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Abstract: A series of tests were carried out to assess the environmental effects of biodiesel blends 

made of different vegetable oil, such as corn, sunflower, and palm, on exhaust and noise diesel 

engine emissions. Biodiesel blends with 20% vegetable oil biodiesel and 80% diesel fuel by volume 

were developed. The tests were conducted in a stationary diesel engine test bed consisting of a sin-

gle-cylinder, four-stroke, and direct injection engine at variable engine speed. A prediction frame-

work in terms of polynomial regression (PR) was first adopted to determine the correlation between 

the independent variables (engine speed, fuel type) and the dependent variables (exhaust emis-

sions, noise level, and brake thermal efficiency). After that, a regression model was optimized by 

the grey wolf optimization (GWO) algorithm to update the current positions of the population in 

the discrete searching space, resulting in the optimal engine speed and fuel type for lower exhaust 

and noise emissions and maximizing engine performance. The following conclusions were drawn 

from the experimental and optimization results: in general, the emissions of unburned hydrocarbon 

(UHC), carbon dioxide (CO2), and carbon monoxide (CO) from all the different types of biodiesel 

blends were lower than those of diesel fuel. In contrast, the concentration of nitrogen oxides (NOx) 

emitted by all the types of biodiesel blends increased. The noise level produced by all the forms of 

biodiesel, especially palm biodiesel fuel, was lowered when compared to pure diesel. All the tested 

fuels had a high noise level in the middle frequency band, at 75% engine load, and high engine 

speeds. On average, the proposed PR-GWO model exhibited remarkable predictive reliability, with 

a high square of correlation coefficient (R2) of 0.9823 and a low root mean square error (RMSE) of 

0.0177. Finally, the proposed model achieved superior outcomes, which may be utilized to predict 

and maximize engine performance and minimize exhaust and noise emissions. 

Keywords: pollutant emissions; noise emissions; grey wolf optimization; polynomial regression; 

diesel engine; vegetable oil; biodiesel 

 

1. Introduction 

Recently, the interest in sustainable, eco–friendly, and renewable fuels has been 

growing as a result of environmental degradation from environmental pollution and the 

limited supply of conventional petroleum [1–3]. As a result of the growing knowledge of 
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the environmental threats to human health, efforts have been made to keep engine emis-

sions under control. Vibration, exhaust, and noise emissions are all major issues with die-

sel fuel [4–6]. 

Many combustion technologies, such as dual-fuel [7], partially premixed combustion 

(PPC) [8], advanced combustion system with optimized bowl and innovative fuel injec-

tion system [9], improved fuel injection [10], and employed exhaust gas recirculation 

(EGR) system [11], have been developed to minimize diesel engine exhaust emissions. 

Many researchers believe that biodiesel has the potential to reduce such emissions as hy-

drocarbon (HC), carbon monoxide (CO), and carbon dioxide (CO2), and with little increase 

in nitrogen oxides (NOx) emissions [12,13]. Biodiesel is a sustainable, biodegradable fuel 

derived from vegetable oils and animal fats as an alternative to fossil fuel through the 

transesterification method. Kalligeros et al. [14] evaluated the exhausted biodiesel emis-

sion that was fueled with a sunflower oil methyl ester. The authors remarked that the 

reduction in carbon monoxide, particulate matter, unburned hydrocarbon, and nitrogen 

oxide emissions compared to pure diesel blends were achieved. Fattah et al. [15] con-

cluded that palm biodiesel fuel could dramatically reduce the HC and CO emissions by 

up to 50% compared to neat diesel fuel. Sanjid et al. [16] experimentally tested a compres-

sion ignition engine and compared the noise levels of various types of biodiesel. The re-

sults revealed that the combined blends of palm and jatropha biodiesel have a slightly 

higher brake specific fuel consumption rather than that of pure diesel. The acoustic emis-

sion was reduced in the range of 2.5% to 5% depending on blend ratios ranging from 5 to 

10 by volume, respectively. This reduction may occur because of a decreased ignition de-

lay period and improved lubricity. Another study by Sanjid et al. [17] compared the per-

formance and exhaust emissions of two types of biodiesels, namely mustard and palm 

biodiesel fuels with 10% and 20% by volume blends. The results showed that the UHC of 

mustard biodiesel is 9% and 1.5% higher than that of palm biodiesel by 10% and 20% 

blends, respectively. Ndayishimiye and Tazerout [18] examined the engine performance 

and exhaust emission of a diesel engine fueled with palm oil blends. The authors found a 

small increase in brake specific fuel consumption (BSFC), brake thermal efficiency (BTE), 

and NOx emission compared to pure diesel fuel. However, a dramatic reduction in HC 

and CO emissions up to 65% compared to pure diesel fuel could be recorded. Rakopoulos 

et al. [19] reported that the peak of nitric oxide (NO) emission value for both n-butanol 

blends of 25% by volume and bio-diesel blend of 30% by volume was increased by 51% 

and 30%, respectively, compared to pure diesel. Uludamar et al. [20] experimentally ex-

amined the four cylinders, four-stroke, diesel engine fueled with different blends and 

types of biodiesel, namely corn, canola, and sunflower biodiesel, supplemented with hy-

drogen. The results showed a reduction in HC, CO, NOx, and noise emissions compared 

to pure diesel and biodiesel fuels that were not hydrogen-enriched. To overcome the 

higher viscosity of biodiesel fuel and thus improve its performance, Patel et al. [21] indi-

cated that using biodiesel fuel instead of pure diesel would necessitate some modifications 

in diesel engines, particularly for the fuel filter, fuel pumps, and injector needle. Yuvarajan 

et al. [22] showed that supplementing a nanoparticle such as titanium oxide (TiO2) into 

diesel–biodiesel blends could reduce exhaust emissions. 

Although there are many publications related to the outcome of biodiesel in terms of 

performance, combustion characteristics, and exhaust emissions, there are relatively few 

papers covering the acoustic emission aspects. The noise from the diesel engine comes 

from the gas flow, combustion behavior, and mechanical movement [23]. The gas flow 

noise is corresponding to the suction and exhaust stroke, while the mechanical noise is 

associated with piston movement, crankshaft, gears, valve trains, injection movement, 

and bearing. The combustion noise is associated with the maximum rate of the rising pres-

sure inside the cylinder. Many researchers  [19,23–27] have shown that fuel properties are 

some of the main factors that directly affect the diesel engine noise in terms of heating 

value, cetane number, chemical structure, fuel viscosity, fuel density, and heat of vapori-
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zation, etc. All these properties are responsible for the ignition delay period and, subse-

quently, the inside cylinder pressure rise rate. The most significant characteristics in the 

acoustic quality assessment of the engine are sharpness, loudness, strength, and rough-

ness. Redel-Macias et al. [28] stated that, the higher the amount of biodiesel blend derived 

from palm oil methyl esters (PME), the greater attenuation of maximum engine noise in 

terms of loudness, while the high amount of biodiesel derived from olive pomace oil me-

thyl esters (OPME) in blends resulted in the greatest attenuation of roughness. Aydin [29] 

found the canola biodiesel is better than diesel fuel according to noise emission criteria 

because it has a lower heating value and better lubrication characteristics. Conversely, 

Torregrosa et al. [30] stated that diesel engine noise increased with the increase in bio-

diesel content in the tested fuels. Bunce et al. [31] suggested using soy biodiesel instead of 

pure diesel to reduce the exhaust and noise emitted from a calibrated diesel engine. How 

et al. [32] conveyed that biodiesel blends were accompanied by a decreased short ignition 

delay, decreased peak heat release rate, and increased combustion duration. In another 

study, Torregrosa et al. [33] studied the effect of the injection on combustion noise for 

diesel engines. They revealed that the rise in inside cylinder pressure has a substantial 

influence on combustion noise. One of the important techniques used to reduce engine 

noise is controlling the ignition delay period. For instance, a shorter ignition delay dimin-

ishes the maximum pressure in the cylinder, thereby decreasing the combustion noise 

[34]. Nguyen and Mikami [35] added 10% of volume hydrogen in the suction air manifold 

of a single-cylinder diesel engine to minimize the engine noise considerably. 

Because experimental investigations on biodiesel blends under various operating sit-

uations to identify their optimal engine outputs and lowest emissions generated are ex-

pensive, restricted, and time-consuming, any other effective approaches for assessing 

these attributes are required [36]. The use of optimization techniques is a beneficial strat-

egy for reducing the need for extensive experimental testing. Many scholars have estab-

lished and employed a variety of meta-heuristic algorithm optimization approaches in 

design analysis. Particle swarm optimization technique (PSO), genetic algorithm optimi-

zation (GA), ant colony optimization algorithm, artificial neural network (ANN), response 

surface methodology (RSM), artificial bee colony optimization algorithm, Taguchi’s opti-

mization approach, and other algorithms have been widely used to improve engine per-

formance and reduce exhaust emissions [37,38]. Kumar et al. [39] developed the RSM-

based Box–Behnken approach design (BBD) to optimize biodiesel transesterification pro-

duction parameters, such as temperature, molar ratio, reaction duration, and catalyst con-

centration, for a blending of Jatropha–algae oil. Adam et al. [40] investigated the effects of 

engine speed and load, as well as the fuel blend ratio, on the emissions and performance 

of an indirect injection (IDI) diesel engine powered by a rubber seed and palm oil blend. 

