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Abstract: The application of batteries in electric vehicles and stationary energy-storage systems is
widely seen as a promising enabler for a sustainable mobility and for the energy sector. Although sig-
nificant improvements have been achieved in the last decade in terms of higher battery performance
and lower production costs, there remains high potential to be tapped, especially along the battery
production chain. However, the battery production process is highly complex due to numerous
process–structure and structure–performance relationships along the process chain, many of which
are not yet fully understood. In order to move away from expensive trial-and-error operations of
production lines, a methodology is needed to provide knowledge-based decision support to improve
the quality and throughput of battery production. In the present work, a framework is presented
that combines a process chain model and a battery cell model to quantitatively predict the impact
of processes on the final battery cell performance. The framework enables coupling of diverse
mechanistic models for the individual processes and the battery cell in a generic container platform,
ultimately providing a digital representation of a battery electrode and cell production line that
allows optimal production settings to be identified in silico. The framework can be implemented as
part of a cyber-physical production system to provide decision support and ultimately control of the
production line, thus increasing the efficiency of the entire battery cell production process.

Keywords: digitalization platform; process modeling; battery cell modeling; battery electrode
structure; simulation; global sensitivity analysis; lithium-ion battery

1. Introduction
1.1. Motivation for a Model-Based Digitalization Platform

The widespread emergence of battery technology together with the need for the global
automotive industry to mitigate climate change are responsible for a major paradigm shift
in the mobility and energy sector. Combined with carbon-free energy, electric vehicles (EV)
and stationary energy-storage systems offer immense decarbonization potential for sectors
currently based on fossil fuels. In particular, the mobility sector, which contributes 24%
of direct emissions from fuel combustion, is in the center of a dynamic transition that can
already be noticed by the increasing shares in new registrations and ambitious targets from
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policy makers [1,2]. Consequently, the demand for battery cells is predicted to increase by a
factor of ten from 282 GWh in 2020 to 2623 GWh in 2030, mostly due to electromobility [3].
The increasing interest and effort in battery technology in the last decade has led not only
to a significant improvement in the performance (energy/power density and safety) but
simultaneously also to battery cell costs dropping by 80% from USD 668 in 2013 to USD
137 in 2020 [4]. Future trends in battery technology including silicon-blended anodes,
lithium-sulfur, or all-solid-state battery cells promise even higher performance, which will
foster new fields of application and drive the shift towards a battery-powered mobility and
energy-storage sector.

Despite the remarkable success of batteries in the last decade, further progress is re-
quired to help increase energy density (i.e., the range of EVs) and decrease the cost and the
charging times. Besides the cell materials and cell design, the battery cell production pro-
cess especially provides significant room for improvement. The battery production chain
consists of heterogeneous process steps with a vast amount of parameters and numerous
(only partly understood) process–product structure and product structure–performance
relationships inside single process steps but also along the entire production chain. As a
consequence, the battery cell production cannot compete with the yield rates of the elec-
tronic industry, and, currently, low double-digit scrap rates are reported [5]. The scrap
material and the resulting high energy demand significantly increase the overall environ-
mental impact of batteries. In addition, the battery cell is a complex product in which
its final performance properties, such as energy density or capacity, are determined by
various structural parameters of the individual components (i.e., electrodes, separator, and
electrolyte). Slight changes in the structural parameters can result in drastic limitations of
the electrochemical performance of the battery cell. A trial-and-error-based improvement
strategy to produce a battery cell in an already ramped up production line, especially on
an industrial scale, is typically avoided due to the risk of expensive production downtime,
impaired battery cell quality, and increased scrap rates. Consequently, there is a demand
for a framework that allows a non-invasive improvement of the battery cell and its process
chain to further continue the emergence of a battery-driven mobility and energy sector.
Herein, we introduce a framework that is able to integrate mechanistic models of the pro-
duction processes and the battery cell resulting in a digital representation of the real world
that can determine the effect of the production process on the battery cell performance.
The proposed framework is based on transparent process–product structure as well as
product structure–performance relationships instead of expensive trial-and-error runs and
enables low-cost and knowledge-based improvements. By improving the battery perfor-
mance and the reducing production cost due to lower scrap rates, the implementation of the
framework can overcome the barriers to electric-vehicle success and ultimately contribute
to a more sustainable mobility and energy sector.

1.2. Existing Approaches to Make Cause–Effect Relations Transparent

Lithium-ion battery cells are manufactured in a complex process chain, composed of
highly specialized processes. Convergent and divergent material flows as well as multiple
parameter dependencies link these processes and lead to manifold cause–effect relation-
ships. In general, the process chain is divided into three phases: electrode production, cell
production, and cell conditioning. The electrode production is predominantly characterized
by batch and continuous processes, starting with the mixing of active material, conductivity
additives, a binder, and a solvent to form a homogeneous electrode slurry. Next, the slurry
is continuously or intermittently coated onto a foil. The selection of the most appropriate
process technology depends on a variety of factors, such as the electrode specifications
and the cell format (i.e., pouch, cylindrical, or prismatic) [6]. The foil is then dried and
compressed by a two roller calender. Configuring the calendering process requires a deep
understanding of process parameters and structural parameters of the incoming product as
well as their cause–effect relations. At this step, for example, a reduction in the electrode
porosity leads to more particles being in contact and, consequently, a higher electrode
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conductivity. Additionally, a reduction in the porosity decreases the electrolyte diffusion
within the pores [7]. The cell production is characterized by discrete processes and takes
place in a dry room. First, the cell production starts with a final drying process. Subse-
quently, electrodes are slit in the correct width and length. In the production of pouch cells,
cathodes, anodes, and separator sheets are stacked together during packaging. The stack
is contacted internally and inserted into a pouch bag, which is then filled with electrolyte
and sealed. Alternatively, the cathode, separator, and anode are winded, and the resulting
electrode coils are inserted into cylindrical or prismatic cans. Finally, cell conditioning takes
place outside the dry room and includes the formation and aging processes [6].

Each production step is characterized by a variety of process-specific parameters
that determine the intermediate product structure as well as the final battery cell per-
formance [8,9]. As a consequence, the initial processes influence the parameters of the
subsequent processes, increasing the complexity of the cause–effect relations [10]. A deep
understanding of these relations along the battery cell production is therefore essential
to support a knowledge-based improvement in processes and battery cell quality and,
consequently, a more competitive battery production with reduced environmental impacts.
Current works regarding cause–effect relations in the battery cell production present dif-
ferent scopes and methodologies. The scopes range from selected parameters and specific
processes [7,11,12] to a more holistic approach of the entire process chain and the battery
cell quality [9,10,13,14]. Considering the methodology, the majority of the works present
either data- or mechanistic-based approaches.

