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Abstract: In this paper, we suggest a new case-based reasoning method for stock price predictions
using the knowledge of traders to select similar past patterns among nearest neighbors obtained
from a traditional case-based reasoning machine. Thus, this method overcomes the limitation of
conventional case-based reasoning, which does not consider how to retrieve similar neighbors
from previous patterns in terms of a graphical pattern. In this paper, we show how the proposed
method can be used when traders find similar time series patterns among nearest cases. For this, we
suggest an interactive prediction system where traders can select similar patterns with individual
knowledge among automatically recommended neighbors by case-based reasoning. In this paper,
we demonstrate how traders can use their knowledge to select similar patterns using a graphical
interface, serving as an exemplar for the target. These concepts are investigated against the backdrop
of a practical application involving the prediction of three individual stock prices, i.e., Zoom, Airbnb,
and Twitter, as well as the prediction of the Dow Jones Industrial Average (DJIA). The verification of
the prediction results is compared with a random walk model based on the RMSE and Hit ratio. The
results show that the proposed technique is more effective than the random walk model but it does
not statistically surpass the random walk model.

Keywords: artificial intelligence; case-based reasoning; data mining; financial prediction; knowledge
discovery; learning techniques

1. Introduction

A case-based reasoning (CBR) technique is one of the popular methodologies in
knowledge-based systems and uses past similar problems to solve current new prob-
lems [1,2]. Many data mining methods such as regression, ARIMA (autoregressive inte-
grated moving average), k-NN (K-nearest neighbor), and SVM (support vector machine)
have been applied to stock price predictions. Recently, deep learning techniques such
as LSTM and RNN have also been extensively applied to the task of predicting financial
variables [3,4]. However, there is a paucity of research on stock prediction using k-NN or
CBR techniques [2].

In this paper, we suggest a new case-based reasoning method for stock price pre-
dictions using the knowledge of traders to select similar past patterns among nearest
neighbors from a traditional case-based reasoning machine. Thus, this method overcomes
the limitation of a conventional case-based reasoning method, which does not consider how
to retrieve similar neighbors from previous patterns in terms of a graphical pattern. In this
paper, we show how the proposed method can be used when traders find similar time series
patterns among nearest cases. We develop a distance measurement for retrieving neigh-
bors from that of Chun and Ko [2]. For this, we suggest an interactive prediction system
where traders can choose specific time series patterns among automatically recommended
neighbors by case-based reasoning with their individual knowledge.
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In this paper, we present how the knowledge of traders can select similar patterns
using a graphical interface, serving as an exemplar for the target. These concepts are
investigated against the backdrop of a practical application involving the prediction of
three individual stock prices, i.e., Zoom, Airbnb, and Twitter, as well as the Dow Jones
Industrial Average (DJIA). The verification of the prediction results is compared with the
random walk model based on the RMSE and Hit ratio.

The rest of this paper is organized into four sections. Section 2 reviews CBR as a
knowledge discovery technique and Section 3 introduces the proposed technique, which is
called interactive CBR. Section 4 presents the case study and discusses the results of the
study. Finally, the concluding remarks are presented in Section 5.

2. Case-Based Reasoning and a New Trend Pattern-Matching Method
2.1. Case-Based Reasoning in the Financial Area

Case-based reasoning (CBR) is one of the knowledge-based systems that use past
similar problems to solve current new problems. According to Aamodt and Plaza [5],
a general CBR cycle is described by the following four processes: it solves a problem
by retrieving one or more previous cases, it reuses them to solve the problem, it revises
the potential solution based on the previous cases, and it retains the new experience by
incorporating it into the existing case base [3]. Figure 1 presents the CBR process using the
Euclidean distance method.Sustainability 2019, 11, x FOR PEER REVIEW 2 of 15 
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Figure 1. CBR process using Euclidean distance method.