The engine performance and exhaust emission were assessed using a statistical BBD based 

on RSM. With a fuel blend of 18%, engine speed of 2320 rpm, and engine load of 82%, an 

ideal desirability value of 0.96 was achieved for the tested IDI engine. Xu et al. [41] inves-

tigated the exhaust emissions and performance of a compression ignition (CI) engine run-

ning on biodiesel blends of a 20% Jatropha curcas (J20) using various injection schemes. 

The parameters of the start of injection time, fuel injection pressure, and pilot-main injec-

tion periods were optimized using RSM and the desirability metric, resulting in increased 

performance and lower emissions. Bhowmik et al. [42] proposed using a coupled ANN 

with a multi-objective response surface method (MORSM) to simulate and optimize the 

exhaust emissions and performance of a diesel engine powered with diesosenol blends. 

According to the trade-off study: the ethanol portion of 10% and a kerosene portion of 

2.42% by volumes at 74.14% diesel engine load are optimum attribute blend combinations 

and engine load, respectively. Yilmaz et al. [43] employed two alternative approaches to 

model engine emissions and performance. They evaluated RSM with support-vector ma-

chines (SVM) of least-squares (LS) version and concluded that, while SVM-LS was mar-

ginally more effective than RSM in predicting engine emissions and performance, RSM 

was still capable of accomplishing this. Dey et al. [44] established an ANN and fuzzy-
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based approach for predicting and optimizing diesel engine emissions and performance 

in relation to engine load and fuel blend. This experiment employed a single-cylinder die-

sel engine that was powered on palm biodiesel ethanol mixtures. The engine is driven at 

various loads ranging from 20 to 100% at 1500 rpm. According to a fuzzy model, at 20% 

load of 85% diesel, 10% palm biodiesel, and 5% ethanol by volumes has the highest index 

of multi-performance characteristics compared to other blends. Tosun et al. [45] devel-

oped an ANN model for forecasting diesel engine exhaust emissions in terms of CO and 

NOx. Diesel, peanut biodiesel, and a variety of peanut biodiesel and alcohol blends were 

used to power the diesel engine. Using a backpropagation approach combined with a 

multilayer feed-forward neural network model, researchers were able to predict outcomes 

more efficiently, robustly, and accurately than they could do with simple regression mod-

els. Uslu [46] compared two optimization strategies for identifying the optimum re-

sponses with the optimal operating variables for a diesel engine in terms of ANN and 

RSM implementations. The R2 values for the generated RSM model exceed 0.90, whereas 

R2 values for the ANN model range from 0.88 to 0.95. With optimal operating variables of 

35 °CA injection advance, 17.88% palm oil percentage, and 780-Watt engine load, the op-

timal results were achieved as 0.126%, 196.25 ppm, and 189.764 ppm for CO, NOx, HC, 

respectively. Yldrm et al. [47] examined three different biodiesel blends, canola, sun-

flower, and corn, in a four-cylinder diesel engine, focusing on engine vibration, noise, and 

emissions while adding hydrogen to these blends. They used two artificial intelligence 

approaches to attempt to change the optimal hydrogen enrichment rate: (ANN) and 

(SVM). The R2 and the best mean average error are 0.9615 and 0.39 for noise, 0.9398 and 

5.07 for NOx, 0.993 and 2.21 for CO2 values, and 0.8549 and 7.27 for CO. Furthermore, 

ANN was indicated to be more successful than SVM. Najafi et al. [48] utilized ANN and 

RSM to evaluate the energy and exergy of a CI engine running on waste cooking oil bio-

diesel. The experiments were carried out with varying loads and fuel blends at a constant 

engine speed. According to the data, the optimum results were achieved at an 80% engine 

load with a 20% biodiesel ratio. For biodiesel synthesis, Saqib et al. [49] employed the 

(RSM) to optimize the reaction parameters, such as molar ratio, catalyst concentration, 

reaction duration, and reaction temperature; biodiesel of rapeseed oil was used as feed-

stock. In addition, the behavior of biodiesel-generated exhaust emissions has been ob-

served. According to optimized biodiesel production, the following were the best experi-

mental conditions for producing biodiesel: reaction temperature 55 °C, catalyst concen-

tration (%) 0.30, reaction period 60 min, and molar ratio 6.75. Biodiesel yields of 97.5% 

were produced under these ideal circumstances. According to the findings, the CO and 

particulate matter (PM) emissions for biodiesel were lower than those of pure diesel fuel. 

The NOX emissions of the biodiesel were lower compared to pure diesel for low biodiesel 

blends. 

The grey wolf optimization (GWO) is an optimization approach that may be used to 

achieve diversified objectives in a variety of optimization tasks. The GWO has attracted 

the attention of scientists in various scientific and engineering sectors. In the literature, a 

limited number of research works are available on GWO for the environmental effect of a 

diesel engine fueled with various biodiesel blends. Samuel et al. [50] integrated the RSM 

and GWO to simulate the waste sunflower biodiesel synthesis from wasted sunflower oil. 

The densities of several biodiesel mixers were correlated using the least square regression 

approach. The highest yield of biodiesel fuel (96.70%) was obtained with a methanol/oil 

molar ratio of 5.99/1, a catalyst amount of 1.1 wt.%, and a reaction period of 77.6 min. 

Gujarathi et al. [51] employed the GWO to improve the diesel engine’s performance and 

emissions. A wide variety of factors, including BSFC, HC, CO, NOx, and PM, were taken 

into account throughout the optimization process. The researchers concluded that the 

GWO can identify the optimal parameters with minimum cost. Ileri et al. [52] optimized 

the cetane content in diesel engine blend fuel. They used the GWO to execute a series of 

experiments under various settings in order to determine the best blend outcomes. They 
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considered engine performance as well as combustion emission throughout the optimiza-

tion procedure. Finally, they computed the optimum engine performance after determin-

ing the best fuel blend under various scenarios. Luo et al. [53] enhanced the GWO by 

increasing the weight of the leader wolf location. The new approach surpasses the prede-

cessor in terms of optimization accuracy and convergence speed. The new method has a 

minimal cost when it comes to solving technical engineering challenges. Another im-

provement for GWO was made by Vijay and Nanda [54]. They used three strategies: con-

trol level, prey weight, and both. They evaluated the performance of the innovated 

method relative to that of five other algorithms, comparing noise, data scalability, and 

algorithm parameter. According to the authors, the suggested approach outperformed 

PSO and GWO in the confined search space by obtaining the least value (global optima 

for most functions). 

The present study focuses on a diesel engine that is run at full load and at varying 

engine speeds. The environmental behaviors in terms of the exhaust and noise emissions 

of an unmodified diesel engine fueled by corn, sunflower, and palm biodiesel blends have 

been carefully tested in this study experimentally. A prediction framework is proposed in 

this study by combining polynomial regression (PR) with GWO. Polynomial regression 

was used to establish the correlation between the independent factors (engine speed, fuel 

type) and the dependent variables in the suggested strategy (exhaust emissions, noise 

level, and brake thermal efficiency). The GWO technique was then used to optimize a 

regression model to update the population’s current locations in the discrete searching 

space, resulting in the optimal engine speed and fuel type for minimizing exhaust pollu-

tants and noise levels while maximizing engine performance. The novelty of the study is 

to efficiently model and minimize noise and exhaust emissions concerning fuel types and 

engine speed while also improving engine performance. The following three points 

clearly define the novelty in this study: 

1. Although there are many articles in the literature regarding engine performance and 

exhaust emission using different biodiesel fuel blends, there is still a gap in its acous-

tic emissions on the diesel engine. Commonly, the diesel engine is one of the major 

sources of noise in the automobile industry. Accordingly, significant consideration 

should be taken to minimize diesel engine noise levels. 

2. Biodiesel fuel has been extensively researched, as mentioned in the preceding litera-

ture. However, there is limited study in the literature on the use of the latest up-to-

date optimization approaches in terms of GWO for environmental evaluation of corn, 

palm, and sunflower biodiesel blends. The GWO method has superior qualities over 

other swarm intelligence approaches, such as its high flexibility and speedy program-

mability [55]. Furthermore, GWO requires no search space derivation information 

and operates with fewer parameters [56]. Through the search phase, the algorithm 

benefits from a balance of exploration and exploitation, leading to high convergence 

[57]. 

3. Moreover, there is no current literature on using polynomial regression with the 

GWO algorithm to reduce diesel engine exhaust emissions and improve engine per-

formance. Considering the paucity of studies in the literature on the implementation 

of GWO in internal combustion engines, additional research is needed. The primary 

purpose of this research is to use the GWO to determine the optimal engine speed 

and fuel type in order to reduce exhaust and noise emissions, as well as to improve 

engine performance. The significant technical benefit of optimizing fuel type and en-

gine speed is that it reduces the environmental effect of diesel engine exhaust and 

noise emissions while also improving engine performance. Furthermore, finding the 

relationship between independent factors, mathematically modeling the system, is 

an important benefit in cost and time savings by minimizing the number of experi-

ments. 
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2. Experimental Setup, Equipment, and Procedure 

A single-cylinder, direct injection, four-stroke of Lister LV1 of PETTER PHIW diesel 

engine was employed to carry out a set of experiments. For all measured characteristics 

except noise, the engine operation modes were full load and varying speeds. There was a 

noise measurement at 1800 rpm constant speed and different loads (25, 50, 75, and 100%). 