Data-based methodologies apply mathematical algorithms to generate models that
fit the cause–effect relations present in experimental data. This approach is also called
a black box since a clear understanding of the phenomena that define the relations is
not provided. As a consequence, non-intuitive relations may be identified. However,
the findings cannot be extrapolated to new datasets as the fit is assured only for the data
used to train the model. In addition, this methodology strongly depends on the acquisition
and the quality of the data [8,15]. A framework to support data acquisition, preparation,
and analysis in battery cell manufacturing is proposed by [8]. The data-mining framework
CRISP-DM is applied to assess and identify the most important intermediate product
features based on their influences on the cell capacity. Primo and colleagues focus on
the calendering process and present the application of the advanced statistics methods
(e.g., ANCOVA, PCA, and k-means) to study the cause–effect relations between selected
process parameters and electrode properties as well as their influence on the battery cell
capacity [7]. Hoffmann and colleagues also propose a data-based approach to discuss
the relations between intermediate product features on the cell characterization data by
applying statistical analysis [14].

Compared to data-based models, mechanistic models are derived from validated
equations that describe a phenomenon and require, therefore, knowledge of the modeled
system. Based on that, cause–effect relations are identified, and a deep understanding
of these relations is provided, different from data-based approaches. Another benefit of
mechanistic models is the possibility to extrapolate the models and apply them to new
systems and processes, without new experimental data [11,15]. The use of mechanistic
models to assess cause–effect relations along the battery cell production is proposed by
i.a. [9]. Herein, the propagation of manufacturing uncertainties was studied with a mul-
tilevel model that couples process chain and battery cell simulations. Ngandjong and
colleagues presented a Discrete Element Method (DEM) simulation to study relations on
a process level and assess the effect of calendering on the mesostructural and macroscale
electrochemical properties of the battery cell [11]. The same DEM simulation paradigm
was proposed by Sangrós Giménez and colleagues to analyze the evolution of the electrode
structure during calendering [12]. In addition, the simulation results were used to model
the electrical and ionic conductivities as well as the adhesion strength.

Similarly, mechanistic models can be used to describe the electrochemical behavior
of the battery cell. Depending on the modeling approach, the electrochemical models can
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be separated into lumped electrochemical models, Doyle–Fuller–Newman models [16,17],
and electrochemical full-3D models. The Doyle–Fuller–Newman-model type, also known
as the Pseudo-2-Dimensional (P2D) model, represents a widespread solution since it allows
a detailed investigation of the physico-chemical mechanisms inside the battery cell with
a reasonable computational effort. These models can then be used to identify optimal
electrode and cell structures by rigorous mathematical optimization [18]. They may further
be connected to production models. For example, Lenze and colleagues have used a
P2D model to support experimental analysis to understand relationships between the
calendering process and, e.g., the effective ionic conductivity within the electrolyte and
solid active material, which in turn affect battery cell performance [19].

While numerous modeling approaches focus on cause–effect relations within indi-
vidual processes or within the battery cell, there is a clear demand for a comprehensive
framework that allows to address the interaction of battery production and the battery
cell. Against this background, this article presents a framework that allows the coupling of
mechanistic process models with a battery cell model within a generic platform concept to
describe the impact of individual processes on the structure of the battery cell components
and, consequently, on the performance properties of the final battery cells. The developed
framework can ultimately be used to support battery production and the design process of
battery cells by providing crucial but inexpensive insights in the process-product mecha-
nisms, which allows a more effective production and thus a more sustainable product.

2. Methodology
2.1. Concept of the Modeling Framework

The modeling framework is able to combine mechanistic models for the process chain
and the battery cell, which are integrated into one platform with defined intersections. It
consists of the three modules: (I) the process chain model, (II) the battery cell model, and
(III) analysis (Figure 1), and it builds up on previous works [9,20]. The modeling framework
is based on the process–structure–performance relationship. It describes the influence of
individual production processes on the structure of the intermediate and final products,
which in turn predetermine the performance of the final battery cell [6].

Figure 1. Schematic concept of the modeling framework consisting of three modules: (I) process
chain model, (II) battery cell model, and (III) analysis.

The process–structure relationship and the structure–performance relationship were
modeled based on mechanistic cause–effect relationships within the (I) process chain
model and the (II) battery cell model, respectively. Both modules are connected via the
structural parameters of the battery cells, which is the output of (I) and the input for
(II). The combined process chain and battery cell model enables an in silico analysis
of process–product interactions considering not only nominal values but additionally
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uncertain process and structural parameters, which are caused by machine and material
imprecision. The machine and material imprecision propagate as parameter uncertainties
along the process chain model and ultimately result in uncertain battery cell performance
properties. The simulation results can subsequently be accessed for various analysis
functions (III) such as robust optimization, uncertainty/sensitivity analysis, or identification
of production tolerances.

The combined process chain and battery cell model is a digital representation of the
battery production and the battery cell, which can serve as an integral element of the cyber
world within a cyber-physical production system. The model approach allows a low-cost
scenario analysis, whereby its results can be transferred to the real production line and
support the battery cell developers during the design process or the worker at the machine.
The use of the digital representation lies in the quantification of production influences on
the intermediate product characteristics and consequently on the battery cell performance.

Both the process chain and the battery cell model can be starting points for such an
evaluation (Figure 2). Based on the process chain model, it is possible to determine the
extent to which changes in the process parameters affect the structure and, subsequently,
the extent to which changes in the structure affect the performance properties of the battery
cell (production-oriented). In this case, the process chain model is used to determine
specifications of the structural parameters, which are then transferred to the battery cell
model. In contrast, the battery cell model can also be used initially to design a battery
cell with a desired performance (product-oriented). The structural parameters determined
as a result, e.g., via an optimization, are consequently target values for the subsequent
calculations of the process chain model. Consequently, the process chain model needs to be
adjusted iteratively in order to achieve these structural parameters.

Product-oriented

I Process chain model II Battery cell model

Electrochemical
model

Structural 
surrogate

model
PM PM PM PM

Production-oriented

Target values

Specifications

Figure 2. Simulation workflow for a production-oriented and product-oriented utilization of the
modeling framework.

