next step, both ‘6 band’ and ‘6+’ merged images along with their corresponding 
building ground truths obtained from OpenStreetMap (OSM) data [45] are cropped into 
224 × 224-dimension images. This process produces 391 trainings and 46 testing images to 
form datasets ready to feed in for the training of various deep learning models. The 
building ground truths that are not updated or corrupt are identified by visually 
observation. Those ground truths are filtered out of the dataset along with their 
corresponding satellite images. This prepares the exact building extraction dataset of 
medium resolution satellite images. Both the prepared datasets have 90% training and 
10% testing images of different variations separately, which include buildings of various 
shapes and sizes, dense and closely situated building structures, no building areas, i.e., 
water bodies, barren lands, green areas, etc. The ‘6+’ dataset is made public for future 
researchers at the following link: https://drive.google.com/drive/folders/1aV-
bSIa51xd3oxrHWCVrHgQIPrMKfSzE?usp=sharing (accessed on 28 November 2021). 

3.3. Evaluation Metrics 
Two well-known performance evaluation metrics, F1-Score and Intersection over 

Union (IoU), are used by the applied deep learning model for accessing the performance 
of the proposed methodology in building extraction. 

The F1-Score is a harmonic mean of recall and precision. It can be calculated as shown 
below: F1 − Score = 2 × ∗   (6)

Intersection over Union (IoU) is a popular metric for image segmentation that 
provides the measurement of overlap between the predicted and actual building masks. 
It can be calculated as shown below: IoU =  ∩ ∪   (7)

4. Experimental Results and Discussion 
The NVIDIA DGX-1 v100 supercomputer is used for performing the 

experimentations. For the development of relevant codes, the Keras library is used with 
the backend being TensorFlow. 

After preparing both datasets as shown in Figure 3, several experimentations are 
performed on both the ‘6+’ and ‘6 band’ datasets using various deep learning-based 
models for testing the efficacy of the proposed approach. The models that are specifically 
tuned for building extraction, i.e., JointNet [32], BRRNet [33], Dilated-ResUnet [10], and 
SegUnet [12], are implemented for analyzing the improvements through the proposed 
approach in their building extraction performance from medium spatial resolution 
satellite images. JointNet, BRRNet, and SegUnet models use Adam optimization and 
JointNet; SegUnet uses binary cross-entropy as the loss function whereas BRRNet uses 
dice coefficient loss. Apart from the above building extraction models, the other popular 
state-of-art image segmentation models, such as efficientnet_b0 [46], inceptionv3 [47], 
resnet18 [48], vgg16, and vgg19 [49] are used as the backbone in the Unet [50] based 
encoder-decoder [51] model for analyzing the performance improvement in segmentation 
of buildings from input satellite images. For Unet-based models, Adam is used as an 
optimizer and its hyper-parameter is set as mentioned in [52], i.e., the learning rate is set 
to 0.001, beta1 as 0.90, and beta2 as 0.999. The loss function for Unet-based encoder-
decoder models is taken as binary cross-entropy. All these models perform the building 
extraction on both the prepared datasets, separately. 

Tables 2 and 3 present the F1-score and Mean IoU statistics generated on the test 
dataset by various models for building extraction. These statistics are arranged in 
ascending order of the values, generated by the proposed methodology. It can be seen 
from the upper green color arrow in Tables 2 and 3 that the values of both the evaluation 
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metrics, i.e., the F1-score and Mean IoU generated by all the models, has better results in 
the ‘6+’ dataset prepared by the proposed methodology when compared with the ‘6 band’ 
dataset. The Z-score is also calculated for each model, applied on the ‘6+’ entire dataset, 
which includes both training and testing images for observing how far the results 
obtained by various models are away from the mean in terms of standard deviation. 
Figure 6 presents the Z-Score for the models mentioned in Tables 2 and 3 by serial 
numbers. It shows that the results obtained by various models using the proposed 
methodology are under the normal distribution and do not have any anomaly or outlier 
values. This shows the generalization ability and signifies the consistency and reliability 
of obtained results using the ‘6+’ dataset prepared by the proposed methodology. 

Table 2. Performance statistics on ‘6 band’ and ‘6+’ test datasets by state-of-art image segmentation 
models. 

S. No Models F1-Score 
(6 Band) 

F1-Score 
(6+) 

Mean 
IoU 

(6 Band) 

Mean IoU 
(6+) 

1 Unet_efficientnet_b0 0.5170 0.5220  0.622 0.626  
2 Unet_inceptionv3 0.5239 0.5379  0.625 0.632  
3 Unet_vgg16 0.5361 0.5396  0.633 0.634  
4 Unet_resnet18 0.5428 0.5489  0.637 0.639  
5 Unet_vgg19 0.5397 0.5514  0.633 0.640  

Table 3. Performance statistics on ‘6 band’ and ‘6+’ test datasets by building extraction models. 