CBR has been intensively exploited for financial problem domains such as the predic-
tion of the stock market [6–12], the prediction of corporate bond rating [13–15], business fail-
ure predictions [16–21], financial distress predictions [22,23], bankruptcy predictions [24–27],
and other areas such as medical areas [28–36], recommendation systems [37–39], and cyber-
security [40,41].

One of the issues of using conventional CBR is how to find optimal neighbors and
how to schedule the size of the target data in a time series. Chun and Park [9] suggested
a model to dynamically find the optimal neighbors for each target case. Chun and Ko [2]
proposed a new similarity measure, termed a shape distance, which compared how rise
and fall signs between a target case and possible neighbors were similar to each other.

2.2. Interactive Case-Based Reasoning and the Time Series Pattern-Matching Method

In this paper, we propose a user interactive selection method that selects nearest
neighbors according to a comparison of graphical patterns with target cases. In financial
forecasting problems, the Hit ratio in stock prediction may be an important decision tool to
invest money on the stock market. We developed a distance measurement for retrieving
neighbors from that of Chun and Ko [2].

Several machine learning algorithms such as deep learning consume too many com-
puting resources to be used at the web front-end. It is also impossible to filter the dataset
that the user requires because the results that have been preprocessed at the back-end
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are fetched. Interactive CBR can select similar graphical patterns among neighbors that a
traditional CBR machine recommends. Time series data may be characterized by patterns
of behavior in terms of the volatility of rises and falls with trading volumes. Thus, selecting
neighbors with similar price trends may be compared to assess the similarity between
automatically recommended neighbors and the target case. Figure 2 shows a configuration
diagram of the interactive CBR system and presents the procedure of selecting nearest
neighbors using interactive CBR. The procedure to reselect the nearest neighbors using
traditional CBR is as follows. The server crawls the stock data and collects data from
websites such as Yahoo Finance and other financial information intermediaries. When a
user accesses the server through the client, the server sends the stock price data that have
not been processed separately to the client. To implement a CBR machine, the user sets
a few CBR-related options such as the learning period, number of neighbors, and size of
the time series (window size). The data are then processed in the client and displayed to
the user; the user then reviews the corresponding neighbors that the CBR machine has
recommended. The user selects similar patterns compared with the target patterns and
obtains the predicted value using the reselected neighbors.
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Figure 3 shows how users can reselect similar patterns among neighbors that the CBR
machine has recommended. For example, an interactive CBR model with four neighbors
and thirty window size retrieves nearest neighbors for the stock price prediction from
Zoom technologies.
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Figure 3 shows four neighbors that the CBR machine has recommended. The first two
neighbors are somewhat different from the target case whereas the last two neighbors look
similar to the target case. Thus, interactive CBR finally chooses the last two cases as nearest
neighbors for the stock price prediction.

The interactive CBR system has the advantage that many users can retrieve the pro-
cessing results with only a small amount of server computation required because the actual
calculation is performed at the front-end client even if many users access the server. In
addition, if the user has sufficient computing power, the CBR machine can send the predic-
tion result within a shorter time than the network communication time. Thus, a user can
receive the results of a CBR machine by changing the models.

3. Application to Stock Price Prediction
3.1. The Data

This case study intended to investigate the effect of the proposed technique on the
predictive performance in forecasting a stock market. The case study involved the predic-
tion of three individual stocks, i.e., Zoom technologies, Airbnb, and Twitter, as well as the
Dow Jones Industrial Average (DJIA). For the two individual stock price predictions of
Zoom and Twitter, the learning phase consisted of 464 observations from 1 January 2020 to
2 November 2021 and the testing phase consisted of 19 observations from 3 November 2021
to 30 November 2021. For Airbnb, the learning phase consisted of 225 observations from
11 December 2022 to 2 November 2021 and the testing phase consisted of 19 observations
from 3 November 2021 to 30 November 2021. For the Dow Jones Industrial Average (DJIA)
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prediction, the learning phase consisted of 2496 observations from 1 January 2015 to 2
November 2021 and the testing phase consisted of 19 observations from 3 November 2021
to 30 November 2021.