2.2. Process Chain Model (I)

The process chain model describes the respective process–product mechanisms in each
process and consists of individual model containers for each process step. Each process
model container can hold different types of process models such as analytical (e.g., based
on mass or energy balances) or numerical models (e.g., computational fluid dynamics or
discrete-element-method models) (Figure 3).

The characteristics of the respective raw material and the intermediate or final product
within the processes are defined by structural parameters. These structural parameters
include both material-intrinsic characteristics such as the bulk density of the active material
but also structural characteristics of the individual component such as the coating thickness
of the electrodes. Structural parameters can be both input SPi

i,k and output SPo
i,k parameters

of process models, where the subscripts i denote the process step; k indicates the respective
structural parameter; and the superscript i or o represents an input or output. Process
parameters PPi,j define the impact of a process on the raw material and the intermediate
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product, respectively, and thus are input parameters of process models, where j represents
the respective process parameter of the process. Overall, process models can be formulated
such that:

SPo
i,k = f (PPi,j, SPi

i,k) (1)

Depending on the selected process step, the structure of the incoming raw material
or intermediate products can remain unchanged (e.g., active material bulk density during
mixing) or be altered due to the process parameters (e.g., porosity during calendering).
Furthermore, new structural characteristics might also arise as part of the process step
(e.g., porosity after drying). This behavior is reflected by the interconnectivity of the
structural parameters between different process steps in the process chain model. Each
model container possesses structural parameter intersections based on the input and output
requirements of the process model. Consequently, output structural parameters can be
passed on to the subsequent model container but can also skip several process steps
until the structural parameter is required again. The interconnectivity of the structural
parameters ultimately result in an interdependent network of structural parameters, which
reflects the high complexity of the battery cell process chain. The level of complexity, which
is addressed within the process model influences the degree of conformity between the
measured and the modeled process dependencies. Typically, process modelers start with
the main cause–effect relations and continuously increase the level of complexity of the
model. Process models must be validated not only on process level but also on the process
chain level to ensure reliable results of the process chain simulation.

Mixing Coating Drying

...

Model containerModel containerModel container

CFD model
Analytical
model 1

Meta-model Analytical
model 2

DEM model

Meta-modelP
ro

du
ct

 fl
ow

PPi,j

SPi,k
i

SPi,k
o

SPi+1,k
i

SPi+1,k
o

SPi+2,k
o

SPi+2,k+1
o

SPi+2,k+2
oSPi+1,k+2

o

SPi+2,k
i

SPi+2,k+1
i

SPi+2,k+2
i

SPi,k+1
o

PPi+1,j PPi+1,j+1 PPi+2,j

Figure 3. process chain model implemented by a concatenation of model containers, which are
connected via structural parameters. Exemplary models are presented for the process steps of mixing,
coating, and drying.

Numerous mechanistic modeling approaches exist, which are available for modeling
the cause–effect relations in the different process steps. Analytical models are typically used
for a top-down description of the process mechanisms and can be solved in less than a few
seconds. However, there are also highly complex bottom-up approaches such as the Discrete
Element Method (DEM), the Computational Fluid Dynamic (CFD), or the Finite Element
Method (FEM). These bottom-up approaches are based on particle–particle interactions or
describe the behavior of the fluid or component using partial differential equations or force
balances. Compared to analytical equations, the complex bottom-up approaches require
long computation times (from several hours to multiple days) and are typically solved in a
separate software environment.

The selection of the mechanistic modeling approach depends on the respective process
step. DEM simulations are suited for particle-oriented process steps such as dry mixing,
drying, or calendering [12,21], whereas CFD simulations are often used for dispersion,
coating, or electrolyte filling [22]. Analytical models, however, can be used widely for vari-
ous process steps throughout the process chain. They range from first-principle equations,
e.g., for drying of anodes [23], to semi-empirical models that fit measured data supported
by structural parameters [24–26].



Sustainability 2022, 14, 1530 7 of 22

2.2.1. Meta-Modeling of Bottom-Up Models

Coupling of bottom-up models into an integrated process chain model causes signifi-
cant challenges since various software environments must be coupled for the respective
process model and controlled with a suitable middleware. In addition, the computational
effort of DEM, CFD, or FEM simulations for single-process steps alone already results
in long computation times (�hours), which can add up to multiple days for the entire
process chain. Target-oriented decision support for product design or even in-line control
in the production process as part of a cyber-physical production system [13] can therefore
not be realized with numerical models. Consequently, a meta-modeling of the original
bottom-up model was proposed. The meta-model can approximate the complexity of
the results of the bottom-up model by a variety of data-based models. These data-based
approximations can be implemented in a single programming software such as Python.
In addition, the computation times can be reduced to a few seconds, which allows an in-line
implementation of the platform concept of the battery cell production and battery cell.

The meta-modeling consists of three steps (Figure 4). In the first step, a virtual Design
of Experiment (DoE) is conducted on the numerical model. The procedure of the virtual
DoE mimics the DoE for physical experiments and is used to determine how and how
much each input parameter (process parameter and structural parameter) affects the output
parameter of the process model. For this purpose, the DoE proposes a systematic approach
that takes into account possible higher-order interactions between the input parameters
while minimizing the number of simulation runs.

Virtual Design of
Experiment

x

x
x
x
x
x x x

x
o
o
o
o
o
o o o o

I II

x

x
x
x
x
x x x

x

Fit of 
Meta-Models

o
o
o
o
o
o o o o

MM1
MM2
MM3

ValidationIII Validation & Meta-
Model Selection

MM1
MM2
MM3

Figure 4. Meta-modeling approach consisting of (I) virtual design of experiment, (II) fit of meta-
models, and (III) validation and meta-model selection.

Minimum, medium, and maximum values of the input parameters were included
to achieve a comprehensive coverage of the respective design space. The result of the
virtual DoE was a table of input parameter configurations with the respective calculated
output parameter values using the numerical model. The necessary sample size for the
DoE was determined by the number of input parameters and the order of their interaction.
In addition, potential stochastic variations within the numerical model, e.g., through
random particle placement at the beginning of a simulation, may require a repeated
computation of the virtual DoE to consider the variations within the model.

In the second step, different meta-models were fit to the input–output parameter data
from the virtual DoE. The goal was to achieve a minimal deviation between the data of the
virtual DoE and the meta-model. Suited meta-models include linear regression, artificial
neural networks, polynomial chaos expansion, and Kriging. Different meta-models should
be tested and compared regarding, e.g., their root-mean-square-error, goodness of fit,
or Akaike information criterion.

