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Abstract: In a demand driven market, optimal allocation of capacity to the demand has been one of
the major issues. In this paper, we consider a single global freight firm allocating its capacity to its own
regional sales offices. The firm sells cargo space based on two types of contracts: long-term and spot
sales. Regional sales offices utilize their effort to generate more demand in their designated region. In
other words, it is assumed that the demand is dependent on their efforts. First, we find a closed-form
solution for the optimal level of the efforts of a single sales office in a specific region. Then, we study
the case when the firm allocates its limited total capacity to two sales offices. We investigate different
methods of capacity allocation: decentralization, centralization, and mixed, by conducting numerical
studies. Different from the traditional finding, we suggest that the decentralization method is not
always dominated by the centralization method.

Keywords: capacity allocation; global supply chain; revenue management; logistics; decentralization;
centralization

1. Introduction

In the early stage of the COVID-19 pandemic, major predictions expected recession of
international trade. However, the result was totally different. As the social distancing and
lockdown increased the needs for electronic shipping, this resulted in the huge increase in
the demand for freight services. Now, the world is experiencing the shortage of shipping
capacity and the surge in freight rates [1]. Hence, improving the efficiency of the supply
chain network for global freight companies is gaining more attention than ever for a
sustainable international trade system.

Global freight companies perform various functional aspects of logistics including
documentation, packing, loading/unloading, transportation, etc. A single company can
also have a quite complicated global supply chain network including warehouse, distrib-
utors, carriers, forwarders, and shippers [2,3]. Due to its international nature, the global
network is typically connected with many countries. The markets of each country are also
non-identical as they are different in terms of culture, law, regulation, language, economy,
etc. Therefore, global freight companies usually operate separate local sales offices for each
country, to promptly respond to their different demands with respect to the changes in
that region.

In this paper, we focus on the relationship between the Headquarters (HQ) and the
local sales offices of a global freight company. The main role of the freight company is
assumed to be a carrier who delivers the freights by utilizing its own cargo vehicles such as
truck, ship, aircraft, etc. Between the company and the shippers, as there are forwarders
who collect and aggregate the shipment, the local sales office mainly deals with the for-
warders in the region. The local sales offices provide efficiencies in controlling the booking
requests and building relationships with local forwarders who are the main customers of
the company [4]. The main role of the local sales office is assumed as generating demand
by utilizing sales effort. At some point of time before departure, a portion of cargo space
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from location to location is sold in advance via a long-term contract and the rest is sold by
spot sales. Before the local sales offices decide the level of their efforts, they are informed of
the size of the allocated cargo space they can sell.

The local sales offices act as decentralized agents because it is hard for the HQ to
exactly control and monitor their decisions on effort levels for long-term and spot sales.
The only way for the HQ to control the behaviour of the local sales offices is to change
the allocation of the cargo space that they can utilize. After the allocation is determined
by the HQ, the local sales offices try to maximize their own profit by making an optimal
decision on effort levels. As the total revenue generated by the local sales offices decides
the performance of the entire firm, controlling the local sales offices is a critical issue for
the company.

Allocation is one of the widely used mechanisms to improve the efficiency of a supply
chain when the demand from the buyers exceeds the limited capacity of the supplier [5].
For many firms, it is quite difficult to increase the capacity without spending significant
amount of cost and time in industries such as steel, semi-conductor, airline, etc. Therefore,
various types of allocation methods are utilized by those firms [6–8]. It is also difficult for
the global freight companies to expand the capacity of carriers in a short time, and it is
almost impossible for them to control the local sales agents who want to maximize their
local profits, due to regional and time constraints. In this situation, the capacity allocation
method should be one of the ways for the company to manipulate the behaviour of the
local agents.

In this paper, we investigate three different allocation methods: decentralization,
centralization, and mixed. In the decentralization method, the HQ of the company allocates
the total space of the carriers to the local sales offices before departure, and then the
assigned amount of capacity is ensured. Hence, even if one local sales office ends up not
fully utilizing the resource of a cargo vehicle, the remaining capacity is not to be assigned
to any other local offices if possible. Based on the size of the allocated space, the sales
office decides its optimal effort level to maximize its own profit while the HQ aims to
maximize the profit on the firm level. Therefore, this method could be less profitable
than the centralized control by the company assuming it has full information. In the
centralization method, while the HQ does not allocate to each local sales office, the space
is fully controlled by the HQ. The local sales office has to compete for the total capacity
and the more expensive freight wins priority. Mixed method is a combination of the
decentralization and centralization method. Before allocating independent space to each
sales office, the HQ retains some space as a buffer for common use. In other words, there
can be a portion of the total space capacity that is not assigned to any local sales office.
After filling up their assigned space, the freights from each region begin to fill the retained
common capacity. In this stage, the HQ has full control over this retained capacity, similar
to the centralization method, and the acceptance/rejection of shipment orders is purely
based on profitability. This condition thereby draws our fundamental questions:

• In one local region, what is the optimal allocation of cargo space between long-term
contract and spot sales?

• How should the uncertainty in demand and price be balanced when allocating capacity?
• If the local regions are heterogeneous in terms of uncertainty in demand and price,

what is the optimal allocation to the sales agents?
• Is decentralized management of the sales agent always dominated by centralized

management?
• If we employ the mixed method combining centralized and decentralized manage-

ment, what is the optimal ratio?

In this paper, the global freight company’s problem is to allocate its capacity efficiently,
where the capacity means the space of the cargo vehicle. Capacity allocation has been stud-
ied by researchers in a wide range of fields including supply chain, revenue management,
economics, etc. To scrutinize the nature of the problem, many studies in supply chain
management simplify the problem as having one supplier and two buyers. Cachon and



Sustainability 2022, 14, 1375 3 of 19

Lariviere [5] studied three capacity allocation methods: linear, proportional, and uniform,
and found conditions where Nash Equilibrium can be formed. Chen et al. [9] studied two
allocation mechanisms: proportional and lexicographic. In the model of one supplier and
two retailers, lexicographic allocation can generate more profit for the supply chain. Cho
and Tang [10] compared the uniform and competitive allocation with symmetric retailers.
When there is a competition, uniform allocation fails to eliminate the gaming effect and the
exact condition for optimization was provided. In this paper, we also adapt the setting of
one supplier and two retailers. In the revenue management literature, the capacity alloca-
tion problem was studied, where capacity means cargo space. Kasilingam [11] proposed
a simple bucket allocation problem. By modelling inter-program, total contribution was
found based on route and flights. In the literature of revenue management, different types
of demand are studied: long-term and short-term. Becker and Dill [12] studied a capacity
segmentation problem where the segmentation consists of allocated and non-allocated
capacity. In this model, the demand from long-term contracts is allocated in advance and
then spot sales is assigned later to the non-allocated capacity. Chew et al. [13] studied the
allocation of spot sales based on the given amount of long-term contracted space. Their
problem concerns the forwarders’ decision making and balances the late delivery cost
and opportunity cost. Amaruchkul and Lorchirachoonkul [14] investigated the allocation
problem of a single air-cargo carrier to multiple forwarders. They suggested heuristic
solutions for the allocation and the increased benefit can be more than 3 percent.