In addition, the noise level was measured at full load and various engine speeds. Table 1 

shows the characteristics of diesel engines in further detail. All of the fuels that were 

tested, including biodiesel fuels, were used without any modifications to the diesel en-

gine. 

Table 1. Specifications of the diesel engine used. 

Parameter Specification 

Type Lister LV1 

Nominal speed range 1000–3000 rpm 

Maximum power 9 HP (6.7 kW) @ 3000 rpm 

Number of cylinders Single 

Injection Direct 

Engine operation Four-stroke 

Bore * Stroke 85.73 × 82.55 mm 

Compression ratio 17:1 

Injector opening pressure 180 bar 

Intake valve opening/closing 15° CA BTDC/41° CA ABDC 

Exhaust valve opening/closing 41° CA BBDC/15° CA ATDC 

Air intake process Naturally aspirated 

Type of cooling Air-cooled 

Dynamometer A swinging field direct current (DC) dynamometer 

2.1. Biodiesel Preparation 

The following technique was used to make three distinct biodiesel blends, each of 

which included 20% biodiesel of vegetable oil and 80% pure diesel fuel by volume, namely 

corn, sunflower, and palm biodiesels: (i) in a low-speed electrical blender, 4 g sodium 

hydroxide (NaOH) was added with 200 cm3 methyl alcohol, known as methanol 

(CH3OH), for about 2 min. As a consequence of the chemical reaction, the solution grew 

warmer. To make sodium methoxide (CH3NaO), it was violently swirled until all of the 

(NaOH) was totally dissolved in the (CH3OH). Then, (ii) 1000 cm3 of vegetable oil was 

warmed to 65 °C and progressively added to the prior mixture, with the electrical blender 

running for about 30 min; (iii) after blended, the mixture was allowed to settle for 4 h; (iv) 

the solution split into two layers due to gravity, with biodiesel at the top and glycerin at 

the bottom; (v) the biodiesel product was rinsed well to remove any residues of glycerin 

and impurities; (vi) the biodiesel was washed by pouring hot water over it and letting it 

settle in a separating funnel for 12 h; (vii) finally, the lower layer of the sample was grad-

ually extracted until it was transparent. The refined biodiesel was put into a bottle and 

reheated up to 55 °C to remove the water content. Table 2 lists the measured fuel param-

eters as well as the equipment requirements. Only the cetane number measurements were 

obtained from a reference [58]. The percentages of fatty acids in the oil materials utilized 

were presented in Table 3 [59–61]. 
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Table 2. Measured fuel blends properties of all tested fuel. 

Properties Diesel 
Corn 

Biodiesel 

Palm 

Biodiesel 

Sunflower 

Biodiesel 

Test 

Method 
Equipment 

Cetane 

Number [58] 
47 53 61 52 

ASTM 

D613 
- 

Heating 

Value 

(MJ/kg) 

43.5 39.5 40.1 39.8 
ASTM 

D240 

Automatic 

adiabatic 

bomb calo-

rimeter 

Specific 

gravity at 

15 °C (kg/m3) 

0.83 0.86 0.85 0.85 IP 190/93 

Capillary 

stoppered 

pycnometer 

Viscosity at 

40 °C (cSt) 
3.85 4.77 5.28 4.96 

ASTM 

D445 

EMILA rotary 

viscometer 

apparatus 

Table 3. Percentage of fatty acids in oil materials used [59–61]. 

Sources 

% (wt) 

Palmitic 

(C16:0) 

% (wt) 

Stearic 

(C18:0) 

% (wt) Oleic 

(C18:1) 

% (wt) 

Linoleic 

(C18:2) 

% (wt) 

Linolenic 

(C18:3) 

Palm oil 45 4 39 11 - * 

Sunflower 3–10 1–10 14–35 55–75 <0.3 

Corn 8–10 1–4 30–50 34.56 0.5–1.5 

* Not specified. 

2.2. Exhaust Emission Measurement 

A Kane automotive gas analyzer was used to assess the exhaust emissions, which are 

CO, CO2, UHC, and NOx. The exhaust emissions were measured as follows: the gas probe 

was mounted on the gas exhaust pipe and attached to the gas analyzer. The gas analyzer 

was started, and fresh air was pumped into emission sensors. The oxygen sensor was set 

to 20.9%. Under such conditions, the analyzer makes a self-calibration procedure during 

fresh air purging and the time countdown to zero. After self-calibration, a leak test was 

executed by fitting the probe seal. After passing the leak test, the probe seal was removed 

and the gas analyzer read zero for CO, CO2, and set oxygen at 20.9%. When the engine 

reached operating temperature, the exhaust emission reading was taken. Each test was 

repeated three times and the average of the recorded data was taken. Table 4 displays the 

specification of the exhaust gas analyzer equipment and its accuracy. 

The following formula was used to compute the total percentage of uncertainty for 

the exhaust emissions [47,48]: 

% 𝑜𝑓 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = ±√
{(𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑜𝑓 𝐻𝐶)2 + (𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑜𝑓 𝐶𝑂2)

2

+(𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑜𝑓 𝐶𝑂)2 + (𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑜𝑓 𝑁𝑂𝑥)
2}

 (1) 

As regards Equation (1), the total uncertainties for exhaust gases is ±0.9%, which 

means that the examined results are reliable. 
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Table 4. Exhaust emission apparatus and its accuracy. 

Emissio

n 
Test Method Accuracy Resolution 

Maximum 

Limit 

CO2 Nondispersive infrared 
±5% of reading 

±0.5% volume 
0.01% 16% 

CO Nondispersive infrared 
±5% of reading 

±0.5% volume 
0.01% 10% 

UHC Nondispersive infrared ±5% of reading 1 ppm 5000 

NOx Fuel cell 
0–4000 ppm ±4%;  

4000–5000 ppm ±5% 
1 ppm 5000 

2.3. Engine Noise Measurement 

Any sound source may be characterized primarily by its pressure, intensity, and 

power. A person can sense noises between 20 μPa and 20 Pascal [62], which is designated 

as the pain threshold. The root mean square (rms) sound pressure is the most essential 

sound indicator, which is described in Equation (2) as 

Prms = √P2(t) = { lim
T→∞

1

T
∫ P2(t)dt

T

0

}

1
2⁄

 (2) 

where: Prms is the root mean square value of the pressure in Pa; P(t) is the pressure value 

at a specific time t, in Pa; T is the total interval of time in which the pressure was measured, 

in sec; and P2(t) is the time-averaged pressure over T, in Pa. 

Because of the wide range of related pressure (20 μPa–20 Pa), a logarithmic scale is 

more suitable. Another explanation is that a logarithmic evaluate of sound pressure cor-

responds significantly better with the subjective perception of how loud a noise sounds 

than the sound pressure itself. With a reference value (Pref = 20 μPa), the sound pressure 

level (SPL) is employed to characterize the sound loudness in dB. It is given by Equation 

(3): 

LP = 10 log10

Prms
2

Pref
2 = 20 log10

Prms

Pref
 (3) 

where: LP is the level of the sound pressure, in dB; Prms is the root mean square quantity of 

the pressure at a certain frequency, in Pa; and Pref is the reference value of 20 μPa. 

The decibel dB(A) is a unit of measurement for intensity, commonly expressed in 

(W/m2). The decibel, therefore, denotes the amount of sound-wave power that passes 

throughout a 2-D slice of space at any particular time. The formula corresponding to the 

rise in the sound level in dB(A) to the rise in intensity (I) starting from initial reference 

intensity I0 is given by Equation (4): 

𝑆𝐿(𝑑𝐵) = 10 log(
𝐼

𝐼0
) (4) 

where: 𝐼0 is a reference intensity and equals 10−12 W/m2, which is the lowest audible sound 

that a person with normal hearing can detect at a frequency of 1000 Hz. 

Besides monitoring the sound pressure level through each discrete frequency, the 

sound was typically measured in frequency ranges. Therefore, frequency filters with oc-

tave band in terms of one-third octave band filters were used. 

Octave band noise assessment is widely used when the frequency analysis of the 

acoustic source is required to be studied. Therefore, 1/3 octave analysis was conducted to 

investigate the diesel engine acoustic emissions of all types of tested fuels. A frequency 

range of 20 Hz to 20 kHz was investigated. To address the noise emission from a diesel 

engine, a signal from cylinder pressure is typically observed based on the frequency spec-

trum. After that, a fast Fourier transform (FFT) was applied to transform the sound time 
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domain to the frequency domain, or a filter of a one-third octave frequency band was 

applied to measure the sound pressure level at every distinct frequency [62]. A one-octave 

frequency band supported with a sound level meter type 2235 from Bruel & Kjaer to detect 

the noise of the diesel engine was used. The sensing microphone and a signal output ter-

minal attached to the sound level meter were positioned at the upper and lower sides of 

the meter. The data collection interface receives audio information from an output signal 

terminal. This electrical signal is amplified inside the sound level meter and then sent to 

weighting networks that are nominated by a manual switch. The amplified weighted sig-

nal goes to the root mean square amplifier, is purified, and converted to a decibel loga-

rithmic scale. After that, the digital reading of the sound pressure level in decibels dB(A) 

appears on the screen. The noise measurements were performed according to the follow-

ing: all the acoustic measurements were carried out in the evening time (after 5 pm) to 

ensure there was no source of the noise. The noise measurement distance was one meter 

apart from the frontal surface of a diesel engine to make sure there was no absorption of 

sounds during the test. The diesel engine started once the set temperature was reached. 