The raw variables for these three stock prices and the DJIA prediction were as follows.
Opening Value (Open): The value of the Zoom, Airbnb, and Twitter stock prices and

the DJIA at the beginning of the trading day.
Daily High (High): The highest value of Zoom, Airbnb, Twitter, and DJIA.
Daily Low (Low): The lowest value of Zoom, Airbnb, Twitter, and DJIA.
Daily Close (Close): The closing value of Zoom, Airbnb, Twitter, and DJIA.

3.2. Model Construction

Exploratory plots for the raw data series of the three individual stock prices and the
Dow Jones Industrial Average (DJIA) are shown in Figures 4–7.
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4. Results of the Study and Discussion 

Figure 7. History of the weekly Dow Jones Industrial Average (DJIA) from 3 January 2015 to 30
November 2021 (sourced from finance.yahoo.com; accessed on 21 January 2022).

In constructing the predictive model for the three individual stock prices and the Dow
Jones Industrial Average, the input variables were first transformed. For financial variables,
stationarity can often be obtained through a logarithmic and differencing operation [10].
Thus, a differencing procedure was performed. For example, the Opening Value at t time
(Opent) could be transformed to be dlOpent (lOpent − lOpent−1) through a logarithmic
and differencing procedure. Other input variables such as Hight, Lowt, and Closet were
also transformed to be dlHight, dlLowt, and dlCloset, as shown in Figure 8. These variables
could then be used for the prediction engine of interactive CBR to produce a predicted
value of dlCloset. Finally, a predicted value of the closing price at t + 1 (pCloset+1) was
obtained from a de-transforming procedure by adding the predicted value of dCloset to the
previous actual closing price at t (Closet). Figure 8 presents an overview of preprocessing
and postprocessing for producing a prediction value by interactive CBR.

finance.yahoo.com
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4. Results of the Study and Discussion

The performance results among the predictive models (such as the random walk (RW)
method (for much of this century, the random walk model of stock prices has served as
a pillar of accepted wisdom in financial economics. One implication of the random walk
model is that obvious patterns in the economy are already incorporated in the valuation
of stock prices and financial markets. This is the rationale behind the technical analysis
in forecasting stock prices based solely on variables pertaining to the market itself) and
interactive CBR (ICBR)) using a selection method of neighbors are presented in Tables 1–4.
The CBR model performance was evaluated using the RMSE and HR (Hit ratio).

Table 1 summarizes the RMSE result when the data were not preprocessed; therefore,
these raw data were used for the CBR prediction. It showed that CBR with raw data did
not produce an improved performance compared with the RW in any combination of
the models.

Table 2 summarizes the RMSE result after the data were preprocessed. It showed
that CBR with preprocessed data had enhanced performance models compared with the
RW and the model had the best performance when the number of neighbors was two and
window size was sixty.

Figure 9 shows the results using a heat map graph. To compare the difference in
predictive power between the preprocessed data and the non-preprocessed data, prepro-
cessing was performed with a log and differencing. In the case of the CBR results of the
data without preprocessing, none had a superior predictive power to the RW whereas the
results of preprocessing showed enhanced predictive power compared with the RW in a
specific section.

Table 1. Root mean squared error (RMSE) * of the non-preprocessing data for Zoom (N denotes the
number of neighbors and W denotes the time series size of the data). The RMSE of the RW model
was 10.777.