We also compare the performance of different types of allocation methods: decentral-
ization, centralization, and mixed. Centralization vs. decentralization has been a traditional
issue in economics. The principal agent problem is a well-known structure to study the de-
centralized system. This problem has been studied extensively, which is well summarized
by Bolton and Dewatripont [15]. It is well known in the inventory theory that centralization
can provide more profit to the supply chain [16]. However, there are studies that suggest
certain conditions where centralization does not fully dominate decentralization. Channel
performance can be lowered in a centralized system when the level of market search is
high [16]. When the markets are different, a higher degree of decentralization can increase
the profit of the supply chain [17]. In the case of a two-echelon supply chain, when the
retailer and its competitor face uncertain demand, there could be a contractual arrangement
where decentralization performs as well as centralization [18].

In this paper, our focus is on the inside of the firm. The principal and agent are in
the same company. Although each agent maximizes its profit function, the HQ tries to
improve the revenue of the entire company. Chang and Harrington [17] studied the internal
supply chain of a retail firm consisting of store managers, and searched for better practices.
Ellinger et al. [19] studied interdepartmental coordination. In particular, they focus on the
integration of the marketing and logistic department of a firm. In spite of its importance,
traditional literature on the supply chain of the global freight companies mainly focus on
the external supply chain and have less attention on the importance of the internal supply
chain. Therefore, this paper is one of the first to study the internal supply chain of an
international freight firm.

The rest of the paper is organized as follows: Section 2 describes the problem and
the assumptions. Section 3 analytically investigates the problem of the single agent and
suggests a closed-form solution. Section 4 proposes the model of three allocation methods
to two agents: decentralization, centralization, and mixed. Section 5 provides the results of
numerical study. Conclusions are discussed in Section 6.

2. Problem Description

We consider a simple network of a global freight company who operates two sales
offices in different regions as shown in Figure 1. The freights from the two different regions
are firstly delivered to HQ where the freights are gathered into one cargo vehicle. Then,
the cargo vehicle departs from HQ to the destination. In this paper, as we focus on the
delivery between HQ and the destination, the delivery between the two regions to HQ is
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not considered. We also assume that the operation costs of the two sales offices are the
same and fixed.

Figure 1. Global Supply Chain Network.

Our problem has the same structure as a principal-agent problem, and it consists of
three decision makers: the HQ and the local sales office 1 and 2. The decision makers are
fully rational and risk neutral expected utility maximizer. As the local sales offices also
belong to the company, HQ can be considered as the principal in the problem. The local
sales office 1 and 2 are the agents who aim to maximize their own payoff. The setting
of two agents and a single principal is adapted by many studies in the field of supply
chain coordination [16,20,21]. This structure enables us to scrutinize the decisions made by
different types of agents in terms of costs of efforts and prices of freights.

As the freights from each region are transferred by a single carrier to the final destina-
tion, there can be competition for the space capacity of the carrier if the sum of the amount
of freights from both of the local offices exceeds the total space. To guarantee a certain
amount of space for each office, the HQ allocates capacity to each local office in many ways.
In other words, the firm utilizes different kinds of capacity allocation methods. Capacity
allocation is also one of the main issues for supply chain coordination [11,12,22]. However,
as far as we know, this is the first study investigating the allocation method for local offices
that belong to the same company.

We consider two types of demands: long-term and spot demands [14,23,24] as shown
in Table 1. Long-term demands mainly come from a contract with forwarders [4]. For-
warders pay a fixed amount for the capacity; therefore, the price is generally lower but
the firm has to insure the capacity. The firm also sells capacity on an ad-hoc basis, which
is called spot demand. Spot demand offers a higher price but there is a large level of
uncertainty in the amount of the demand. In reality, forwarders bid for long-term demands
a month before the departure while spot demand comes a few weeks or days before it [4].
Nevertheless, the decisions on regional allocation of the company take place even earlier
than the long-term bidding, and this requires the company to make a prediction on both
long-term demand and spot demand. Therefore, we do not take into consideration the
different phases of arrival for each type of demand. Instead, we incorporate the difference
of each type of demand by using different levels of uncertainty, at the point of time when
the firm decides its regional allocation.

Table 1. Description of the long-term and spot demand.

Type Long-Term Demand Spot Demand

Price Lower Higher
Demand Uncertainty No Yes

Priority First Second
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We assume that the prices of each long-term sales and spot sales are single and
exogenous, and each region is fully separated so the demands are independent. We denote
PLi and PSi the unit prices of long-term sales and spot sales at region i = 1, 2 respectively.
Without loss of generality, we assume that the price of spot sales for local office 1 is higher
than local office 2, i.e., PS1 > PS2 . To cancel out the case where the firm only accepts
long-term demand, we only consider the situation where the summation of the maximum
long-term demands from local office 1 and 2 is always less than the total capacity.

As mentioned earlier, each local office exerts effort to utilize demands. We assume that
the local offices can put different types of efforts to each long-term and spot demand. Once
the allocation is made, each local office decides its own effort levels, eLi and eSi , to utilize
long-term and spot demand, respectively. The effort level for spot demand, eSi , determines
the probability density function of the random spot demand, XSi

(
eSi

)
∼ FSi

(
xSi

∣∣eSi

)
. In

addition, the probability density function, FSi

(
xSi

∣∣eSi

)
, is a stochastically non-decreasing

function of the effort level, eSi [25]. The long-term demand, XLi

(
eLi

)
, is a deterministic and

increasing function of the effort level, eLi . We assume that the cost Ci
(
eLi , eSi

)
is a quadratic

function of the effort levels, (eLi , eSi ).
Typically, three different types of capacity allocation methods can be used by the firm:

decentralization, centralization, and mixed. The decentralization method is to allocate
the total capacity, K, to local offices. After the allocation, the freight from each region can
only fill its own allocated capacity. We denote the allocation to each office i as ki. Then,
after allocation, there is no competition for the space. Next, centralization is the opposite
of decentralization because it actually does not allocate any space to the local offices. All
the local offices compete with each other over the entire space. When there is competition
over the space, the HQ accepts demand based on the priority rule. First, the long-term
demand has priority over the spot demand. Second, if the type of demand is the same,
the one with the higher price has more priority. The mixed method is a combination of
decentralization and centralization. The firm firstly allocates some space to each office.
Then, the firm retains the part that is not allocated to any office, as common space. We
denote this retained common space as k0. Throughout the paper, we use the notations that
are summarized in Table 2.