The acoustic level, recorded in dB(A), was measured using a microphone as a sound level 

meter at the front side of the engine. The octave band filter was applied according to sub-

sequent midpoint frequencies (20 Hz to 20 kHz), and, finally, the same procedure was 

repeated at different engine speeds and different tested fuels. 

3. Mathematical Model 

A regression model is a formula that describes the relationship between a response 

(dependent variable) and a set of design factors (independent variables). A regression 

model is widely used due to its simplicity, minimal processing effort, and ability to illus-

trate explicit relationships between variables. In some engineering computations, the 

model provided by the data is not sufficient for a linear line. In such instances, it is vital 

to apply a proper data curve. Polynomial regression is an evaluable approach at this mo-

ment. 

The performance of the process was measured by examining exhaust emissions 

(NOx, CO, CO2, and UHC), engine performance (brake thermal efficiency), and engine 

noise, all of which are affected by engine speed and fuel type. Equation (5) expresses the 

interactions between the response Y and the input process variables. The tests were con-

ducted at engine speeds ranging from 1200 to 2400 rpm. Pure diesel, palm biodiesel, sun-

flower biodiesel, and corn biodiesel are all assessed. 

𝑌 = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑥
2 + ⋯+ 𝛽𝑛−1𝑥

𝑛−1 + 𝛽𝑛𝑥
𝑛 (5) 

where: Y is the dependent variable, x is the independent variable, 𝛽 is the regression co-

efficient, and n is the polynomial degree. 

4. Parameter Optimization 

With the use of a polynomial regression model, the optimization procedures were 

explored in order to attain the minimum exhaust emission yield. The GWO method pro-

posed by Mirjalili et al. in 2014 [56] is similar to the PSO algorithm and is based on the 

metaheuristic principle. The algorithm concept leverages social authority, which is sym-

bolized by the behavior of wolves while encircling a victim, to find the best solution to the 

problem to be optimized. This algorithm replicates the hierarchical superiority of grey 

wolves until their movements halt during the operation of hunting for the victim. It en-

courages the natural behavior of grey wolves scavenging for food in their social life in a 

similar way to population-based algorithms. 

Figure 1 shows four different types of grey wolf groups that may be used to construct 

hierarchical commands, with the following three levels [63,64]: 

1. The first level reflects the command of the group. Alpha (α) is the name given to a 

wolf at this rank. The alpha is in charge of determining whether or not to hunt and 
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giving commands to the other wolves in the pack. As a result, it might be deemed 

the best option. 

2. The chain’s nesting level is known as beta (β). At this stage, wolves assist alphas in 

making choices and monitoring the behavior of other groups. When alphas die or get 

elderly, betas can take their place. 

3. The bottom level has the lowest ranks, the delta (Δ) and omega (ω), who eat last after 

the upper-level wolves have finished. 

 

Figure 1. Hierarchical levels of grey wolves and their tasks. 

The wolf pack’s hunting method consists of three key steps: hunting, encircling, and 

attacking the prey. The algorithm starts with a set number of grey wolves, whose place-

ments are arbitrarily generated. When building GWO, the fittest solution as the alpha (α) 

was selected. This allows us to quantitatively describe the social structure of wolves. As a 

result, the second and third best solutions are designated by the letters beta (β) and delta 

(Δ). All other potential solutions are presumed to be omega (ω). The hunting (optimiza-

tion) in the GWO algorithm is directed by the variables α, β, and Δ. Following these three 

wolves are the ω wolves. 

As mentioned above, grey wolves encircle prey during the hunt. In order to mathe-

matically model the encircling behavior of each packing group, the following equations 

(Equations (6) and (7)) are employed: 

𝐷⃗⃗ = |𝐶 . 𝑋 𝑃(𝑡) − 𝑋 (𝑡)| (6) 

𝑋 (𝑡 + 1) = |𝑋 𝑃(𝑡) − 𝐴 . 𝐷⃗⃗ | (7) 

where: the grey wolf position vector denoted by 𝑋 , 𝑋 𝑃 is the prey vector position, t stands 

for the current iteration, and 𝐴  and 𝐶  are the coefficient vectors given by the following 

equation (Equation (8)): 

{
𝐴 = 2. 𝑎 . 𝑟 1 − 𝑎 

𝐶 = 2. 𝑟 2
𝑤𝑖𝑡ℎ ∶ 𝑎 = 2. (1 −

𝑡

𝑇𝑚𝑎𝑥
) (8) 

where: the total number of iterations is Tmax, r1 and r2 are random vectors in [0,1], and a is 

encircling coefficient. Grey wolves have the ability to recognize the location of prey and 

encircle them. The hunt is usually guided by the alpha. The beta and delta might also 

participate in hunting occasionally. However, in an abstract search space, we have no idea 

about the location of the optimum (prey). In order to mathematically simulate the hunting 

behavior of grey wolves, we suppose that the alpha (best candidate solution), beta, and 

delta have better knowledge about the potential location of prey. Therefore, we save the 

first three best solutions obtained so far and oblige the other search agents (including the 
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omegas) to update their positions according to the position of the best search agents. The 

following formulas (Equations (9) and (10)) are proposed in this regard. 

𝑋 𝑃(𝑡 + 1) =
𝑋 1(𝑡) + 𝑋 2(𝑡) + 𝑋 3(𝑡)

3
 (9) 

where: 

{

𝑋 1(𝑡) = 𝑋 α(𝑡) − 𝐴 1. 𝐷⃗⃗ α

𝑋 2(𝑡) = 𝑋 β(𝑡) − 𝐴 2. 𝐷⃗⃗ β

𝑋 3(𝑡) = 𝑋 Δ(𝑡) − 𝐴 3. 𝐷⃗⃗ Δ

   𝑎𝑛𝑑 {

𝐷⃗⃗ α = |𝐶 1𝑋 α(𝑡) − 𝑋 (𝑡)|

𝐷⃗⃗ β = |𝐶 2𝑋 β(𝑡) − 𝑋 (𝑡)|

𝐷⃗⃗ Δ = |𝐶 3𝑋 Δ(𝑡) − 𝑋 (𝑡)|

 (10) 

Equation (6) denotes the distance from the current location, which should be mini-

mized as much as possible so that Equation (7) represents the next position, which be-

comes closer and closer to the prey’s position. This means that the algorithm will arrive at 

the proper answer to the XP problem. 

In this algorithm, the control parameter “a” decreases linearly from 2 to 0 over itera-

tions using Equation (8). As a result, a search agent’s future position can be anywhere 

between its current position and the position of the prey (exploration phase). The criterion 

|A|<1 causes the wolves to attack the prey. 

The alpha group is thought to have the best information of where prey may be found. 

Once the location of the prey has been discovered, the alpha group will lead the hunt, 

followed by the beta and delta wolves. The last two groups take part in the hunt on occa-

sion. The remainder of the gang is tasked with caring for the pack’s injured wolves. The 

wolves assault and finish the hunt after the prey stops moving. 

Pseudocode of grey wolves: 

Initialize grey wolf population Xi 

Calculate the fitness value of each agent 

Sort grey wolf population-based on fitness values (α, β, and Δ) 

While Iterations < Max: 

Update position of each wolf 

Find the fitness of a population 

Update alpha, beta, and delta 

End while 

Return alpha 

The goal of using the GWO algorithm is to reduce exhaust emissions (UHC, CO, CO2, 

and NOx) for engine speed and fuel type (to determine the best engine speed with mini-

mized exhaust emissions). The GWO technique is used to improve regression models in 

order to find the best input parameter values (x). The fuel type and engine speed are the 

variables that influence these responses. Firstly, the responses are estimated using regres-

sion models. Secondly, for these regression models, the GWO method is utilized to esti-

mate the best factor levels. The algorithm used 30 search agents for this purpose, and the 

maximum number of iterations was set at 1000. 

Each wolf position in the GWO corresponds to the fuel type factor that is applied to 

the engine speed. As a result, f represents the global best position of all wolves, whereas 

E is the exhaust emission based on fuel type, and “d” reflects the associated wolf’s best 

position. The objective function for this algorithm to find the minimum exhaust emission 

considering the fuel type with respect to the engine speed is described by Equation (11): 

min(𝐸𝑑) = 𝑓(α, β and Δ) (11) 

Exhaust emission (E) value is varied depending on fuel type (d) and is considered as 

a grey wolf according to the GWO algorithm. As a consequence, we can rewrite Equation 

(7) as follows (Equation (12)): 

𝐸𝑑(𝑘 + 1) = |𝐸𝑑(𝑘) − 𝐴. 𝐸| (12) 
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The working principle of GWO’s fitness function is described by Equation (13): 

𝐸𝑑𝑗
𝑘 < 𝐸𝑑𝑗

𝑘−1  (13) 

where: j is the current grey wolves’ number, and k is the iteration number. 