N
W 2 3 5 8 10 20

1 13.966 14.493 13.912 13.705 13.010 14.038

2 15.256 14.840 13.603 13.405 13.892 15.214

5 16.673 16.164 17.026 17.975 18.432 20.264

10 16.685 18.033 18.130 19.634 20.620 22.771

20 15.624 17.047 20.201 22.008 23.150 24.196

30 12.738 14.386 17.516 19.498 20.867 22.968

60 12.650 14.395 17.508 20.121 21.052 34.465

90 12.732 14.413 17.535 20.137 21.062 27.270

120 12.712 14.411 17.535 20.127 20.053 27.433
* The RMSE is a commonly used statistical measure of goodness of fit in quantitative forecasting methods because
it produces a measure of relative overall fit. The root mean squared error (RMSE) is calculated by averaging the

squared difference between the fitted (forecast) line and the original data. The RMSE is defined as ∑(yt− ft)
2

n where
y represents the original series, f the forecast, and n the number of observations.
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Table 2. Root mean squared error (RMSE) * of the models after data preprocessing for the stock price
prediction of Zoom technologies. The RMSE of the RW model was 10.777.

N
W 2 3 5 8 10 20

1 13.120 12.725 12.075 10.979 10.943 10.532

2 11.831 12.061 11.182 10.557 10.684 10.817

5 11.835 11.431 11.858 11.800 11.942 11.654

10 11.580 11.060 10.776 11.254 11.270 11.558

20 11.928 11.678 11.387 10.850 10.973 11.198

30 15.879 15.682 13.188 12.437 12.283 11.052

60 8.693 9.887 10.554 10.747 11.014 10.563

90 13.627 13.531 11.819 11.309 10.946 10.281

120 13.786 12.604 11.496 11.179 10.989 10.522
* The RMSE is a commonly used statistical measure of goodness of fit in quantitative forecasting methods because
it produces a measure of relative overall fit. The root mean squared error (RMSE) is calculated by averaging the

squared difference between the fitted (forecast) line and the original data. The RMSE is defined as ∑(yt− ft)
2

n where
y represents the original series, f the forecast, and n the number of observations.

Table 3. Root mean squared error (RMSE) of the models with preprocessed data for the stock price
prediction of Airbnb. The RMSE of the RW model was 8.418.

N
W 2 3 5 8 10 20

1 7.939 8.393 7.979 7.797 8.025 8.271

2 7.795 7.971 8.303 8.777 8.606 8.624

5 8.491 8.989 8.440 8.673 8.854 8.784

10 8.419 8.775 9.225 8.642 8.686 8.336

20 9.912 8.688 8.492 8.637 8.435 8.348

30 7.169 8.311 7.962 8.549 8.643 8.741

60 9.169 9.344 8.418 8.527 8.722 8.514

90 9.038 9.160 8.618 8.649 8.842 8.915

120 9.379 9.463 10.141 9.291 9.358 8.782

Table 4. Root mean squared error (RMSE) of the models with the preprocessed data for the stock
price prediction of Twitter. The RMSE of the RW model was 0.987.

N
W 2 3 5 8 10 20

1 1.365 1.283 1.335 1.151 1.205 1.104

2 1.553 1.391 1.318 1.250 1.175 1.031

5 1.250 1.189 1.089 1.042 1.054 1.059

10 1.247 1.143 1.001 1.000 1.011 0.994

20 1.318 1.334 1.231 1.124 1.090 1.117

30 1.808 1.658 1.200 1.062 0.998 1.072

60 1.375 1.327 1.080 1.093 1.059 0.907

90 1.631 1.377 1.271 1.094 1.057 0.977

120 1.724 1.286 1.254 0.992 0.949 0.878
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Figure 9. Heat map comparison of the performances of the models between the raw data and the
preprocessed data.

Table 3 summarizes the RMSE results for the stock price prediction of Airbnb with the
preprocessed data. It showed that CBR with preprocessed data had enhanced performance
models compared with the RW and the model had the best performance when the number
of neighbors was two and window size was thirty. Figure 10 shows these results using a
heat map graph.
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Figure 10. Heat map comparison of the performances of the models between the raw data and the
preprocessed data for the stock price prediction of Airbnb.