In the third step, new test data were selected within the previously defined design
space to verify that the meta-models not only fit but are also able to predict the model
outputs. The best fitting meta-model was selected based on the evaluation criteria deter-
mined for the training and test data. Since meta-models are purely data-based and thus do
not describe causation but correlation, meta-models should not be used for extrapolation
outside the design space.
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2.2.2. Combining Process Models to Formulate the Process Chain Model

The meta-models and analytical models of the different process steps can be combined
to a process chain model, which can then be used to determine the structural parameters of
the intermediate and final products. For this purpose, the structural parameters of the raw
material and the process parameters of the different process steps must be defined. Based
on the respective process model, the structural parameters for the subsequent intermediate
products and the final product can be determined. In order to account for the deviations
along the process chain, the structural parameters of the raw material and the process
parameters must be characterized by uncertain parameters. The respective distribution of
the parameter can be described by either defined (e.g., via normal, log-normal, or uniform)
or non-parametric (e.g., Kernel density estimation) distribution functions. The uncertain
structural parameters of the raw material and the process parameters indicate that the
structural parameters in the following process steps are also uncertain. The deviations
of the structural parameters can mitigate or build up during their propagation along the
process chain due to the impact of the process model.

In order to represent the material flow of the production line with the process chain
model, the intermediate products of each process must be discretized in defined segments,
e.g., the suspension volume during mixing or the length of the electrode. For these defined
segments, the deviating structural parameters of the respective intermediate products
are then determined using a Monte Carlo simulation of the process model. The uncertain
structural parameters represent a stochastic rather than a spatially resolved characterization
of the defined segment. The Monte Carlo approach allows for deviations within a battery
cell (subcell) but also between different battery cells (cell-to-cell) [27]. Figure 5 shows an
example of the uncertainty of a structural parameter that changes during the production
process. Cell-to-cell variations can be caused not only by stochastic variations but also by
systemic changes in the process over time, e.g., due to heating of the machine. The low
computational effort for analytical models and meta-models enables larger sample sizes
to approximate the respective distribution of the structural parameter. At the end of
the process chain model, the uncertain structural parameters of the final battery cell are
transferred to the battery cell model.

Figure 5. Cell-to-cell and subcell deviations within different segments (S1–S10) throughout
the process.

2.3. Battery Cell Model (II)

The process chain model defines the structural parameters of the final product at the
end of the manufacturing process. However, the quality of the lithium-ion battery cell is
rated by performance characteristics during the operation. Hence, the battery cell model
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must be able to provide a result concerning the functionality during operation of the battery
cell based on the structural parameters of the final product. Thus, functionality includes
aspects such as general performance considerations (e.g., capacity and energy density),
aging, and safety. The choice of the battery cell model highly depends on the objectives.

Modeling the operation of lithium-ion battery cells is complex, due to various physical
processes interacting on multiple lengths and timescales. Selecting a suitable model in
terms of complexity and computational cost is of high interest for the modeling frame-
work. In general, electrochemical models can be divided into three categories: (i) lumped
electrochemical models, (ii) Doyle–Fuller–Newman (DFN)-type models, and (iii) elec-
trochemical full-3D models. The models are listed according to increasing complexity.
The lumped electrochemical models (i) are non-discretized models without consideration
of physicochemical principles. They allow fast calculation, but the models are based on
fitting experimental data; therefore, the prediction for different battery functions is poor.
The Doyle–Fuller–Newman-type models (ii), often referred to as the Pseudo-2-Dimensional
(P2D) model, are commonly applied in the literature [16,17,28–30]. Those models con-
sider discretized mass and charge transport in one linear coordinate in the electrolyte and
electrode and one radial coordinate in the active material particle. The chemical and elec-
trochemical kinetics are also incorporated in the model. Consideration of various physical
processes leads to more accurate predictions in terms of battery operation and consequently
enables design optimization of the battery cell [18]. However, homogenization of the
electrode volume simplifies the various processes, and local effects, like lithium plating,
cannot be considered in detail. The DFN-type models are widely applied, and several
extensions are available for increased model precision. The electrochemical full-3D models
(iii) consider the three-dimensional electrode microstructure [31]. It can be an artificial struc-
ture generated by a stochastic approach or a reconstruction based of, e.g., micro-computed
tomography (micro-CT) or focused ion beam scanning electron microscope (FIB-SEM)
images. The models consider the spatial current distribution and thus are able to represent
local effects of the microstructure on the physical processes.

In general, each presented model approach can be implemented as a battery cell
model within the modeling framework. However, the following requirements should be
considered: The model should be able to estimate different performance characteristics and
parameters, e.g., charge/discharge behavior, internal resistance, and aging. These should
be correlated to the structural parameters of the electrode and cell, material parameters, cell
design, and battery operation. Furthermore, the model must be able to not only represent
the functionality but also predict certain effects. Therefore, physical-based models like the
DFN type models and the electrochemical full-3D models are preferred for application.
When investigating uncertainties within the battery production, a large number of model
runs are required, resulting in high computational costs. Hence, in the following, the less
computationally intensive DFN-type models are applied within the modeling framework.

However, certain extensions are necessary since the process chain model does not
provide all necessary parameters for the DFN-type models. Beside structural parameters,
characteristic material parameters like the active surface area of the electrode, the effective
diffusivity within the particles as well as the electrolyte, and the effective electrical and ionic
conductivity of the electrolyte are required to determine the electrochemical performance of
the battery cell using a DFN-type model. These effective parameters can be modeled based
on the structural parameters of the electrodes, e.g., according to [32,33]. Both the additional
parameters and the structural parameters from the process chain model are defined as
battery model parameters (BMPl). Various models can be found in the literature to cal-
culate the additional parameters based on the structural parameters. While conventional
approaches such as the Bruggeman correlation for calculating the tortuosity only provide
a rough estimate of the physical property of the electrode [34], more recent approaches
were presented by [32,33] that reflect the three-dimensional structure of the electrode, thus
providing a more accurate description of the additional parameters. The battery model
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parameters can then be used in a DFN-type model to compute the performance of the
battery cells.

2.4. Analysis (III)

The analysis module represents a collection of mathematical methods to derive knowl-
edge from the simulation results of the process chain and the battery cell model. Depending
on the mathematical method, both the absolute impact as well as the impact of uncer-
tain input parameters on output parameters can be analyzed. The former addresses how
discrete changes in an input parameter affects the output parameter of a model, while
the latter considers the effects of deviation around a mean value. The consideration of
uncertain parameters is particularly important against the background of the high quality
requirements and the still high reject rates in battery production. Valuable methods are
the robust optimization to identify stable production points that result in low deviating
performance characteristics. Moreover, new methods can be developed to generate further
knowledge, e.g., a model-based identification of production tolerances [35].