Figure 2 displays the flow chart of the grey wolf optimization algorithm process. 

 

Figure 2. Flow chart of the grey wolf optimization algorithm process. 

5. Results and Discussion 

5.1. Exhaust Emission Analysis 

This section presents a comprehensive, detailed evaluation of the impact of biodiesel 

blends on the engine exhaust emissions, which are unburned hydrocarbon, carbon diox-

ide, carbon monoxide, and nitrogen oxides, at varying engine speeds. 

5.1.1. Exhaust Temperature 

The change in the exhaust gas temperature versus engine speed for pure diesel and 

different types of biofuel blends is demonstrated in Figure 3. The exhaust gas temperature 

increased with the increase in engine speed until reaching the maximum value for all the 

tested fuels. This increase is due to the need for more fuel quantity to increase the engine 

speed. Moreover, all biodiesel fuel blends have lower exhaust gas temperatures than pure 

diesel. A reduction in exhaust gas temperature by 0.8%, 1.4%, and 2.1% has been obtained 

from palm, sunflower, and corn biodiesels, respectively, as compared to pure diesel. This 

reduction can be attributed to the following reasons: (i) the latent heat of vaporization for 

all biodiesel blends is more than that of pure diesel [65], which improves the cooling of 

the engine cylinder walls and, hence, decreases its temperature and, consequently, de-

creases its exhaust gas temperature; and (ii) the low energy content in terms of calorific 

heating value for all types of biodiesel compared to pure diesel. Masharuddin et al. [66] 

proposed emulsified biodiesel as an alternative fuel to minimize both peak cylinder pres-

sure and flame temperature. The fine scattering of biodiesel fuel droplets causes the phe-

nomenon of heat transfer in the combustion chamber. When this phenomenon occurs in 

the inner phase of biodiesel content, it leads to partially absorbing the calorific heat value 

of the blend, followed by decreasing the burning gas temperature. In other words, the 

emulsion absorbs heat from combustion by vaporizing liquid water into vapor. 
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However, a reverse trend was reported in a few studies [67,68]. They explained that 

the high exhaust gas temperature was attributed to the improved combustion behavior 

due to the increased oxygen molecules in the chemical formula of biodiesel blends and 

higher fuel consumption in each engine speed as compared to that of pure diesel. 

 

Figure 3. Variation in exhaust temperature vs. engine speed for different biodiesel blends. 

5.1.2. Unburned Hydrocarbon Emission (UHC) 

The variation in total unburned hydrocarbon emission (UHC) with engine speed for 

pure diesel and 20% addition of different types of biofuels is presented in Figure 4. As 

depicted in the figure, the amount of UHC emission decreases when the engine speed 

increases. Therefore, higher engine speed will maintain a better mixing of air and fuel, 

leading to better combustion. Another observation is the UHC emitted by all the biodiesel 

blends is a little lower than that of pure diesel fuel. Numerically, on average, the UHC 

reduction of about 22.7%, 10.2%, and 16.2% was produced from palm, sunflower, and corn 

biodiesel blends, respectively, as compared to pure diesel. This reduction is due to: (i) 

improved combustion efficiency and ignitability because of the increased cetane number 

of the biofuel blends; a substance with a high cetane number displays a shorter delay pe-

riod and gives additional time for the oxidization progression to happen, which leaves 

smaller amounts of HC in the exhaust; (ii) the inherent oxygen contained by the biofuel 

was responsible for the decrease in HC concentrations; (iii) despite biodiesel being just 

less volatile than diesel fuel, diesel fuel has been observed to have higher relative distilla-

tion points [69,70]; the last portion of the diesel may not be entirely evaporated and 

burned, resulting in higher THC emissions; (iv) the low fuel particle evaporation due to 

the reduced wall temperature; (v) the higher viscosity and density of biodiesel blend affect 

the atomization and volatilization phenomena of the fuel, leading to a lesser amount of 

lean blend at the edges of the spray flame-out region [71]; and, finally, (vi) the low heat of 

the biofuel blends vaporization leads to slow evaporation and poor fuel–air mixing. 
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Figure 4. Variation in unburned hydrocarbon emission vs. engine speed for different biodiesel 

types. 

5.1.3. Carbon Dioxide Emission (CO2) 

It is well known that carbon dioxide (CO2) is considered one of the greenhouse gas 

sources and is responsible for the global warming effect. Moreover, the produced CO2 

emission is an indication of the completed combustion process. The variations in CO2 

emissions versus engine speed for pure diesel and 20% additions of different types of bi-

odiesels are displayed in Figure 5. It was noticed that the amount of CO2 emission in-

creased proportionally with the increase in engine speed. For all the different types of 

biodiesel blends, the produced CO2 emissions were lower than those of pure diesel fuel 

by 58.2%, 57.2%, and 53.7% for palm, sunflower, and corn biodiesel blends, respectively. 

The reduction in CO2 emissions is due to the fact that biodiesel has low-carbon fuel and a 

lower carbon to hydrogen ratio than that of pure diesel fuel [72]. Ashok et al. [73] indicated 

that the high number of formations of free radicals during the combustion leads to a sig-

nificantly reduced amount of CO2 emissions. Muralidharan and Vasudevan [74] stated 

that the CO2 produced from biodiesel combustion could be absorbed by trees; therefore, 

the CO2 level in the atmosphere will be maintained, thus avoiding environmental prob-

lems, such as global warming and ozone layer depletion. The previous interpretation was 

discussed in a more scientific and in-depth manner by Yee et al. [75]. The authors pro-

posed the concept of life cycle assessment (LCA) for palm biodiesel to explore and evalu-

ate the prevalent idea that palm biodiesel is a sustainable fuel. The LCA analysis was cat-

egorized into three phases: agricultural processes, biodiesel transesterification process, 

and oil milling. The greenhouse gas and energy balance were estimated for each phase. 

According to the results, the burning of palm biodiesel was shown to be more environ-

mentally friendly than conventional diesel fuel, with a substantial 38% decline in CO2 

emissions per liter combusted. A similar trend was reported by Sharon et al. [76]. 
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Figure 5. Variation in carbon dioxide emission vs. engine speed for different biodiesel types. 

5.1.4. Carbon Monoxide Emission (CO) 

The variation in carbon monoxide emission (CO) versus engine speed for pure diesel 

and 20% additions of different types of biofuels is displayed in Figure 6. According to 

Figure 6, it can be noticed that the amount of CO released for all the types of fuel tested 

decreased with the increase in engine speed until reaching a minimum, and then the CO 

emissions increased. This is due to a lean mixture combustion at a low speed, resulting in 

incomplete combustion. The further increase may occur due to the short time available to 

oxidize all the CO atoms and ignition timing retarding that leads to the release of more 

CO at the higher engine speed [6]. The CO released by the palm, sunflower, and corn 

biodiesel blends was 4.7%, 26.9%, and 13.6%, respectively, lower than that of pure diesel 

fuel. Palm biodiesel evaporates quickly and easily into the engine cylinder because it has 

low specific gravity as compared to other blends. As a result, a decrease in the length of 

spray atomization, which assists the complete combustion, and a decrease in the CO pro-

duced may occur. According to the current experiments, biofuel can reduce the emitted 

CO by up to 30% as compared to pure diesel depending on environmental conditions, 

engine type, and engine age [77]. 

Several factors have been ascribed to the decrease in CO emission in biodiesel fuel 

when compared to pure diesel, including: (i) the presence of more oxygen in the biodiesel 

fuel, which promotes full combustion and, hence, lowers CO emissions; (ii) the greater 

cetane number of biodiesel fuels, resulting in the lesser possibility of fuel-rich zones de-

veloping, which is generally linked to CO emissions; (iii) when utilizing biodiesel, the 

combustion and advanced injection may also explain the CO decrease. Other research 

works [78,79] revealed that the higher ratio of biofuel blends can increase the produced 

CO by up to 15% as compared to the pure diesel due to the high viscosity, low mixing of 

air–fuel ratio that troubles the fuel atomization, and increased period of premixed com-

bustion. The same profile of CO with the engine speed for the different biodiesel tests was 

reported by Ozsezn et al. [80]. 
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Figure 6. Variation in carbon monoxide emission vs. engine speed for different biodiesel types. 