Table 4 summarizes the RMSE results for the stock price prediction of Twitter with
the preprocessed data. It showed that CBR with the preprocessed data had enhanced
performance models compared with the RW, and the model had the best performance
when the number of neighbors was twenty and window size was one hundred twenty.
Figure 11 shows these results using a heat map graph.

Table 5 summarizes the RMSE results for the Dow Jones Industrial Average (DJIA)
prediction with the preprocessed data. It showed that CBR with the preprocessed data
had enhanced performance models compared with the RW and the model had the best
performance when the number of neighbors was ten and window size was five. Figure 12
shows these results using a heat map graph.
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Table 5. Root mean squared error (RMSE) of the models with the preprocessed data for the Dow
Jones Industrial Average Index prediction. The RMSE of the RW model was 295.08.

N
W 2 3 5 8 10 20

1 297.89 301.82 293.62 299.39 303.13 314.98

2 324.27 324.40 312.63 299.96 312.45 304.34

5 348.96 309.02 280.81 270.93 258.90 267.69

10 350.70 290.81 277.56 276.16 275.89 283.55

20 331.45 320.51 287.70 320.23 312.07 301.83

30 348.98 344.01 331.66 316.19 305.89 295.60

60 330.73 339.59 327.74 313.10 313.20 312.10

120 337.48 324.87 309.41 326.41 321.95 325.69
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Figures 9–12 show several interesting results. In the case of Airbnb and Zoom, the
predictive performances were superior to the RW in the small number of neighbors, whereas
in the case of Twitter, the predictive power was notable when the number of neighbors
was larger. In general, superior models with a low RMSE were seen when the window
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sizes were 5, 10, 30, 60, and 120. The window size also seemed to be a factor of greater
importance than the number of neighbors in the Dow Jones Industrial Average prediction.

Table 6 presents the results of the RMSE and the t-test for the difference in performance
of the RW and CBR methods. The CBR models seemed to surpass the RW model. However,
the CBR models did not exhibit a statistically significant performance difference in terms of
the RMSE.

Table 6. Root mean squared error (RMSE) and pairwise * t-tests for the best models.

Models
Cases Best Models ** RW vs. CBR t-Value *

(p-Value) Decision

Zoom W (60) N (2) 10.777 vs. 8.693 0.5867 (0.2806) Accept HO

Airbnb W (30) N (2) 8.418 vs. 7.169 0.5801 (0.2828) Accept HO

Twitter W (120) N (20) 0.987 vs. 0.876 0.7719 (0.2227) Accept HO

DJI W (5) N (10) 295 vs. 256 0.3820 (0.3524) Accept HO
* Pairwise t-tests of the predictive models for the test phase. The comparison was based on the root mean squared
error (RMSE) of the residuals. ** W denotes the size of the time series period for a neighbor and N denotes the
number of neighbors.

Figures 13–16 show heat maps for the Hit rates, the proportion of correct forecasts for
the prediction of the three stock prices and the Dow Jones Industrial Average (DJIA) in the
test data. The Hit rates showed how effectively CBR predicted the direction of the price
changes for the closing prices of these three stocks and the Dow Jones Industrial Average
Index. The areas colored in yellow indicate the models where CBR had a superior perfor-
mance to the RW. For the Hit ratio prediction, many models showed superior results to the
RW model regardless of the window size and number of neighbors. Figures 13, 15 and 16
(Zoom and Twitter stock prices as well as the Dow Jones Industrial Average prediction, re-
spectively) show that the CBR models outperformed the RW but that the RW outperformed
the CBR models when compared with the Airbnb model in Figure 15. Compared with the
Airbnb models, the predictive performances of the models for Zoom, Twitter, and the Dow
Jones Industrial Average prediction outperformed the RW model in many combinations of
window size and number of neighbors. The predictive power of the Airbnb model seemed
to be relatively low due to the lack of training data, which was due to it being only recently
listed on the stock market exchange.
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Table 7 summarizes the Hit rates and the proportion of correct forecasts for the best
models shown in Table 6. The Hit rates showed how effectively CBR predicted the direction
of the price changes for the closing prices. Figures 13–16 show that several models had
clearly highlighted results. For a consistent comparison, we tested the Hit ratio of the
best models in Table 6 that showed the best RMSE performances. Table 7 indicates that
CBR seemed to be more effective than the RW model in the Hit ratio. We tested the null
hypothesis, Ho; however, the proposed CBR did not produce a statistically improved
performance at a level of p < 0.1.
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Table 7. Hit rate among the best forecasting models for the test phase and pairwise z-tests* for the
best model.