Table 2. Summary of Notations and Decision Variables.

Notations Description

Input Data
K Total capacity of the air cargo carrier

PLi Unit price of long-term demand at office i
PSi Unit price of spot demand at office i
CLi Unit cost of the effort level for long-term demand at office i
CSi Unit cost of the effort level for spot demand at office i

XLi (eLi ) Long-term demand for the given effort level eLi
XSi (eSi ) Spot demand for the given effort level eSi

Ci(eLi , eSi ) Cost function for effort levels (eLi , eSi ) at office i
Decision Variables

ki Amount of capacity allocated to office i
eLi Effort level for long-term demand at office i
eSi Effort level for spot demand at office i

3. Optimal Effort Levels in a Single Office

In this section, we consider the optimal decision on effort levels for both the long-term
and spot sales in a single office. We first develop a mathematical model to determine
optimal effort levels for a single office. As we are considering the problem of a specific
office i , we use notations without the subscript i as shown in Table 2. We also use the
notation (x)+ to denote max{x, 0}. We assume that the effort levels, (eL, eS), are put into
long-term and spot sales, respectively. As the amount for long-term demand must be
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allocated first, the available capacity for long-term demand is equal to min{XL(eL), K}.
On the other hand, the remaining capacity for spot sales is min{XS(eS), (K− XL(eL))

+}.
Therefore, the total revenue for a single office is expressed as follows.

R(K, eL, eS) = PL min{XL(eL), K}+ PS min
{

XS(eS), (K− XL(eL))
+
}

. (1)

Now, let C(eL, eS) be a cost function for the effort levels (eL, eS). We also use the
notation E[ f (x)] to denote mathematical expectation. Then, the optimal effort levels are
determined by solving the following optimization problem to maximize the expectation of
the total profit, P(K, eL, eS), as follows. The notation s.t. denotes “subject to”.

max
eL , eS

P(K, eL, eS) (2)

s.t. P(K, eL, eS) = E[R(K, eL, eS)]− C(eL, eS).

Similar to the assumption in [26–29], we assume that the cost function, C(eL, eS), for
the effort levels, (eL, eS), is quadratic as follows.

C(eL, eS) = CLe2
L + CSe2

S.

On the one hand, we assume that there is no uncertainty in the amount of long-term
sales, similar to Chew et al. [13]. For the effort level eL, the long-term demand, XL(eL), is
assumed to be a deterministic linear function defined by XL(eL) = eL. On the other hand,
the spot demand, XS(eS), is assumed to be random. Similar to the work of He et al. [25]
and Taylor [30], we also assume that the effort affects demand in an additive form, i.e.,
XS(eS) = eS + ξ. For the simplicity of analysis, we consider the case where ξ follows the
uniform distribution, U[0, β]. As ξ ∼ U[0, β], we obtain that f (ξ) = 1

β .
Under the above assumptions, the total profit, P(K, eL, eS), in problem (2) for a single

office is expressed as follows.

P(K, eL, eS) = PL min{eL, K}+ E
[
PS min

{
eS + ξ, (K− eL)

+
}]
− (CLe2

L + CSe2
S). (3)

In order to eliminate trivial cases, we assume that eL < K. As min{eL, K} = eL and
(K− eL)

+ = K− eL, we can simplify the above Equation (3) as follows.

P(K, eL, eS) = PLeL + E[PS min{eS + ξ, (K− eL)}]− (CLe2
L + CSe2

S). (4)

As the decision on long-term sales is always prior to the one on spot sales, the following
optimization problem should be solved for a given eL = ēL. Let ΠS(eS) = P(K, ēL, eS)−
(PL ēL − CL ēL

2). Then,

max
eS

ΠS(eS) (5)

s.t. ΠS(eS) = E[PS min{eS + ξ, (K− ēL)}]− CSe2
S.

Proposition 1. For a given eL = ēL, function ΠS(eS) is defined in a closed form as follows.

ΠS(eS) =


PS

(
eS +

1
2 β
)
− CSe2

S if 0 ≤ eS < (K− ēL)− β,

PS(K− ēL)− PS
2β ((K− ēL)− eS)

2 − CSe2
S if (K− ēL)− β ≤ eS < (K− ēL),

PS(K− ēL)− CSe2
S if K− ēL ≤ eS < K.

Proof of Proposition 1. To simplify min{eS + ξ, (K− ēL)}, we divide the interval of eS into
the following three cases.

(Case 1) 0 ≤ eS < (K− ēL)− β.
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As 0 ≤ ξ ≤ β, we have eS + ξ ≤ eS + β < K − ēL. Hence, min{eS + ξ, (K− ēL)} =
eS + ξ. Then, ΠS(eS) in problem (5) is obtained as follows.

ΠS(eS) = E[PS(eS + ξ)]− CSe2
S

= PS

∫ β

0
(eS + ξ)

1
β

dξ − CSe2
S

= PS

(
eS +

1
2

β

)
− CSe2

S.

(Case 2) (K− ēL)− β ≤ eS < (K− ēL).
If ξ ≤ (K − ēL) − eS, then eS + ξ ≤ K − ēL. Thus, min{eS + ξ, (K− ēL)} = eS + ξ.

Otherwise, min{eS + ξ, (K− ēL)} = (K − ēL). Then, ΠS(eS) in problem (5) is obtained
as follows.

ΠS(eS) = E[PS min{eS + ξ, (K− ēL)}]− CSe2
S

= PS

{∫ (K−ēL)−eS

0
(eS + ξ)

1
β

dξ +
∫ β

(K−ēL)−eS

(K− ēL)
1
β

dξ

}
− CSe2

S

= PS

{
(K− ēL)−

1
2β

((K− ēL)− eS)
2
}
− CSe2

S

= PS(K− ēL)−
PS
2β

((K− ēL)− eS)
2 − CSe2

S.

(Case 3) K− ēL ≤ eS < K.
As 0 ≤ ξ ≤ β, it is trivial that K− ēL ≤ eS ≤ eS + ξ. Hence, min{eS + ξ, (K− ēL)} =

K− ēL. Then, ΠS(eS) in problem (5) is obtained as follows.

ΠS(eS) = PS(K− ēL)− CSe2
S,

which completes the proof.

Using the result of Proposition 1, we find an optimal solution for the effort level of
spot sales, e∗S, as stated in Theorem 1.

Theorem 1. Assume that K− β− PS
2CS

> 0. For a given ēL, an optimal solution, e∗S, of the problem
(5) is obtained as follows.
(i) If ēL < K− β− PS

2CS

(
i.e., PS

2CS
< (K− ēL)− β

)
, then e∗S = PS

2CS
.