S. No Models F1-Score 
(6 Band) 

F1-Score 
(6+) 

Mean IoU 
(6 Band) 

Mean IoU 
(6+) 

6 
Neural-Network-for-
Road-and-Building-
Extraction (JointNet) 

0.5225 0.5522 0.624  0.643  

7 
Building Residual 
Refine Network 

(BRRNET) 
0.5517 0.5543 0.642  0.645  

8 Dilated-ResUnet 0.5572 0.5663 0.646  0.650  
9 SegUnet 0.5728 0.5820 0.654  0.660  

 
Figure 6. The Z-Score for average F1-Score and Mean IoU by all models on ‘6+’ dataset. 

Figure 7a,c show sample test satellite images of the proposed methodology and their 
building ground truth is shown in Figure 7b,d. These input satellite images show the NIR 
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band using a red color, SWIR-1 with Green, and the ENDISI built-up index image with 
blue. These satellite images have several features, including big and small building 
structures, roads, green areas, barren lands, water bodies, such as lakes, etc. Figures 8–9 
show the building masks predicted by BRRNet, JointNet, SegUnet and Dilated-ResUnet 
building extraction models. In BRRNet-based predictions, improvement can be seen from 
Figures 8a and 9a to Figures 8b and 9b in terms of small buildings. The segregation of 
building boundaries is better with the proposed methodology. The JointNet-based 
prediction from ‘6 band’, i.e., Figures 8c and 9c, shows too many misclassified pixels and 
mixing of building boundaries, but with the proposed methodology it produces better 
segregation of building boundaries as shown in Figures 8d and 9d. The SegUnet based 
predictions as shown in Figures 8e and 9e have a slightly better segregation of building 
boundaries than Figure 8f but show more misclassified pixels in small, densely located 
building structures as shown in Figure 9f. The Dilated-ResUnet-based model also shows 
improvements, as shown in Figure 8h, for the lower-middle areas of Figure 8g. It produces 
more structured and refined building boundaries. In the upper left areas of Figure 9h, the 
‘6 band’ approach misses some of the building pixels whereas ‘6+’-based prediction 
classifies them correctly when compared to the ground truth. 

   
(a) (b) (c) (d) 

Figure 7. (a,c) are test satellite images and (b,d) are their corresponding building ground truths. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 8. (a) 6 band (BRRNet) (b) 6+ (BRRNet) (c) 6 band (JointNet) (d) 6+ (JointNet) (e) 6 band 
(SegUnet) (f) 6+ (SegUnet) (g) 6 band (Dilated-ResUnet) (h) 6+ (Dilated-ResUnet)-based building 
extraction for Figure 7a. 
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(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 9. (a) 6 band (BRRNet) (b) 6+ (BRRNet) (c) 6 band (JointNet) (d) 6+ (JointNet) (e) 6 band 
(SegUnet) (f) 6+ (SegUnet) (g) 6 band (Dilated-ResUnet) (h) 6+ (Dilated-ResUnet)-based building 
extraction for Figure 7c. 

The above discussion analyses show that the proposed methodology has improved 
the performance of all the applied models in building extraction. The improvement using 
the proposed approach is due to several factors, such as the use of built-up index images 
that specifically provides information only on impervious surfaces of the study area. It 
helps in better capturing the spectral and spatial information about building features. 
Along with the built-up index image, the involvement of SWIR bands further supports in 
capturing more built-up details due to high mean reflectance values for built-up areas. At 
the same time, super-resolution of SWIR bands provides the details about texture in more 
and better ways [53], and maintains the spatial resolution to 10 m. In this way, more 
information on built-up structures is available along with available 10 m bands, i.e., Red, 
Green, Blue, and NIR bands. The merge of available 10 m bands, super-resolved SWIR 
bands, and built-up index images helps in further improving the performances of all the 
deep learning models in building extraction by seeing a smaller amount of pixel 
misclassifications and better building segregation among closely situated building 
structures. 

5. Conclusions 
Urban and smart city planning needs a broader view for understanding the 

infrastructure developmental needs of society. These needs must be tracked and 
monitored by good governance for their controlled growth. Building extraction from 
satellite images is an important activity for this purpose. In this work, a novel approach, 
‘6+’, was proposed for improving medium spatial resolution building extraction. This 
approach has utilized the highest spatial resolution for NIR, Red, Green, and Blue bands, 
super-resolved SWIR bands, and ENDISI built-up index images. These bands and the 
built-up index image are merged after applying normalization to produce an enhanced 
multispectral image. This produced multi-spectral image has better spectral and spatial 
characteristics and can be utilized to extract impervious surfaces, such as buildings, more 
efficiently. Two novel datasets were prepared. The first was based on the proposed 
methodology, i.e., ‘6+’, and the second one based on ‘6 band’ was produced by merging 
10 m bands with super-resolved SWIR-1/2 bands. Extensive experimentations have been 
drawn by considering various building extraction models and other popularly known 
models for image segmentation. F1-Score and Mean IoU results of all the applied models 
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have proved that the proposed, methodology-based ‘6+’ dataset achieved a better 
performance for building extraction than the ‘6 band’ dataset. Therefore, this paper has 
produced a novel model for improving the building extraction results in medium spatial 
resolution multi-spectral satellite images and can be useful for the benefit of society. In 
the near future, we will extend the proposed model by developing novel deep 
segmentation models. 
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