5.1.5. Nitrogen Oxides Emission (NOx) 

The concentration of nitrogen oxides (NOx) emission versus engine speed using dif-

ferent types of biodiesel blends is illustrated in Figure 7. It is well known that the concen-

tration of NOx emission mainly depends on the cylinder temperature, engine speed and 

load, mixture homogeneity, contents of the combustion chamber, oxygen concentration, 

air–fuel ratio, and residence time [15,81–84]. From Figure 7, the following points can be 

depicted: (i) the concentration of NOx increased with the increase in engine speed for all 

tested fuels. The reason for this increase could be the improved combustion behavior, 

which has a more homogenous air–fuel mixture at high engine speeds. (ii) For all types of 

biodiesel blends, there was an increase in NOx concentration of about 4.9%, 2.9%, and 

1.4% for palm, sunflower, and corn biodiesel blends, respectively, as compared to pure 

diesel. The main crucial factor that leads to high emitted NOx emissions is the increase in 

in-cylinder temperature. The increased concentration of oxygen molecules in biodiesel 

blends improves the combustion behavior and increases the NOx emission. Moreover, the 

cetane number of biodiesel blends is higher than that of pure diesel, which leads to a 

shorter ignition delay. The short ignition delay indicates that a longer residence time is 

consumed for the initial combustion products and the air–fuel mixture at a higher tem-

perature, which leads to an increase in the emitted NOx concentration. Furthermore, the 

higher viscosity of biodiesel assists to have a shorter ignition delay and larger droplet size, 

which finally improves the formation of NOx emissions [85,86]. (iii) When biodiesel is 

pumped, the pump produces a faster pressure rise because of its lower compressibility in 

terms of higher bulk modulus, and the sound propagates more rapidly towards the injec-

tors due to its greater sound velocity. Furthermore, the increased viscosity lowers pump 

leaks, resulting in a greater injection line pressure. As a result, in the current diesel fuel, a 

faster and sooner needle opening will occur, and, finally, (iv) because the palm biodiesel 

has a higher cetane number and viscosity as compared to other biodiesel blends, more 

NOx emission produced during the combustion is expected. Cardone et al. [87] demon-

strated a significant increase in NOx emissions at full load, and they demonstrated that 

the beginning of combustion was more advanced with biodiesel, leading to a higher av-

erage temperature peak, using a diagnostic single-zone framework that supplied the heat 

release graph from the in-cylinder pressure signal. With higher loads, the observed 

change in the advance of combustion increased. This advance was ascribed to the injection 
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advance, and the authors indicated that it might be adjusted from the embedded control-

ler to restore the original NOx emission level. 

 

Figure 7. Variation in nitrogen oxides emission vs. engine speed for different biodiesel types. 

5.2. Engine Performance: Brake Thermal Efficiency 

All of the parameter matrices relevant to diesel engine performance in terms of brake 

torque (BT), brake power (BP), brake thermal efficiency (BTE), and brake specific fuel con-

sumption (BSFC) while using various biodiesel blends were discussed in-depth in a pre-

vious publication [88]. 

The fluctuation of BTE with a range of engine speeds for pure diesel and different 

types of biofuel blends is displayed in Figure 8. As depicted from this figure, the thermal 

efficiency gradually increases with the engine speed until reaches a maximum value. After 

that, it decreases with the increase in the engine speed. This behavior could be due to the 

prolonged time available for cylinder walls to transfer the heat, particularly at low speeds; 

therefore, a significant fuel quantity is consumed for a greater amount of heat loss that 

takes place. As the engine speed increases, the brake power increases, which means a 

higher thermal efficiency is obtained. At higher speeds, however, the friction power in-

creases rapidly due to the high inertia of the moving parts, which could be a consequence 

of the drop in thermal efficiency. Another insight, all biodiesel blends show lower thermal 

efficiency as compared to pure diesel. On average, a reduction in thermal efficiency by 

6.7%, 4.4%, and 2.4% was found for palm, sunflower, and corn biodiesels, respectively, as 

compared to pure diesel. This reduction is due to the increased thermal friction losses 

resulting from the presence of biodiesel fuel that transfers to the cylinder walls and engine 

coolant. It is known that the brake thermal efficiency is inversely proportional to BSFC 

and heating value [89]. For instance, the BSFC increases and the heating value decreases 

for all the biodiesel blends. On the other hand, the BSFC augmentation is more prevailing 

in this case. This explains the reason for the decrease in the thermal efficiency of biodiesel 

blends, although they have low heating value. Moreover, the biodiesel blends have a 

lower ignition delay, which means starting the combustion earlier as compared to pure 

diesel. The lower ignition delay leads to more heat losses to the surroundings, and, thus, 

more power is required for the piston to achieve the compression stroke. The same results 

were reported in many studies [78,85,90,91]. However, a few researchers [79,92] found an 

inverse profile. They explained the higher thermal efficiency as a result of the improved 

combustion behavior of the oxygenated biodiesel fuel. 

450

470

490

510

530

550

570

590

610

630

650

1200 1400 1600 1800 2000 2200 2400

N
O

x
 (

P
P

M
)

Engine Speed (rpm)

Diesel Palm Sunflower Corn



Sustainability 2022, 14, 1367 18 of 33 
 

 

Figure 8. Thermal efficiency fluctuates with engine speed for various biodiesel blends. 

5.3. Noise Emission Analysis 

In general, the diesel engine has a noise range of 80 to 110 dB(A) depending on engine 

size, injection time, and rotation speed of the crankshaft. According to Siavash et al. [93], 

the most effective noise resources in the diesel engine were piston slap, combustion be-

havior, and exhaust valve closing [94]. The impacts of biodiesel on diesel engine noise 

may be divided into two categories [93]: influence on combustion and impact on fuel in-

jection, which includes the injection method and fuel spray pattern. The effect of different 

types of biodiesels on the noise level (sound pressure) values produced by the diesel en-

gine is depicted in Figures 9–11. Figure 9 shows the variation in noise level with the fre-

quency at 1800 rpm engine speed, Figure 10 displays the fluctuation in noise level with 

engine speed, and Figure 11 illustrates the variation in noise level with engine load at 1800 

rpm engine speed. 

 

Figure 9. Variation in noise level dB(A) vs. frequency Hz at an engine speed of 1800 rpm for differ-

ent biodiesel types. 
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Figure 10. Variation in noise level dB(A) vs. engine speed for different biodiesel types. 

 

Figure 11. Variation in noise level dB(A) vs. engine load at an engine speed of 1800 rpm for different 

biodiesel types. 

The following conclusions can be drawn from these figures: (i) according to Figure 

10, it was clear after using Equation (4) that the sound intensity was reduced by 50.9%, 

31.5%, and 18.5% for the palm, sunflower, and corn biodiesel blends, respectively, as com-

pared to pure diesel fuel. The physical characteristics of biodiesel blends will directly im-

pact the noise emission in addition to combustion productivity, especially cetane number, 

oxygen content, latent heat of vaporization, and kinematic viscosity. (ii) The reduction in 

noise level when biodiesel blends are used could be due to the improved combustion per-

formance associated with the high oxygen content existing in biodiesel blends as com-

pared to pure diesel fuel. Furthermore, biodiesel with a higher viscosity promotes lubric-

ity and dampening, leading to lower sound levels. (iii) The noise level increased propor-

tionally with the engine speed for all the tested fuels, as displayed in Figure 10. This in-

crease is due to an increase in the combustion process of speed and repetition time, which 

is responsible for combustion noises caused by forces operating on the crankshaft and 

combustion excitation [95]. (iv) When the engine load elevated, the noise levels increased 

for all the tested fuels, as depicted in Figure 11. This can be referred to as the increase in 

the maximum heat release rate and in-cylinder pressure. The same results were achieved 

by Sarıdemir et al. [96]. Maillard and Jagla [89] showed that, at low-frequency values, 

there is little effect of load on the SPL, especially at high speeds. On the other hand, the 
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effect of load was clear and more tangible at a low engine speed or high frequency. (v) 

The difference of biodiesel chemical structures and their characteristics, especially the cal-

orific value, will directly affect the noise level. For instance, to compensate for the reduced 

heating value of biodiesel blends compared to pure diesel fuel, the quantity of supplied 

fuel should be increased. (vi) Palm biodiesel fuel has the highest cetane number among 

all the tested fuels. Consequently, the ignition delay duration is the shortest. For this short 

period, the fuel abruptly starts to ignite when it arrives at the ignition temperature. This 

abrupt ignition accompanies both the highest heat release rate and pressure rise in the 

cylinder, which are the lowest among other tested fuels. Therefore, palm biodiesel pro-

duces the lowest noise level. (vii) Moreover, palm biodiesel has the highest viscosity 

among all tested fuels. The higher viscosity is responsible for enhanced lubricity and 

damping capacity, subsequently reducing the noise level. Moreover, the higher viscosity 

leads to a decrease in both the ignition delay period and the rate of increasing pressure in 

the cylinder, which directly reduces the value of SPL [97,98]. However, Patel et al. [99] 

showed a high kinematic viscosity, which affects the formation of fuel droplets and pro-

duces a relatively larger diameter droplet, which makes it more difficult to evaporate and 

burn. Fattah et al. [100] indicated that the high viscosity leads to poor pulverization, which 

results in increasing the fuel droplet diameter inside the engine cylinder and decreasing 

the quantity of fuel. In such cases, the fuel is burnt through the premixed regime and 

makes a gradual reduction in the maximum pressure inside the cylinder. (vii) The low 

frequency values, the variance between all the profiles of SPL, is negligible. On the other 

side, this difference is clear at high frequencies for the tested fuels. The explanation of this 

observation is the very long wavelength at a low frequency; therefore, the sampling rate 

is a few points from this region in all the tested fuels. As a result, the sound pressure in 

terms of root mean square (RMS) values will be covered by a few points and this will 

conduct identical SPLs in all the tested fuels. In contrast, the wavelength is very short at 

high frequencies. Therefore, the sampling rate covers several points as compared to the 

previous scenario. Consequently, the sound pressure in terms of root mean square (RMS) 

values will be more precise, leading to more accurate SPL values in all the tested fuels 

[101]. (viii) The sound pressure level profiles are similar to the brake power profile gener-

ated from the diesel engine. For instance, the brake power is low at a low frequency and 

low speed. The sound pressure level increased gradually as the engine speed increased 

and, consequently, the brake power increased. Therefore, the noise level is directly related 

to engine speed, load, and power. (ix) All the tested fuels showed high noise levels at 

medium frequency range (75% engine load) and high engine speed range. This result is in 

agreement with Dal et al. [102]; and, finally, (x) regardless of all the tested fuels and loads, 

a larger quantity of the diesel engine noise in terms of the overall dB(A) level was observed 

in the frequency range of 500 Hz to 500 kHz, which is considered as a critical range for the 

combustion excitation forces. Moreover, the overall dB(A) is very low at a low frequency 

range of less than 500 Hz. The same trend was observed by Giakoumis et al. [103]. 