(ii) If K − β− PS
2CS
≤ ēL < K

(
i.e., (K− ēL)− β ≤ PS

PS+2βCS
(K− ēL) < (K− ēL)

)
, then e∗S =

PS
PS+2βCS

(K− ēL).

Proof of Theorem 1. First, we give a proof for the condition (i) ēL < K − β− PS
2CS

. If we
consider (case 1) 0 ≤ eS < (K− ēL)− β, then we have

ΠS(eS) = PS

(
eS +

1
2

β

)
− CSe2

S.

To find out an optimal solution, e∗S, maximizing ΠS(eS), we take a derivative with respect
to eS and set it equal to 0. Then, we obtain

PS − 2CSeS = 0.

From the condition (i) PS
2CS
≤ (K− ēL)− β, an optimal solution for (case 1) is obtained as

e1
S = PS

2CS
.
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If we consider (case 2) (K− ēL)− β ≤ eS < (K− ēL), then we have

ΠS(eS) = PS(K− ēL)−
PS
2β

((K− ēL)− eS)
2 − CSe2

S.

To find out an optimal solution, e∗S, maximizing ΠS(eS), we take a derivative with respect
to eS and set it equal to 0. Then, we obtain

PS
β
((K− ēL)− eS)− 2CSeS = 0.

As ēL < K − β− PS
2CS

, it is clear that PS
PS+2βCS

(K − ēL) < (K − ēL)− β. Thus, an optimal

solution in (case 2) is obtained as e2
S = (K− ēL)− β.

Finally, if we consider (case 3) K− ēL ≤ eS < K, then we have

ΠS(eS) = PS(K− ēL)− CSe2
S.

To maximize ΠS(eS) in (case 3), an optimal solution is obtained as e3
S = (K− ēL). Now, as

ΠS(e1
S) ≥ ΠS(e2

S) ≥ ΠS(e3
S), we conclude that e∗S = e1

S = PS
2CS

.

The proof for the condition (ii) K − β− PS
2CS
≤ ēL < K is almost identical except for

the following details. First, for (case (ii)-1), e1
S = (K − ēL)− β. Second, for (case (ii)-2),

e2
S = PS

PS+2βCS
(K − ēL). Finally, as (K − ēL) − β ≤ PS

PS+2βCS
(K − ēL) < (K − ēL), we see

that ΠS(e2
S) ≥ ΠS(e1

S) and ΠS(e2
S) ≥ ΠS(e3

S). Therefore, we conclude that e∗S = e2
S =

PS
PS+2βCS

(K− ēL).

In Theorem 1, we see that the optimal effort level for spot sales, e∗S, is affected by the
effort level for long-term sales, eL. Now, we try to find an optimal effort level for long-term
demand, e∗L. Let e∗S be given as the result of Theorem 1. Let ΠL(eL) = P(K, eL, e∗S). Then, in
order to find an optimal solution, e∗L, we have to solve the following optimization problem.

max
eL

ΠL(eL) (6)

s.t. ΠL(eL) = PLeL + E[PS min{e∗S + ξ, (K− eL)}]−
(

CLe2
L + CS(e∗S)

2
)

= PLeL − CLe2
L + E[PS min{e∗S + ξ, (K− eL)}]− CS(e∗S)

2

= PLeL − CLe2
L + ΠS(e∗S).

Proposition 2. Function ΠL(eL) is defined in a closed form as follows.

ΠL(eL) =

PLeL − CLe2
L +

PS
2

(
PS

2CS
+ β

)
if eL < K− β− PS

2CS
,

(PL − PS)eL − CLe2
L −

PSCS
PS+2βCS

(K− eL)
2 + PSK if K− β− PS

2CS
≤ eL < K.

Proof of Proposition 2. First, we consider the case (a) eL < K − β − PS
2CS

. By using the

result of Theorem 1, we obtain that e∗S = PS
2CS

. As e∗S = PS
2CS

< K− β− eL, we obtain ΠL(eL)
as follows.

ΠL(eL) = PLeL − CLe2
L + ΠS(e∗S)

= PLeL − CLe2
L + PS

(
e∗S +

1
2

β

)
− CS(e∗S)

2.
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Now, using e∗S = PS
2CS

, we simplify ΠL(eL) as follows.

ΠL(eL) = PLeL − CLe2
L + PS

(
PS

2CS
+

1
2

β

)
− CS

(
PS

2CS

)2

= PLeL − CLe2
L +

PS
2

(
PS

2CS
+ β

)
.

Next, we consider the case (b) K− β− PS
2CS
≤ eL < K. By using the result of Theorem 1, we

see that e∗S = PS
PS+2βCS

(K− eL). As K− β− PS
2CS
≤ eL < K, we also note that (K− eL)− β ≤

e∗S = PS
PS+2βCS

(K− eL) < (K− eL). Thus, we obtain ΠL(eL) as follows.

ΠL(eL) = PLeL − CLe2
L + ΠS(e∗S)

= PLeL − CLe2
L + PS(K− eL)−

PS
2β

((K− eL)− e∗S)
2 − CS(e∗S)

2.

Now, using e∗S = PS
PS+2βCS

(K− eL), we simplify ΠL(eL) as follows.

ΠL(eL) = (PL − PS)eL − CLe2
L −

PS
2β

(
(K− eL)−

PS
PS + 2βCS

(K− eL)

)2

− CS

(
PS

PS + 2βCS
(K− eL)

)2
+ PSK

= (PL − PS)eL − CLe2
L −

PSCS
PS + 2βCS

(K− eL)
2 + PSK,

which completes the proof.

Using the result of Proposition 1, we obtain an optimal solution for the effort level of
long-term sales, e∗L, as stated in Theorem 2.

Theorem 2. Define ∆ = PS
PS+2βCS

and ẽL = (PL−PS)+2KCS∆
2CL+2CS∆ for simplifying numerical expressions.

An optimal solution, e∗L, of the problem (6) is obtained as follows.
(i) If max{ PL

2CL
, ẽL} ≤ K− β− PS

2CS
, then e∗L = PL

2CL
.

(ii) If K− β− PS
2CS

< min{ PL
2CL

, ẽL}, then e∗L = ẽL.

(iii) If ẽL ≤ K− β− PS
2CS

< PL
2CL

, then e∗L = K− β− PS
2CS

.

(iv) If PL
2CL
≤ K− β− PS

2CS
< ẽL, then

e∗L =


PL

2CL
if ΠL

(
PL

2CL

)
≥ ΠL(ẽL),

ẽL if ΠL

(
PL

2CL

)
< ΠL(ẽL).

Proof of Theorem 2. We first give a proof for the condition (i) max{ PL
2CL

, ẽL} ≤ K − β−
PS

2CS
. If we consider the case (a) eL < K− β− PS

2CS
, then we have

ΠL(eL) = PLeL − CLe2
L +

PS
2

(
PS

2CS
+ β

)
.