Furthermore, uncertainty analysis and sensitivity analysis are widely used meth-
ods to quantify the propagation of uncertain parameters within a model and to identify
particularly sensitive input parameters. The parameters considered in the process chain
model and the battery cell model form an interwoven network of highly interdependent
parameters with many opposing process-product mechanisms that impede the identifi-
cation of sensitive parameters. Sensitivity analysis methods such as the variance-based
analysis of covariance (ANCOVA) indices method can be used to not only identify but
additionally quantify the sensitivity of the input parameter uncertainty on the output
parameter uncertainty. The ANCOVA method belongs to the Global Sensitivity Analysis
(GSA) methods, which do not only focus on the nominal value of a measurement (such as
derivative-based methods) but rather explore the role of parameter uncertainty. Addition-
ally, GSA investigates the impact of combined input parameter variations on the output
parameter uncertainty instead of only one-at-a-time methods where input parameters are
changed individually, which is why GSA methods reflect the complexity of battery produc-
tion more accurately. ANCOVA indices quantify the contribution of an input parameter
to the variance of the output parameter, i.e., when the uncertainty of an input parameter
is removed, the uncertainty of the output parameter is reduced by the value of the input
parameter sensitivity index. The ANCOVA method is easily interpretable and is based on
the ANCOVA decomposition developed by [36]. For a given model with output Y, where
each parameter Xi is uncertain:

Y = f (X1, X2, ..., Xk) (2)

the response is decomposed into partial variances and covariances. A functional decompo-
sition, unknown for a given model, is required to perform the covariance decomposition.
The functional decomposition of model M(X) is specified by:

M(X) = M0 +
n

∑
i=1

Mi(Xi) + ∑
16i,j6n

Mi,j
(
Xi, Xj

)
+ ... + M1,...,n(X) (3)

The ANCOVA indices are formulated on the basis of the ANCOVA decomposition
and the variance-covariance separation of the partial variances, which are the uncorrelated
and the correlated effects [37]:

Si =
Cov[Mi(xi), Y]

Var[Y]
(4)

SU
i =

Var[Mi(xi)]

Var[Y]
(5)

SC
i =

Cov[Mi(xi), Y − Mi(xi)]

Var[Y]
(6)



Sustainability 2022, 14, 1530 11 of 22

where Si denotes the total share of variance of Y due to xi; SU
i represents the uncorrelated

share of variance of Y due to xi; and SC
i describes the correlated share of variance of Y

resulting from xi. The total share of variance of an input variable is the sum of the respective
uncorrelated and the correlated share:

Si = SU
i + SC

i (7)

The ANCOVA indices method is related to the more widely known Sobol’ method.
However, the ANCOVA method can also consider dependent input parameters, where
the Sobol’ method is limited to independent input parameters. This is critical for larger
parameter networks based on nested models such as in the present framework. An ex-
tensive description of the ANCOVA indices can be found in the literature [37]. The use
of ANCOVA indices represents one potential analysis function that allows to benefit the
digital representation from the process chain and the battery cell.

3. Use Case
3.1. Exemplary Implementation

In the following, the modeling framework is applied to a use case in which the sensi-
tivities of the input parameters of the process chain model on the capacity and volumetric
energy density of the battery cell are determined. This allows to identify the respective
parameters that provide the largest potential to reduce the uncertainty of the battery cell
performance. The process parameters of the process chain model are adjusted in such a way
that a reference cathode of the German Federal Ministry of Education and Research (BMBF)
competence cluster ProZell with a mass loading of 14.3 mg cm−2 and a coating density
of 2.95 g cm−3 is created virtually. A normal distribution with a standard deviation of
0.5% was assumed for the formulation parameters and process parameters for all processes,
resulting in subcell deviation. Material-intrinsic parameters such as the particle density of
the individual materials (active material, conductive additive, and polymer binder) were set
constant. Cell-to-cell deviations due to temporal changes in the production processes were
not regarded. A product-oriented workflow of the combined process chain and battery cell
models was selected where the mass loading and the energy density were predefined by the
reference cell. Subsequently, the influence of propagating uncertainties along the process
chain and into the battery cell were investigated, and a sensitivity analysis was conducted
as part of the analysis module. Since the process chain model exclusively focuses on the
production of cathodes, only a cathode half-cell P2D model was implemented to evaluate
the performance properties. The sensitivity analysis is an extension of the previously
published work in [9] and focuses on the composition of the dry mixture and slurry as well
as the processing of the coating on the substrate.

3.2. Process Chain Model

The process chain model focuses on the process steps of the electrode production.
The individual process models are predominantly analytical models except for the drying
process, which is described by a meta-model of a discrete-element-method model. Within
the dry mixing and dispersion process, the densities of the dry mixture ρsolids (Equation (8))
and the slurry ρslurry (Equation (9)) are characterized by :

ρsolids = (
ωAM
ρAM

+
ωCA
ρCA

+
ωPB
ρPB

)−1 (8)

ρslurry = (xsolids · (
ωAM
ρAM

+
ωCA
ρCA

+
ωPB
ρPB

) + (
1 − xsolids

ρsolvent
))−1 (9)

where ω represents the mass fraction and ρ the density of the active material (AM), con-
ductive additive (CA), and polymer binder (PB). xsolids is the solid content of the slurry
and ρsolvent the density of the solvent. Furthermore, the coating process is based on a slot
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die coater, where the coating thickness hwet (Equation (10)) and the mass loading mwet
(Equation (11)) of the wet film are modeled according to [38]:

hwet =
V̇

v · w
(10)

mwet = ρslurry · hwet (11)

V̇, v, and w are the volume flow of the slurry provided by the pump, the substrate velocity,
and the coating width, respectively.