5.4. Polynomial Regression Model 

The regression models in this study are generated using experimental data. This ap-

proach is anticipated to yield mathematical correlations between variables (engine speed) 

and responses emissions (UHC, CO2, CO, and NOx), brake thermal efficiency, and noise. 

As a consequence, regression is utilized to define the relationship between the factors and 

the response. After that, the GWO approach is used to optimize the response using the 

generated regression equations, as described in Equation (5). 

To verify the accuracy of a polynomial regression model with different types of fuel, 

three metrics are used: the sum of square error (SSE), root mean square error (RMSE), and 

coefficient of determination (R2). In other words, R2 is a convenient 0–1 scale that reflects 

the strength of the relationship between the regression model and the dependent varia-

bles, as illustrated in Table 5. 



Sustainability 2022, 14, 1367 21 of 33 
 

Table 5. Statistical evaluation of the regression models. 

Experiment Fuel Type SSE RMSE R2 

UHC 

Diesel 8.45 × 10−4 8.40 × 10−3 9.92 × 10−1 

Palm Biodiesel 2.38 × 10−3 1.22 × 10−2 9.88 × 10−1 

Sunflower Biodiesel 2.57 × 10−3 1.29 × 10−2 9.87 × 10−1 

Corn Biodiesel 4.21 × 10−4 6.10 × 10−3 9.93 × 10−1 

CO2 

Diesel 4.55 × 10−3 4.77 × 10−2 9.87 × 10−1 

Palm Biodiesel 6.82 × 10−3 1.85 × 10−2 9.86 × 10−1 

Sunflower Biodiesel 1.25 × 10−3 2.50 × 10−2 9.74 × 10−1 

Corn Biodiesel 5.47 × 10−3 1.35 × 10−2 9.63 × 10−1 

CO 

Diesel 5.28 × 10−4 2.24 × 10−2 9.82 × 10−1 

Palm Biodiesel 4.97 × 10−4 1.58 × 10−2 9.82 × 10−1 

Sunflower Biodiesel 1.89 × 10−3 3.08 × 10−2 9.68 × 10−1 

Corn Biodiesel 2.24 × 10−3 2.73 × 10−2 9.63 × 10−1 

NOx 

Diesel 4.55 × 10−3 1.18 × 10−2 9.88 × 10−1 

Palm Biodiesel 6.82 × 10−3 1.39 × 10−2 9.86 × 10−1 

Sunflower Biodiesel 1.25 × 10−3 1.25 × 10−2 9.88 × 10−1 

Corn Biodiesel 5.47 × 10−3 1.21 × 10−2 9.88 × 10−1 

BTE 

Diesel 1.31 × 10−3 2.67 × 10−2 9.74 × 10−1 

Palm Biodiesel 2.36 × 10−3 3.31 × 10−2 9.68 × 10−1 

Sunflower Biodiesel 1.37 × 10−3 2.34 × 10−2 9.77 × 10−1 

Corn Biodiesel 3.64 × 10−3 2.54 × 10−2 9.75 × 10−1 

Noise 

Diesel 6.29 × 10−4 6.50 × 10−3 9.90 × 10−1 

Palm Biodiesel 4.39 × 10−4 5.80 × 10−3 9.93 × 10−1 

Sunflower Biodiesel 3.80 × 10−5 3.70 × 10−3 9.95 × 10−1 

Corn Biodiesel 7.17 × 10−4 9.60 × 10−3 9.88 × 10−1 

According to the preceding Table 5, the average RMSE values for modeling exhaust 

emissions, brake thermal efficiency, and noise were 0.01883, 0.02715, and 0.0064, respec-

tively, while the coefficients of determination (R2) were 0.9815, 0.9736, and 0.9917 for mod-

eling exhaust emission, brake thermal efficiency, and noise, respectively. 

The graphical representation is necessary for assessing the regression model. As a 

result, the models’ forecast accuracies were highlighted by graphing the models’ predic-

tions against their associated targets, as illustrated in Figures 12 and 13. Figure 12a–d 

shows the regression model prediction precision for exhaust emissions. While Figure 

13a,b display the regression model prediction precision for noise and brake thermal effi-

ciency respectively. This shows that the regression models accurately match the provided 

observations. 
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Figure 12. Regression model prediction precision for exhaust emissions. 
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. 

Figure 13. Regression model prediction precision for (a) noise and (b) brake thermal efficiency. 

5.5. Grey Wolf Optimization (GWO) 

The tests were carried out on an Intel Core I7-8th generation processor with 16 GB of 

RAM running Windows 10 64-bit. GWO was utilized to optimize the regression model 

generated by Python. The third-order model for CO and CO2 emissions was derived using 

the following equations in order of polynomial regression: 

For CO emission (Equation (14)): 
22.4412 − 0.05158 A +  6.923321 B −  0.006261 AB − 7.713e−06 A2  −  0.9123 B2  −  6.657e−06 A2B 

+  0.00541 AB2  − 3.819e−10 A3  +  0.0006923 B3 
(14) 
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For CO2 emission (Equation (15)): 
17.4583 − 0.03489 A −  0.1479 B −  0.05978 AB + 4.753e−08 A2 − 2.894e−05 B2 + 1.057e−09 A2B

− 2.894e−05 AB2  − 1.057e−11 A3 − 1.643e−06 B3 
(15) 

The second-degree of polynomial regression was utilized to compute all the remain-

ing experiments. The NOx emission was estimated as the following equation (Equation 

(16)): 

213.6 +  44.58 𝐴 +  0.2280 𝐵 −  9.260 𝐴2  −  0.000032 𝐵2  +  0.00157 𝐴𝐵 (16) 

For UHC (Equation (17)): 

26.42 −  4.132 𝐴 +  0.00097 𝐵 +  0.682 𝐴2  −  0.000003 𝐵2  +  0.000106 𝐴𝐵 (17) 

For brake thermal efficiency (Equation (18)): 

−1.57 −  2.134 𝐴 +  0.02456 𝐵 +  0.4394 𝐴2 −  0.000006 𝐵2  −  0.000105 𝐴𝐵 (18) 

For Noise (Equation (19)): 

73.93 −  5.089 𝐴 +  0.00492 𝐵 +  0.9575 𝐴2  +  0.000000 𝐵2  

+  0.000097 𝐴𝐵 
(19) 

Analysis of variance (ANOVA) was also used to evaluate the model’s relevance. Ta-

ble 6 displays the ANOVA findings at the 95% confidence level. The significance of the 

calculated regression models in Equations (14)–(19) is determined by the ANOVA results. 

According to these results, the null hypothesis is rejected if the p-value is less than 0.05, 

indicating that the regression model is significant and acceptable for optimization. 

The contour plots are utilized to visualize the search spaces of the optimization pro-

cess for the combinations of the factors and responses, as depicted in Figure 14. 

Table 6. The regression models’ ANOVA results. 

Response Df f-Value p-Value 

UHC 2 21.79 <0.0001 

CO2 3 21.50 <0.008 

CO 3 34.56 <0.001 

NOx 2 597.56 <0.0001 

BTE 2 34.86 <0.0006 

Noise 2 80.79 <0.0001 
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Figure 14. Contour plots are being used to visualize search spaces during the optimization pro-

cess. 

Table 7 indicates the optimal value (minimization of emissions and noise with a max-

imum of brake thermal efficiency) for each fuel type for a given engine speed. According 

to the results, the lowest CO emission was 0.1135% when using sunflower biodiesel at 

engine speed 1787 rpm. In terms of CO2 emissions, the lowest was 1.6353% at engine speed 

1576 rpm when palm biodiesel was utilized. When using corn biodiesel at 1200 rpm en-

gine rpm, the lowest NOx emission was 492 ppm. At engine speeds of 1200 rpm, palm 

and corn oil biodiesels produced the lowest UHC emission, which was 7 ppm. The palm 

biodiesel produced the least noise and the highest brake thermal efficiency, which are 73 

dB(A) at engine speed 1200 rpm and 20.3107% at engine speed 2183 rpm, respectively. 
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Table 7. Optimization results for each response separately with respect to the fuel type.