To find out an optimal solution, e∗L, maximizing ΠL(eL), we take a derivative with respect
to eL and set it equal to 0. Then, we obtain

PL − 2CLeL = 0.
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As PL
2CL
≤ K− β− PS

2CS
, an optimal solution for case (a) is obtained as e1

L = PL
2CL

.

Next, if we consider the case (b) K− β− PS
2CS
≤ eL < K, then we have

ΠL(eL) = (PL − PS)eL − CLe2
L − CS∆(K− eL)

2 + PSK.

To find out an optimal solution, e∗L, maximizing ΠL(eL), we take a derivative with respect
to eL and set it equal to 0. Then, we obtain

(PL − PS)− 2CLeL + 2CS∆(K− eL) = 0.

As ẽL = (PL−PS)+2KCS∆
2CL+2CS∆ ≤ K − β − PS

2CS
, an optimal solution for case (b) is obtained as

e2
L = K− β− PS

2CS
. Now, as ΠL(e1

L) ≥ ΠL(e2
L), we conclude that e∗L = e1

L = PL
2CL

.

Second, we prove for the condition (ii) K− β− PS
2CS

< min{ PL
2CL

, ẽL}. If we consider

the case (a) eL < K− β− PS
2CS

, then as K− β− PS
2CS

< PL
2CL

, an optimal solution for case (a)

is obtained as e1
L = K− β− PS

2CS
. Next, if we consider the case (b) K− β− PS

2CS
≤ eL < K,

then as K− β− PS
2CS
≤ ẽL = (PL−PS)+2KCS∆

2CL+2CS∆ , an optimal solution for case (b) is obtained as
e2

L = ẽL. Now, as ΠL(e1
L) ≤ ΠL(e2

L), we conclude that e∗L = e2
L = ẽL.

Third, we prove for the condition (iii) ẽL ≤ K − β− PS
2CS

< PL
2CL

. If we consider the

case (a) eL < K − β− PS
2CS

, then as K − β− PS
2CS

< PL
2CL

, an optimal solution for case (a) is

obtained as e1
L = K − β− PS

2CS
. Next, if we consider the case (b) K − β− PS

2CS
≤ eL < K,

then as ẽL ≤ K− β− PS
2CS

, an optimal solution for case (b) is obtained as e2
L = K− β− PS

2CS
.

Therefore, we conclude that e∗L = e1
L = e2

L = K− β− PS
2CS

.

Finally, we prove for the condition (iv) PL
2CL
≤ K − β− PS

2CS
< ẽL. If we consider the

case (a) eL < K − β − PS
2CS

, then as PL
2CL
≤ K − β − PS

2CS
, an optimal solution for case (a)

is obtained as e1
L = PL

2CL
. Next, if we consider the case (b) K − β − PS

2CS
≤ eL < K, then

as K − β − PS
2CS

< ẽL, an optimal solution in case (b) is obtained as e2
L = ẽL. Now, we

compare which one of the values, ΠL(e1
L) and ΠL(e2

L), is larger. If ΠL(e1
L) ≥ ΠL(e2

L), then
we obtain an optimal solution as e∗L = e1

L = PL
2CL

. Otherwise, an optimal solution is obtained
as e∗L = e2

L = ẽL.

4. Three Types of Capacity Allocation Methods

In this section, we investigate three different types of allocation: decentralization,
centralization, and mixed. In other words, different levels of decentralization are studied.
In the decentralization method, full level of decentralization is given, while in the central-
ization method, nothing is given. In the mixed method, a partial level of decentralization is
used. Thus, as shown in Figure 2, if k0 = 0, then the mixed method is equal to decentral-
ization. In case of k0 = K, the mixed method is equal to centralization. As mentioned in
Section 3, the following assumptions still hold in this section.

(A1) XLi (eLi ) = eLi , for i = 1, 2,

(A2) XSi (eSi ) = eSi + ξi where ξi ∼ U[0, βi], for i = 1, 2, and

(A3) Ci(eLi , eSi ) = CLi e
2
Li
+ CSi e

2
Si

, for i = 1, 2.
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Figure 2. Three allocation methods: decentralization, centralization, and mixed.

4.1. Decentralization Method

In the decentralization method, the HQ decides how to divide the total capacity, K,
and allocate it to each local sales agent i ∈ {1, 2}. Let k1 and k2 be the allocated capacity
to local office 1 and 2, respectively. We assume that the total capacity must be allocated to
either one of the local offices, i.e., k1 + k2 = K, and this assumption holds throughout the
paper. As the allocation (k1, k2) is secured to local agent 1 and 2, respectively, each office
only solves its own problem without considering the decision of the other. Furthermore,
the competition for a common space is not needed.

When the capacity, ki, is allocated to office i and effort levels of eLi and eSi are executed
based on the decentralization method, let RD

i (ki, eLi , eSi ) be the total revenue of office i.
Then, under the assumption (A1), we obtain the following.

RD
i (ki, eLi , eSi ) = PLi min

{
XLi (eLi ), ki

}
+ PSi min

{
XSi (eSi ), (ki − XLi (eLi ))

+
}

= PLi min
{

eLi , ki
}
+ PSi min

{
eSi + ξi, (ki − eLi )

+
}

.

In order for office i to maximize its expected profit, PD
i (ki, eLi , eSi ), the following optimiza-

tion problem should be solved.

max
eLi

, eSi

PD
i (ki, eLi , eSi ) (7)

s.t. PD
i (ki, eLi , eSi ) = E

[
RD

i (ki, eLi , eSi )
]
− Ci(eLi , eSi ).

Let (e∗Li
, e∗Si

) be an optimal solution of problem (7) for office i. Under the assumptions
(A1), (A2), and (A3), note that PD

i (ki, eLi , eSi ) can be obtained in terms of Equation (1).
Hence, the optimal effort, (e∗Li

, e∗Si
), can be derived using results of Theorems 1 and 2.

Now, for the HQ to maximize its expected revenue RD
H(K, k1, k2), the optimal allocation

(k∗1 , k∗2) should be obtained by solving the following optimization problem.

max
k1, k2

RD
H(K, k1, k2)

s.t. RD
H(K, k1, k2) = ∑

i=1,2
E
[

RD
i (ki, e∗Li

, e∗Si
)
]
,

k1 + k2 = K.
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4.2. Centralization Method

In the centralization method, as there is no allocation to each local office by the
HQ, both offices must compete for the total capacity, K. When the effort level (eLi , eSi )

is utilized for office i, let RC
i (K, eL1 , eS1 , eL2 , eS2) be the total revenue of office i. Note that

long-term demand is always prioritized over spot demand in the total capacity and the
sum of long-term demand does not exceed the total capacity K. Under the assumption
that the price of spot sales for local office 1 is higher than local office 2 (i.e., PS1 > PS2),
as mentioned in Section 2, the problem of local office 1 is similar to that described in the
decentralization method. The only difference is that, instead of the allocation, k1, the
available capacity for local office 1 becomes K−XL2

(
eL2

)
. Under the assumption (A1), note

that K− XL2(eL2) = K− eL2 . Hence, we obtain that

RC
1 (K, eL1 , eS1 , eL2 , eS2) = RD

1
(
K− eL2 , eL1 , eS1

)
.