For the drying process, the dry mass loading mdry is computed using Equation (12)

mdry = mwet · xsolids (12)

The structure formation during the drying process was simulated using a purely DEM-
based simulation (Figure 6). The active material is represented by means of a discretized
particle size distribution consisting of five different size classes and the carbon black by
means of monodisperse agglomerate particles for computational reasons. As shown by
Bockholt and colleagues, the dry mixing process has a high influence on the appearance of
the carbon black and on its porosity [39]. One third of the carbon black volume was assumed
in this case as a carbon black film on the AM particles, while two thirds of the porous
black volume is represented by the carbon black agglomerates. The wet film thickness
was assumed as the initial layer height. The particles were randomly distributed within
the wet film. The viscous fluid friction was represented using Stokes friction assuming
the fluid viscosity of a binder solution. Van der Waals forces between particles were also
considered by implementing a corresponding model in the contact model. The subsidence
of the fluid surface was simulated by the sinking of a plate pushing the particles towards
the flow collector. Since there is a constant evaporation rate during the first structure
forming drying phase, a constant velocity was assumed for the sinking velocity of the
plate [40]. A significant increase in the forces acting on the plate indicate reaching the final
layer thickness.

Figure 6. Initial wet film (left) and final structure (right).

The results of the DEM model were transformed into a data-based meta-model (Figure 7).
Since only the wet mass loading was changed as input for the drying model and not
the process parameter film shrinking rate in the present use case, a meta-model with a
single independent variable can be determined, which reduces the amount of necessary
simulations in the design of experiment. For this purpose, the porosity for seven different
wet mass loadings ranging from 14.2 to 35.4 mg cm−2 were computed to provide a sufficient
data basis for the meta-model. The DEM simulation at each of the seven different input wet
mass loadings was repeated five times for stochastically varying particle configurations of
the cathode. The resulting porosity data were fitted with a linear, quadratic, and exponential
regression function. The exponential function shows the highest agreement with the DEM
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data, i.e., a higher coefficient of determination R2 or a lower root mean square error RMSE
and a corrected Akaike information criterion AICc, which is why it was selected as the
meta-model for the drying process.

Figure 7. Porosity after drying as a function of different mass loadings.

Moreover, the coating thickness hdry after drying (Equation (13)) and the density of
the coating ρdry after drying (Equation (14)) can be determined analytically:

hdry =
mdry

ρsolids · (1 − εdry)
(13)

ρdry = mdry/hdry (14)

For the calendering process, the porosity after calendering εcal was modeled according
to a semi-empirical approach developed by [24] (Equation (15)):

εcal = εmin + (εdry − εmin) · exp(− qL
γc

) (15)

The minimal porosity εmin is a structural parameter, which can be determined experi-
mentally by calendering electrode sheets at a minimal calendering gap. The line load qL
is a process parameter that reflects the load acting on the electrode between the calender
rolls. Finally, the compaction resistance γc is a characteristic parameter of the electrode
and is influenced by the temperature of the calender rolls and the mass loading [26].
The coating thickness and the coating density after the calendering process can be modeled
similarly to the respective models presented for the drying process (Equation (13)). Finally,
the solid phase volume fractions of the materials Xi (active material, conductive additive,
and polymer binder) were modeled according to their geometric volume contribution
(Equation (16)):

Xi = (1 − εcal) ·
ωi
ρi

∑ ωi
ρi

(16)

The considered process chain ends after the calendering process. The related model
provides key characteristics of the cathode via the structural parameters along the process
chain. The subsequent battery cell model consisting of a structure surrogate model and a
P2D model focuses on the electrode level, which is why the cell assembly can be omitted
in the use case. The initial formulation, raw material, and process parameters as well
as the resulting structural parameters of the intermediate products are summarized in
Appendix A Table A2.

3.3. Battery Cell Model

The process chain model ends with the calendering process, where the ensuing
structural parameters are passed on to the battery cell model, which was introduced
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in Section 2.3. The first part of the battery cell model, the structure surrogate model, com-
putes the effective transport parameters for the electrochemical model, namely, the effective
electrical conductivity, the active surface area, and the effective tortuosity. The struc-
ture surrogate model applied in the framework was developed by [33]. In a first step,
it stochastically generates three-dimensional voxel-based microstructures (Figure 8) and
subsequently converts them into resistor networks to evaluate their effective electric and
ionic conductivity, diffusivity, and active surface area as a function of structure properties
such as composition and material distribution. This allows a more realistic prediction of
effective parameters than conventional approaches such as the Bruggeman relation [34],
since it takes into account not only the porosity but also the volume fractions of the solid
phase [32], the particle sizes and their distribution [33,41], and the spatial distribution
of the particles [33]. Due to the high computational expense of creating and evaluating
the actual microstructure with the 3D structure model, a semi-empirical surrogate model
using simplified algebraic equations was trained to reproduce the effective parameters as a
function of the electrode structure [32].

Figure 8. Exemplary voxel-based 3D microstructure.

Subsequently, these effective parameters, i.e., the effective electrical conductivity of
the solid phase κs,e f f , the electrochemically active surface area as, and the effective tortu-
osity τe f f were transferred to the electrochemical model, which carries out a discharge
simulation to determine the volumetric energy density of the manufactured cathode. A com-
plete overview of the input parameters for the P2D model can be found in Table A2 in
Appendix A. The implemented model was a half cell cathode P2D model, where the gov-
erning equations were taken from [9]. The model was parameterized using experimental
discharge curves: a formation curve was used for the initial and maximum capacities in
the solid phase, c0 and cmax, and curves with different discharge current densities were
used for the solid diffusion coefficient, Ds, the reaction rate constant in the Butler–Volmer
equation, k, and the intrinsic electronic conductivity of the active material, κAM.

3.4. Analysis

The product-oriented simulation workflow was used to investigate the propagation
of the uncertain formulation and process parameters along the process chain and into the
final performance properties. For this purpose, the process parameters for the process
chain model were determined iteratively to obtain the target values for the mass loading
and density after calendering: 14.3 mg cm−2 and 2.95 g cm−3, respectively. A standard
deviation of 1% was assumed for the formulation and process parameters. Material-intrinsic
parameters such as the densities were considered constant. A comprehensive overview
of the process and structural parameter values can be found in Table A2 in Appendix A.
The structural parameters were transferred to the structure surrogate model to compute
the battery model parameters. Finally, the battery model parameters were utilized to
determine the performance properties of the battery cell. The volumetric energy density
and the discharge capacity for the given battery cell were 1892 ± 8 Wh L−1

electrode and
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2.41 ± 0.07 mAh cm−2, respectively, for a current density of 1 mA cm−2 (approx. 0.4 C).
The volumetric energy density is solely related to the volume of the cathode coating and
not the volume of the battery cell.