Experiment Fuel Type Engine Speed Optimum Value 

UHC (PPM) 

Diesel 2400 9 

Palm Biodiesel 2400 7 

Sunflower Biodiesel 2400 8 

Corn Biodiesel 2400 7 

CO2 (%) 

Diesel 1367 3.92 

Palm Biodiesel 1576 1.64 

Sunflower Biodiesel 1373 1.82 

Corn Biodiesel 1342 1.95 

CO (%) 

Diesel 1407 0.22 

Palm Biodiesel 1765 0.12 

Sunflower Biodiesel 1787 0.11 

Corn Biodiesel 1762 0.14 

NOx (PPM) 

Diesel 1200 489 

Palm Biodiesel 1200 508 

Sunflower Biodiesel 1200 495 

Corn Biodiesel 1200 492 

BTE 

(%) 

Diesel 2183 20.31 

Palm Biodiesel 1937 19.10 

Sunflower Biodiesel 1631 19.89 

Corn Biodiesel 1988 20.02 

Noise level 

dB(A) 

Diesel 1200 75.9 

Palm Biodiesel 1200 73 

Sunflower Biodiesel 1200 74.4 

Corn Biodiesel 1200 74.8 

Table 8 presents weights for the responses that are used in the optimization process 

to find the optimum value (performance, emission, and noise) for each type of fuel. Be-

cause the engine efficiency is a critical and important metric, it was given the greatest 

weight of 0.3. Next, the most dangerous exhaust gases from diesel engines (NOx and CO) 

were given the weight of 0.2, and, finally, other emissions (HC and noise) received the 

lowest weight of 0.1. 

Table 8. Weights for the responses used in optimization. 

Response Weight Target 

UHC 0.1 Minimize 

CO2 0.1 Minimize 

CO 0.2 Minimize 

NOx 0.2 Minimize 

BTE 0.3 Maximize 

Noise 0.1 Minimize 

Table 9 shows the optimum engine speed for various fuel types in order to reduce 

emissions and noise while maximizing thermal efficiency. The diesel has the second great-

est thermal efficiency of 19.7993% at an engine speed of 1862 rpm. In comparison to the 

other fuel types, diesel has the greatest engine noise and the highest exhaust emission 

levels. At an engine speed of 1612 rpm, sunflower oil has the maximum thermal efficiency 

and the lowest NOx emissions. Palm biodiesel produced the lowest UHC, CO, and CO2 

emissions and noise at engine speed 1743 rpm. 
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Table 9. Summary of optimization results for all exhaust emissions, engine performance, and noise 

for each fuel type. 

Experimental Fuel Type 
Engine 

Speed (rpm) 

CO 

(%) 

CO2 

(%) 

NOx 

(ppm) 

UHC 

(ppm) 

BTE 

(%) 

Noise 

dB(A) 

Optimum 

Values 

Diesel 1862 0.26 5.69 555.14 15.02 1.98 79.14 

Palm 1743 0.13 2.01 577.00 11.48 1.87 76.24 

Sunflower 1612 0.15 2.32 546.00 17.84 1.99 76.51 

Corn 1867 0.16 2.50 563.00 13.09 1.94 78.86 

Table 10 summarizes the percentage reduction in exhaust and noise emission and 

improvement in BTE for biodiesel fuel after the applied optimization process compared 

to pure diesel fuel at the optimum engine speed. According to the data obtained after 

applying the optimization process, the optimum engine speed for each type of biodiesel 

fuel is reduced by 6.39% and 13.43% for palm and sunflower biodiesel, respectively, and 

an increased by 0.27% for corn biodiesel when compared to pure diesel, as shown in Ta-

bles 9 and 10. When compared to pure diesel, palm biodiesel shows the highest reduction 

in CO, CO2, UHC, and noise by 49.46%, 64.7%, 23.61%, and 3.66%, respectively. Sunflower 

has the highest NOx reduction of 1.65% and the highest BTE improvement of 0.35%. Corn 

biodiesel shows the lowest reduction of CO and CO2 compared to other biodiesel fuels 

used by 37.79% and 56.09%, respectively. Palm and corn biodiesel fuel show an increase 

in NOx by 3.94% and 1.42%, respectively. 

Table 10. Exhaust emission, engine noise, and performance improvement after applied optimiza-

tion process compared to pure diesel fuel at optimum engine speed. 

Fuel Type Engine Speed CO CO2 NOx UHC BTE Noise 

Palm Bio-

diesel 

▼ 
−6.39% 

▼ 
−49.46% 

▼ 
−64.70% 

▲ 
3.94% 

▼ 
−23.61% 

▼ 
−5.56% 

▼ 
−48.63% 

Sunflower 

Biodiesel 

▼ 
−13.43% 

▼ 
−41.29% 

▼ 
−59.25% 

▼ 
−1.65% 

▲ 
18.76% 

▲ 
0.35% 

▼ 
−45.34% 

Corn Bio-

diesel 

▲ 
0.27% 

▼ 
−37.79% 

▼ 
−56.09% 

▲  
1.42% 

▼ 
−12.90% 

▼ 
−2.08% 

▼ 
−6.16% 

6. Conclusions 

The effects of several biodiesel blends, such as corn, sunflower, and palm biodiesel, 

on the engine exhaust and noise emissions of a compression ignition engine were investi-

gated experimentally. The emissions of CO, CO2, NOx, UHC, and noise were minimized 

and the BTE was maximized using a combination of polynomial regression (PR) model 

with GWO through the computing of the optimum input variables in terms of engine 

speed and biodiesel fuel types. The following are the most important outcomes based on 

the experimental observations and modeling optimization findings: (i) palm biodiesel had 

the highest reduction of CO, CO2, UHC, and noise by 49.46%, 64.7%, 23.61%, and 48.63%, 

respectively, when compared to the optimum values of pure diesel; (ii) according to the 

optimization results, the sunflower oil had the highest BTE and the lowest NOx emissions 

at the engine speed of 1612 rpm. Palm biodiesel generated the lowest UHC, CO, and CO2 

emissions, as well as the least noise, at an engine speed of 1743 rpm; (iii) for all the tested 

fuels, the variations among the SPL values were very low at low-frequency range, and 

they became noticeable at high-frequency ranges; (iv) the regression model and GWO al-

gorithm showed good agreement with realistic experiment results. Furthermore, GWO 

provided an optimized value with improved exploration capabilities and a reasonable 

computation time; (iv) regression modeling enabled us to formulate an empirical relation-

ship, allowing the construction of mathematical models that allowed us to use the GWO 

method to address the optimization/minimization problem target. The objective of opti-
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mization was to reduce exhaust emissions and noise while increasing brake thermal effi-

ciency; (v) finally, when the results of the integrated polynomial regression model with 

the minimization/maximization of the target using the GWO strategy were compared to 

the experimental data, it is obvious that the prediction errors are frequently less than 1%. 

Particulate matter (PM) is one of the principal pollutants produced by diesel engines, 

and it has a negative influence on human health. As a result, future research will focus on 

the optimization of different types of biodiesel blends for simultaneous control of PM and 

NOx emissions in diesel engines, which will be thoroughly examined in various condi-

tions and strategies utilized to restrict PM emissions. 
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Nomenclatures 

a encircling coefficient LS least-squares 

A⃗⃗ , C⃗  coefficient vectors N rotation engine speed 

ABDC after bottom dead center n polynomial degree 

ANN artificial neural network NaOH sodium hydroxide 

ANOV

A 
analysis of variance NOx nitrogen oxides 

ATDC after top dead center OPME olive pomace oil methyl esters 

BBD 
Box–Behnken approach 

design 
Prms 

root mean square value of the pres-

sure 

BBDC before bottom dead center PM particulate matter 

BP brake power PME palm oil methyl esters 

BSFC 
brake specific fuel consump-

tion 
PPC partially premixed combustion 

BT brake torque PR polynomial regression 

BTDC before top dead center PSO particle swarm optimization 

BTE brake thermal efficiency Pref reference pressure value of 20 μPa 

CA crank angle P(t) pressure value at a specific time t 

CH3Na

O 
sodium methoxide P2(t) time averaged pressure over T 

CH3OH methanol r1, r2 random vectors 

CI compression ignition R correlation coefficient 

CO carbon monoxide R2 coefficient of determination 

CO2 carbon dioxide RMS root mean square 

d fuel type RMSE root mean square error 

DC direct current rpm revolution per minute 

Df degree of freedom RSM response surface methodology 

D wolf’s position SL sound level 

E exhaust emission SPL sound pressure level 



Sustainability 2022, 14, 1367 29 of 33 
 

EGR exhaust gas recirculation SSE sum of square error 

FFT fast Fourier transform SVM support-vector machines 

f global best position T total interval of time 

GA genetic algorithm t current iteration 

GWO grey wolf optimization TiO2 titanium oxide 

HC hydrocarbon Tmax total number of iterations 

I intensity UHC unburned hydrocarbon 

I0 
reference intensity equal 10−12 

W/m2 @ frequency of 1000 Hz 
x independent variable 

IDI indirect injection X⃗⃗  vector position of the grey wolf 

j current grey wolves’ number X⃗⃗ P vector prey position 

k iteration number Y dependent variable 

LCA life cycle assessment α, β and Δ three temporarily optimal solutions 

LP 
levels of the sound pressure in 

dB 
𝛽 regression coefficients 
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