Under the assumption (A3), as office 1 aims to maximize its expected profit, PC
1 (eL1 , eS1),

the following optimization problem should be considered.

max
eL1 , eS1

PC
1 (eL1 , eS1) (8)

s.t. PC
1 (eL1 , eS1) = E

[
RC

1 (K, eL1 , eS1 , eL2 , eS2)
]
− C1(eL1 , eS1)

= E
[

RD
1 (K− eL2 , eL1 , eS1)

]
−
(

CL1 e2
L1
+ CS1 e2

S1

)
.

Under the assumptions (A1), (A2), and (A3), note that RD
1 (K − eL2 , eL1 , eS1) can be

obtained in terms of Equation (1) in Section 3. For a given eL2 , the optimal effort, (e∗L1
, e∗S1

),
can be derived using results of Theorems 1 and 2. As e∗L1

and e∗S1
are functions of the given

eL2 , the optimal solutions for problem (8) are expressed as e∗L1
(eL2) and e∗S1

(eL2). For the
given eL2 , let δC

S2
be the available capacity for spot sales at office 2 in the centralization

method. Then, δC
S2

is also a function of eL2 , expressed as follows.

δC
S2
(eL2) =

(
K− XL2(eL2)− XL1(e

∗
L1
(eL2))− XS1(e

∗
S1
(eL2))

)+
=
(

K− eL2 − e∗L1
(eL2)−

(
e∗S1

(eL2) + ξ2

))+
.

Thus, we have

RC
2 (K, e∗L1

(eL2), e∗S1
(eL2), eL2 , eS2) = PL2 min

{
XL2(eL2), K

}
+ PS2 min

{
XS2(eS2), δC

S2
(eL2)

}
= PL2 min

{
eL2 , K

}
+ PS2 min

{
eS2 + ξ2, δC

S2
(eL2)

}
.

As office 2 wants to maximize its expected profit, PC
2 (eL2 , eS2), the following optimization

problem should be considered.

max
eL2 , eS2

PC
2 (eL2 , eS2)

s.t. PC
2 (eL2 , eS2) = E

[
RC

2 (K, e∗L1
(eL2), e∗S1

(eL2), eL2 , eS2)
]
− C2(eL2 , eS2).

In the centralization method, as the HQ makes no decision on allocation of capacity,
the expected revenue of the HQ, RC

H(K), is given as follows.

RC
H(K) = ∑

i=1,2
E
[

RC
i (e
∗
L1

, e∗S1
, e∗L2

, e∗S2
)
]
.
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4.3. Mixed Method

The mixed method is a hybrid approach obtained by combining decentralization and
centralization methods. In the mixed method, the HQ defines a shared portion of the total
capacity K as k0 and allocates the remaining capacity K− k0 to two local offices as k1 and
k2, respectively. Office 1 can use its dedicated capacity, k1, independently from office 2.
Even if there are remaining capacity in k1, it can not be used by office 2. When the effort
level, (eLi , eSi ), are utilized by the office i = 1, 2 and the amount (k0, k1, k2) is allocated to
the office i = 1, 2 by the HQ, let RM

i (k0, k1, k2, eL1 , eS1 , eL2 , eS2) be the revenue of office i.
Under the assumption that the price of spot sales for local office 1 is higher than local

office 2 (i.e., PS1 > PS2 ), as mentioned in Section 2, the problem of local office 1 is similar to
that mentioned in the decentralization method. Note that the available capacity for office 1
is a function of eL2 . Under the assumption (A1), note that

δ1(eL2) = k1 +
(

k0 −
(
XL2(eL2)− k2

)+)+
= k1 +

(
k0 −

(
eL2 − k2

)+)+.

Then, we have

RM
1 (k0, k1, k2, eL1 , eS1 , eL2 , eS2) = RD

1
(
δ1(eL2), eL1 , eS1

)
.

As office 1 wants to maximize its expected profit, PM
1 (eL1 , eS1), under assumption (A3),

the following optimization problem should be considered.

max
eL1 , eS1

PM
1 (eL1 , eS1) (9)

s.t. PM
1 (eL1 , eS1) = E

[
RM

1 (k0, k1, k2, eL1 , eS1 , eL2 , eS2)
]
− C1(eL1 , eS1)

= E
[

RD
1
(
δ1(eL2), eL1 , eS1

)]
−
(

CL1 e2
L1
+ CS1 e2

S1

)
.

Under the assumptions (A1), (A2), and (A3), note that RD
1 (δ1(eL2), eL1 , eS1) can be

obtained in terms of Equation (1) in Section 3. For a given eL2 , the optimal effort, (e∗L1
, e∗S1

),
can be derived using results of Theorems 1 and 2. As e∗L1

and e∗S1
are functions of the given

eL2 , the optimal solutions for the problem above are expressed as e∗L1
(eL2) and e∗S1

(eL2).
When office 2 determines the effort level for spot sales (i.e., eS2), it is affected by both

the effort levels of office 1,
(

e∗L1
(eL2), e∗S1

(eL2)
)

, and the effort level for its long-term sales

(i.e., eL2). For the given eL2 , let δM
S2

be the available capacity for spot sales at office 2. Then,
δM

S2
(eL2), is expressed as follows.

δM
S2
(eL2) =

(
k2 − XL2(eL2)

)
+ min

{(
δ1(eL2)−

(
XL1(e

∗
L1
(eL2)) + XS1(e

∗
S1
(eL2))

))+
,
(

k0 −
(
XL2(eL2)− k2

)+)+}
=
(
k2 − eL2

)
+ min

{(
δ1(eL2)−

(
e∗L1

(eL2) + e∗S1
(eL2) + ξ1

))+
,
(

k0 −
(
eL2 − k2

)+)+}.

Then, the revenue of office 2 is obtained as follows.

RM
2 (k0, k1, k2, e∗L1

(eL2), e∗S1
(eL2), eL2 , eS2)

= PL2 min
{

XL2(eL2), k2 + k0
}
+ PS2 min

{
XS2(eS2), δM

S2
(eL2)

}
= PL2 min

{
eL2 , k2 + k0

}
+ PS2 min

{
eS2 + ξ2, δM

S2
(eL2)

}
.
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As office 2 wants to maximize its expected profit, the following optimization problem
should be solved.

max
eL2 , eS2

PM
2 (eL2 , eS2) (10)

s.t. PM
2 (eL2 , eS2) = E

[
RM

2 (k0, k1, k2, e∗L1
(eL2), e∗S1

(eL2), eL2 , eS2)
]
− C2(eL2 , eS2).