The focus of the use case is to identify the input parameters with the largest im-
pact on the uncertainty of the performance characteristics using the ANCOVA method.
The ANCOVA indices are used to identify the sensitivities between the different parameters’
domains: process parameters (including formulation parameters), structural parameters,
and performance properties. The battery model parameters were considered implicitly by
integrating the ANCOVA of the structure surrogate model with the P2D model. The AN-
COVA sensitivities for the process chain model were estimated using the OpenTURNS
library in Python [42]. To determine the individual sensitivity indices, the process models of
the process chain model must first be transformed into nested models to enable calculation
of the structural parameters using only the process parameters, the formulation parameters,
and the starting raw material parameters. Accordingly, the sensitivities of the structural
parameters of each process step can be determined as a function of the initial input pa-
rameters. Since the initial input parameters are independent, the uncorrelated indices SU

i
equal the total share of variance Si. Next, the sensitivity indices for the battery model
parameters were determined. However, the structural parameters at the end of the process
chain model are dependent since they are the result of the same input parameters, which
is why correlated ANCOVA indices must be considered. The following matrix shows the
correlation between the structural parameters (in order from top to bottom: weight fraction
of the active material ωAM and conductive additive ωCA (weight fraction of polymer binder
ωPB was determined implicitly by subtracting ωAM and ωCA from 1 in order to ensure
mass balance, which is why it does not need to be considered in the correlation matrix),
dry mass loading mdry, and density of the calendered coating ρcal) that are the input to the
battery cell model:

R =


1 −0.007 −0.122 −0.965

−0.007 1 −0.026 −0.069

−0.122 −0.026 1 −0.063

−0.965 −0.069 −0.063 1

 (17)

The ANCOVA indices for the performance properties were determined as a function
of the battery model parameters. The ANCOVA sensitivities for the battery cell model
were estimated by applying UQLab, an open source MATLAB-based software framework
for uncertainty quantification with a focus on academic research [43]. Following [43],
the ANCOVA sensitivities in the framework were determined based on a polynomial
chaos expansion (PCE). The PCE is a meta-model representing the battery cell model. It is
generated by sampling the computational models by a suitable built basis of polynomial
functions. Further information regarding PCE can be taken from the literature [44,45]
including its use for sensitivity [46]. The validity of the estimated PCE-based meta-model
for the P2D model is shown in Figure 9, where the model response of the computational
P2D model and the meta-model are displayed for the same set of input parameters.

The overall sensitivities between the different parameter domains are visualized in a
Sankey diagram (Figure 10) to provide an intuitive approach about the sensitivity prop-
agation within the parameter network. While it is tempting to multiply the individual
sensitivity indices by the different parameter domains to directly determine the impact
of the process parameter uncertainty on the performance properties, such a combination
is only allowed for strictly linear models where the respective variances can be decom-
posed individually. Since the utilized models are non-linear, multiplying the sensitivity
indices does not result in an accurate depiction of the sensitivities along multiple models.
Consequently, the incoming and outgoing sensitivity flows in the Sankey diagram do not
necessarily need to be equal. The approach allows to identify and quantify the sensitivities
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and additionally provides a visual approach for the sensitivities bridging the different
parameter domains. For the given scenario, the sensitivities of the weight fractions, the dry
mass loading, and the coating density were identified as the structural parameters and
the process parameters, respectively (the weight fractions as formulation parameters were
assigned to the process parameters), that serve as input for the battery cell model.

Figure 9. Validation of the PCE meta-model for the P2D model based on polynomial chaos expansion.

Figure 10. Sankey diagram of the sensitivities between the different parameter domains focusing on
the structural parameters that are required for the battery cell model.

The sensitivities in the process chain model were heterogeneously distributed over
all process parameters. It can be noted that the uncertainty of the process parameters that
belong to the formulation (weight fractions and solids content) indicated a larger impact
on the structural parameters at the end of the process chain than the uncertainty of the
considered process parameters for coating (slot die width, volume flow, and web velocity)
or calendering (line load) for a scenario where all process parameters deviate equally with
a standard deviation of 1% from the mean. Here, it must be emphasized again that the
sensitivity indices focus on the uncertainty influence of an input parameter and not on its
nominal influence. Exemplarily, no significant influence of line load uncertainty on the
coating density uncertainty after calendering can be observed for the defined production
scenario, although there was clearly a strong nominal influence where increased line load
causes increased coating density. The reason behind local insensitivities in this case can be
low local gradients in the model.
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Although a partially strong correlation of the dry mass loading, coating density, and
weight fractions occur at the end of the process chain model (see correlation matrix in
Equation (17)), the ANCOVA analysis of the battery cell model reveals only low correlated
ANCOVA indices for the investigated performance properties volumetric energy density and
discharge capacity (Table 1).

Table 1. Sensitivity indices (total, uncorrelated, and correlated) of the battery cell model for the
input parameter weight fractions of the active material ωAM and conductive additive ωCA, dry mass
loading mdry, and coating density ρcal for a discharge rate of 1 C.

Vol. Energy Density Discharge Capacity

Si SU
i SC

i Si SU
i SC

i

ωAM 0.76 0.77 −0.01 0.25 0.23 0.02

ωCA 0.00 0.00 0.00 0.00 0.00 0.00

mdry 0.00 0.00 0.00 0.75 0.72 0.03

ρcal 0.24 0.24 0.00 0.00 0.00 0.00

∑ 1.00 1.01 −0.01 1.00 0.95 0.05

Based on the ANCOVA sensitivity indices, the most influential input parameter for
the volumetric energy density was the weight fraction of the active material and, for the
discharge capacity, the dry mass loading. The total ANCOVA sensitivities of the discharge
capacity were slightly increased due to the correlative contributions. The sensitivity to
volumetric energy density was highest for the weight fraction of the active material, since
the fraction of active material essentially determines the energy storage capability per
volume. The density of the calendered coating has a smaller though significant effect on the
sensitivity in this scenario but is likely to have a greater effect on the sensitivity at higher C-
rates when kinetic limitations of the physico-chemical processes (diffusion, migration, and
reaction) occur. The discharge capacity is area-related and thus predominantly impacted
by the dry mass loading. Consequently, an increase in mass loading essentially increases
the amount of active material being able to store lithium and thus increases the capacity.

In order to decrease the uncertainties in the volumetric energy density or discharge
capacity, the Sankey diagram can be analyzed to identify the main levers between the
different parameter domains. The Sankey diagram for the scenario studied shows that the
reduction in the uncertainty of the weight fraction of the active material causes the largest
reduction in the uncertainty of the volumetric energy density, both directly and via the
coating density. Similarly, the uncertainty in the discharge capacity can be most effectively
reduced by lowering the uncertainty in the weight fraction of the active material and by
reducing the uncertainty in the process parameters of the coating process. When analyzing
the sensitivities in the process chain and the battery cell model, it must be considered
that the sensitivity indices are only valid for the selected input parameter uncertainty
and nominal values. In case any of the two are changed, the sensitivity indices must
be recalculated.