Let e∗Li
, e∗Si

be an optimal solution of problem (9) and (10) for office i. For the HQ to max-
imize its revenue RM

H (K, k0, k1, k2), the optimal allocation (k∗0, k∗1, k2) should be computed
by solving the following optimization problem.

max
k0, k1, k2

RM
H (K, k0, k1, k2)

s.t. RM
H (K, k0, k1, k2) = ∑

i=1,2
E
[

RM
i (k0, k1, k2, e∗L1

, e∗S1
, e∗L2

, e∗S2
)
]

k0 + k1 + k2 = K.

5. Computational Study
5.1. Testing Environment

As the behaviour of the two local sales offices are analytically intractable, we numer-
ically evaluate and compare the performance of each allocation method. The numerical
test is constructed and implemented by using MATLAB. In the decentralization method,
each sales agent chooses its own optimal effort level according to the closed-form solution
obtained from Theorem 1 and 2. Therefore, for the maximization of the total revenue
of the firm, the optimal allocation to each agent, k∗1 and k∗2, are searched within the total
capacity, K.

In the centralization method, each local agent does not simply choose the optimal effort
without considering the effort level of the other agent. Hence, we develop a simulation
model to evaluate the realized payoff for each agent and find the optimal effort for each
local sales agent. Without loss of generality, we assume that region 1 is superior in terms of
price for spot sales. In a game-theoretic setting, the first mover should be the local sales
office 1 and then the local sales office 2 decides its optimal effort level. The sequence of
decisions made in centralization is as follows. First, each local sales office decides the effort
for the long-term sales. As we only consider the case when the summation of the maximum
long-term demand from each region does not exceed the total capacity, both sales offices
can choose the optimal level of effort for the long-term demand. Without loss of generality,
we assume that the local sales office 2 chooses the effort level for the long-term demand.
As long-term demand has priority, the long-term demand utilized by the effort level will
be secured. Then the local sales office 1 decides the optimal effort level for the long-term
and spot demand to maximize its own profit. As the price of the spot demand for local
office 1 is greater than that of local office 2, local office 2 can search its optimal effort within
the remaining space of K− XL1(eL1)− XL2(eL2). As the spot demand from region 2 is not
deterministic, the demand will be realized based on its probability distribution function
that is assumed to be uniform in this paper. Finally, the remaining space can be obtained
by the spot demand from region 2. We also assume that both offices are fully capable of
evaluating the expected profit and predicting the optimal effort level of the other within
this game-theoretic setting. By expecting the optimal effort level of the local sales office 2
and evaluating the expected payoff, the local sales office 1 finalizes its optimal effort level.
Due to the probabilistic nature of the demand, the outcome of the spot demands from both
regions are randomly generated and the simulation of the demand is performed through
1000 iterations.

In the mixed method, the optimal effort levels are searched by changing the common
space, k0, and the allocated space k1 and k2. As we do not have a closed-form solution for
this setting, the optimal effort levels of each agent are simulated as follows. First, allocation
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(k0, k1, k2) is given. Then, all of the effort levels are tested and the corresponding profits are
computed. The effort levels with the biggest profit are chosen as the local optimal solution
based on the given allocation. All of the possible allocations (k0, k1, k2) are tested and the
allocation with the biggest profit would be the optimal allocation (k∗0, k∗1, k∗2).

5.2. Numerical Results

We consider the research questions raised in Section 1 by performing numerical studies.
First, we check whether one of the centralization or the decentralization method dominates
the other. Without loss of generality, by having local sales agent 1 as the focal player, we fix
the price and cost of the local sales agent 2. Then, by changing the parameters of the local
sales agent 1, we investigate the behaviour of each agent and the performance of the two
allocation methods. Then, the revenue at firm level is evaluated for the decentralization
method and the centralization method each. The parameters for the two agents are used as
shown in Table 3.

Table 3. Parameters for the comparison of Decentralization and Centralization.

PS1 CL1 CS1 β1 PL2 PS2 CL2 CS2 β2

1.51 0.05 0.1 4 0.5 1.5 0.05 0.1 4

The price of the long-term demand in region 1, PL1 , is changed from 0.1 to 0.9 by
the increment of 0.2 where the other parameters are fixed as given in Table 3. Then, the
expected revenue for the firm, the expected revenue for each sales office, and the optimal
effort level for each allocation method based on the change of PL1 are obtained as shown
in Table 4.

Table 4. Comparison results on Decentralization vs. Centralization.

Decentralization Centralization

PL1 D/C RD
H PD

1 PD
2 k∗1 k∗2 RC

H PC
1 PC

2

0.1 0.97 25.02 8.68 8.37 10.80 9.20 25.82 8.85 8.27
0.3 0.99 24.57 8.39 8.92 9.30 10.70 24.93 9.25 7.33
0.5 0.99 24.05 8.83 8.60 10.20 9.80 24.20 10.05 5.98
0.7 1.01 24.19 10.06 7.68 12.30 7.70 24.00 11.25 4.12
0.9 1.09 24.69 10.84 7.68 12.30 7.70 22.57 12.51 2.82

As shown in Table 4, we note that the total expected revenue obtained from the
centralization method is greater than that from the decentralization method as PL1 becomes
smaller. Furthermore, as PL1 becomes larger, it reacts vice versa. The results showing that
more revenue can be obtained from the decentralization method controvert the conventional
prediction that the centralization method would outperform due to the pooling effect.
When PL1 is lower than PL2 , the centralization method generates more revenue from 1% to
3%. However, when PL1 becomes greater than PL2 , the decentralization method begins to
outperform and generates 9% more revenue. This can be regarded significant in the context
of revenue management.

Observation 1: Neither the centralization nor the decentralization method dominates
the other on the whole range of PL1 .

We next scrutinize the situation when the decentralization method outperforms the
centralization method. Optimal effort levels obtained from each method are summarized
in the following Table 5.
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Table 5. Optimal effort levels obtained from Decentralization vs. Centralization.

Decentralization Centralization

PL1 D/C e∗L1
e∗S1

e∗L2
e∗S2

e∗L1
e∗S1

e∗L2
e∗S2

0.1 0.97 0.01 7.05 0.87 5.43 1.00 7.55 0.90 5.40
0.3 0.99 0.03 6.06 1.72 5.86 3.00 7.55 0.00 4.70
0.5 0.99 1.40 5.75 1.21 5.60 5.00 7.55 0.00 3.50
0.7 1.01 3.46 5.78 0.02 5.01 7.00 7.55 0.00 2.20
0.9 1.09 4.33 5.21 0.02 5.01 7.05 6.57 2.90 0.50

From the result of Table 5, we see that the revenue obtained from the decentralization
method is greater due to the strategic nature of the setting. As PL1 increases, the natural
reaction of the local sales office 1 would be to increase the effort level for long-term demand.
This results in more allocation to the local sales office 1 in the case of the decentralization
method because the demand from region 1 is more profitable, as described in Table 5.
However, in the centralization method, by knowing that the local sales office 1 would
increase its effort level for the long-term demand, the local sales office 2 would increase
the effort level for its long-term demand as well, because it is the only item that has the
priority in securing some level of profit at least. We clearly see that when PL1 is equal to
0.9, the local office 2 increases e∗L2

and decreases e∗S2
in the centralization method while the

efforts are (0.02, 5.01) in the decentralization method. As a result, this strategic decision of
the local sales office 2 lowers the total revenue of the firm in the centralization method.

Observation 2: To ensure its own profit, the agent in the less profitable region may
increase the effort level for long-term demand to secure the allocated capacity, and it can
result in the loss of total revenue on the firm level.

Now, we consider the mixed method. It is trivial that the profit from the mixed method
would (weakly) dominate the other two methods, as it holds the property of both two
methods. We try to find the case when the common area (k0) is non-zero. Table 6 shows the
parameters that are used for our simulation of the mixed method. Then, our computational
results are summarized as shown in Table 7.

Table 6. Parameters for the mixed method.

K PL1 PS1 CL1 CS1 β1 PL2 PS2 CL2 CS2 β2

20 0.5 1.51 0.05 0.1 8 0.5 1.5 0.05 0.1 8

Table 7. Comparison results on Mixed vs. Centralization vs. Decentralization.

Mixed Centralization Decentralization

k∗0 4.8
k∗1 6.9 10.1
k∗2 8.3 9.9

E[RH ] 26.36 23.55 25.11
E[P1] 11.09 12.80 10.30
E[P2] 9.86 4.85 10.11
e∗L1

0.64 3.55 0.0
e∗S1

5.37 6.82 4.90
e∗L2

0 2.4 0
e∗S2

5 1.8 4.79

In Table 7, we see that the decentralization method dominates over the centralization
method. Note that the effort level for long-term demand utilized by local office 2 is larger
in the centralization method than the decentralization method. As a result, the effort level
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for the spot demand decreases dramatically from 4.79 to 1.8. Finally, both the expected
revenue and the total expected revenue are smaller in the centralization method than the
decentralization method. However, in the mixed method, 8.3 units of cargo space are fully
allocated to local office 2. Therefore, there would be a room of freedom for local office 2 to
maximize its revenue without considering the competition with local office 1. This results
in an increase in the effort level for the spot demand. At the same time, the common space
of 4.8 is allocated. Hence, this space can be utilized to hedge the risk of the uncertainty of
demands and also the competitive nature of this common space can provide a certain level
of profitability.

As there are a number of parameters in the mixed method, we do not find clear
relationships between the parameters and the optimal allocation, (k∗0, k∗1, k∗2). Thus, we
focus on the trend between the level of uncertainty, β, and the optimal allocation obtained
from the mixed method. Our results are provided in Table 8.

Table 8. Results for the mixed method with the change of uncertainty β.

β RM
H PM

1 PM
2 k∗

0 k∗
1 k∗

2

2 24.24 8.43 6.37 1.7 12.7 5.6
4 25.05 9.78 7.66 2.7 10.8 6.5
6 25.69 10.67 8.59 4.0 9.0 7.0
8 26.36 11.09 9.86 4.8 6.9 8.3
10 27.00 11.71 10.65 6.4 5.6 8.0

In Table 8, we set β1 = β2 and use the term β to indicate both β1 and β2. As we
increase β, we see that k∗0 increases as well. The allocation to the local sales office 1 is
decreased and the one to the local sales office 2 is increased. This is because the optimal
common space, k∗0 , would be mainly utilized by the local sales office 1. The common space
will be used for profitability when the amount of demand for local sales office 1 is enough,
and for risk hedging when the amount of demand for local sales office 1 is not enough.

Observation 3: In the mixed method, the optimal allocation of the common space, k∗0 ,
increases as the level of uncertainty, β, increases.

6. Conclusions

Global freight companies assign local sales offices to each country in order to im-
prove the promptness and the efficiency of the supply chain. The local offices respond
to customers in the region, run a promotion to generate more demand, and react to any
unexpected changes in the region. They closely communicate with the HQ, frequently
update the situation related to the local market and carefully implement the allocation
made by the HQ. In spite of its importance, the optimal method for controlling the local
sales office has not, to date, been fully studied and developed in either practice or academia.

In this paper, we investigated the optimal capacity allocation method for a freight
company who operates local sales offices. First, we developed a mathematical model for
the optimal decision on effort levels for both long-term and spot sales in a single local sales
office. The information being given on the price and the probability distribution of long-
term and spot demand, the cost of the efforts to utilize demand, and the allocated space, an
optimal effort level for a single local office is derived in a closed-from. Based on the model
for a single office, we then investigated the dynamics between two offices. In addition,
to provide a fundamental understanding on the capacity allocation method, we studied
three types of allocation methods: decentralization, centralization, and mixed. When
the problem is extended to two local offices, it became intractable due to its complexity.
Hence, we performed a simulation study to compare the performance of three different
allocation methods.

Through the simulation study, we first answered the traditional question of whether
one of either decentralization or centralization dominates the other. Our simulation results
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showed that neither one of the methods dominates the other. It is known that centralization
usually performs better than decentralization due to the pooling effect. In the centralization
method, if one of the offices is not able to fully use its allocated capacity, it is possible
for the other office to utilize the unfilled capacity. However, we found out that in our
game-theoretic setting, something beyond this can happen. If one of the offices is inferior in
terms of price, it would lose priority when there is competition for common space. One of
the ways for the inferior office to secure some amount of space is to increase the long-term
demand coming from the region by putting in more effort. As long-term demand has
priority to spot demand, the profit generated from it will be secured. While this decision
would be beneficial for the inferior office, it may be harmful for the entire company because
it reduces the company’s profitability in the end. Therefore, when the company faces such
a situation, it is rather better to use the decentralization method.

As the mixed method includes the properties of both the decentralization and the
centralization method, it is trivial that the mixed method is the best option. Instead, the
optimal amount of the common space, k∗0, is still the open question in this case. Therefore,
we set up a simulation model to find this optimal amount of common space, k∗0. As there
are rather a number of parameters associated with this optimal allocation, such as price,
cost, the uncertainty level of demand, etc., we did not find clear relationships among the
parameters and the optimal allocation to each office and common space. Future research
would develop a simple model to investigate the optimal decision on common space.
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