4. Conclusions

A comprehensive framework to model process-product interdependencies in battery
production was presented. The framework consists of a process chain model, a battery
cell model, and an analysis module and is based on the process–structure–performance
relationship. The process chain model describes how the processes affect the structure of the
intermediate and final products, and the battery cell model characterizes how the structure
impacts the battery cell performance. The framework operates on a modular platform
concept in which the different models are seamlessly connected via the sharing of different
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structural and battery model parameters. While theoretically both mechanistic and data-
based models can be integrated into the platform, the use of mechanistic models is preferred
as those allow extrapolation beyond the initially investigated design space. The mechanistic
models can be differentiated into quick-to-solve analytical models and computationally-
intensive numerical models. In order to provide model results in a reasonable time span,
numerical models were subjected to a meta-modeling approach in which the results of
a virtual design of experiments are used to fit suitable data-based methods that can be
integrated into the platform. By combining the different models, a digital representation
of the process chain and the battery cell was established, which offers a non-expensive
environment for targeted experiments regarding different production- and product-related
aspects, e.g., cell performance or process quality. The process chain and battery cell modules
were complemented by an analysis module that provides different mathematical methods to
generate knowledge of the process chain and the battery cell. The methods include—but are
not limited to—uncertainty and sensitivity analyses in order to investigate the propagation
of parameter uncertainties and quantify the impact of input parameter uncertainty on
output parameter uncertainty.

The framework was applied to a use case in which the sensitivity of process parame-
ters on performance properties was analyzed for the cathode production. The process chain
model comprised the process steps of mixing, dispersion, coating, drying, and calendering.
The drying process was modeled with a DEM approach and consequently transformed
into a meta-model. For the battery cell model, a combined structure surrogate model and a
Pseudo-2-Dimensional model was applied. The performance characteristics as well as the
required process parameters were determined for a defined cathode structure. The AN-
COVA method was used to quantify the sensitivities along the different parameter domains.
Finally, the sensitivities spanning the different parameter domains were visualized in a
Sankey diagram to enable an intuitive analysis of the sensitivities within the process chain
and the battery cell.

In conclusion, sensitive input parameters were identified and adjusted to reduce the
final output parameter uncertainty. Transferred to the real production, this means that the
levers along the process chain that promote a high fluctuation of the final performance
properties can be identified in a targeted and systematic manner. This analysis function
thus makes an important contribution to improving the required process quality in battery
cell production, which can reduce the environmental impact of battery production.

Overall, implementing the framework and conducting digital experiments allows a
targeted decision support for the product and production design, which provides a signifi-
cant benefit for the production and product quality as well as the environmental impact of
battery production. Besides identifying the impact of different process parameters on the
final battery cell performance, the framework can also be actively employed in product de-
velopment to determine optimal structural parameters of the electrodes regarding different
target criteria (e.g., energy density and robustness), which can then be used as target values
for the process chain model. In the future, the digitalization platform for mechanistic mod-
els holds the potential for a model-based control in real-time in the different process steps
as part of a cyber-physical production system. For this purpose, more process models need
to be further implemented in the platform to describe the most relevant process-product
interactions along the process chain, especially focusing on the anode production and
cell assembly. Furthermore, the process chain model will be extended by considering the
material and energy flows along the process chain via a model of the production chain.
First approaches for material and energy flow models in battery production have already
been presented, e.g., in [47], and allow to include further production-relevant performance
indicators such as the required energy demand or the utilization of the machines.
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Appendix A

Table A1. Overview of included formulation, process, and structural parameters for the process
chain model.

Parameter Unit Results

Formulation ωAM - 0.94 ± 1.0%
ωCA - 0.03 ± 1.0%
ωPB - 0.03 ± 1.0%
xsolid - 0.7 ± 1.0%

Raw material ρAM g cm−3 4.75
ρCA g cm−3 1.80
ρPB g cm−3 1.70

ρsolvent g cm−3 1.03
Mixing ρsolids g cm−3 4.31 ± 0.9%
Dispersion ρslurry g cm−3 2.20 ± 1.2%
Coating V̇ cm3 h−1 696 ± 1.0%

v m min−1 1.0 ± 1.0%
w mm 125 ± 1.0%

hwet µm 92.8 ± 1.7%
Mwet mg cm−2 20.5 ± 2.1%

Drying εdry % 43.9 ± 0.3%
mdry mg cm−2 14.3 ± 2.8%
hdry µm 59.2 ± 2.6%
ρcoa g cm−3 2.42 ± 0.9%

Calendering qL N mm−1 84 ± 1.0%
εmin % 17.6 ± 0.3%
γc N mm−1 129 ± 2.4%
εcal % 31.5 ± 0.4%
hcal µm 48.5 ± 3.0%
ρcoa g cm−3 2.95 ± 0.9%

XAM - 0.58 ± 0.3%
XCA - 0.05 ± 1.3%
XPB - 0.05 ± 1.2%
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Table A2. Battery model parameters used in the applied model previously presented in [9]. The dif-
fusion coefficient in the electrolyte, ionic conductivity, and transference number are a function of the
electrolyte concentration. (* CBM—carbon binder matrix.)

Parameter Symbol Unit Separator Cathode

Coating thickness δ m - 4.85 × 10−5

Porosity ε - 0.5 0.315
Particle size Rp m - 5.5 × 10−6

Tortuosity τ - 1 5.9449
Maximum capacity solid cmax mol m−3 - 4.3221 × 104

Initial capacity solid c0 mol m−3 - 1.5467 × 104

Initial capacity electrolyte ce mol m−3 - 1 × 103

Diffusion coefficient solid Ds m2 s−1 - 9.5594 × 10−15

Diffusion coefficient electrolyte De m2 s−1 - f (cLi) [48]
Electronic conductivity AM κAM S m−1 - 0.0309
Electronic conductivity CBM * κCBM S m−1 - 760
Ionic conductivity κe S m−1 - f (cLi) [48]
Transference number tp - - f (cLi) [48]
Charge transfer coefficient α - - 0.5
Reaction rate constant k s−1 - 1.1717 × 10−9

Double layer capacitance CDL F m−2 - 0.2
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