Models
Cases CBR Model RW vs. CBR z-Value *

(p-Value) Decision

Zoom W (60) N (2) 76.5 vs. 77.8% 0.0888 Accept HO

Airbnb W (30) N (2) 47.1 vs. 61.1% 0.8662 Accept HO

Twitter W (120) N (20) 64.7 vs. 83.3% 1.2351 Accept HO

DJI W (5) N (10) 47.1 vs. 50.0% 0.5508 Accept HO
* A z-test for the differences in two proportions was used to determine whether there was a difference between two
population proportions, which was defined as Z ∼= (p1−p2)−(π1−π2)√

p(1−p)
(

1
n1

+ 1
n2

) where pi are the sample proportions, πi are

the population proportions, ni are the sample sizes for the groups, and p is a pooled estimate of the proportion of
success in a sample of both groups, p = (n1 p1 + n2 p2)/(n1 + n2).

Generally speaking, the performance of CBR was superior to the RW but the difference
was not statistically significant. The reason we did not obtain a statistically significant
result seemed to be because the period of the training data and the period of the test data
were not sufficient due to one company being only recently listed on the stock exchange.
For the DJIA prediction, the period of the training data, which started from January 2015,
was longer than the data of the other three stock prices but the test period was the same as
the data of the other three stock prices. Although the predictive power was greater than
that of the RW, the statistically verifiable data size was small and thus did not produce a
significant result.

5. Concluding Remarks and Future Work

In this paper, we proposed interactive CBR for selecting similar patterns among
neighbors that case-based reasoning recommended. Concepts were investigated against
the backdrop of a practical application involving the prediction of the individual stock
prices of Zoom, Airbnb, and Twitter as well as the Dow Jones Industrial Average. The
results of the case study are summarized as follows:

• The best model of the proposed technique was more effective than the random
walk model.

• The proposed method did not surpass the random walk model without preprocessing,
whereas it outperformed the random walk model in terms of the RMSE and Hit ratio
after preprocessing (such as logarithms and differencing).

• In the case of Airbnb and Zoom, the predictive performances were superior to the
random walk model with a small number of neighbors, whereas in the case of Twitter,
the predictive power was notable when the number of neighbors was large.

• In general, superior models with lower RMSEs were seen when the window sizes
were 5, 10, 30, 60, and 120. The window size was a factor with a greater importance
than the number of neighbors in the Dow Jones Industrial Average prediction.

• For the Hit ratio prediction, many models showed superior results to the random walk
model regardless of the window size and number of neighbors. Compared with the
Airbnb models, the predictive performances of the models for Zoom and Twitter as
well as the Dow Jones Industrial Average prediction outperformed the random walk
model in many combinations of window size and number of neighbors.

• The proposed method was not seen to statistically surpass the random walk model
in terms of the RMSE and Hit ratio. The reason seemed to be that the statistically
verifiable data size was small due to one of the companies we tested only recently
being listed on the stock market exchange.

The proposed method, therefore, had the possibility to enhance predictability. Thus,
in future research, we propose the possibility of a two-step filtering method by selecting
similar patterns among neighbors that a CBR machine recommends. Interactive CBR can



Sustainability 2022, 14, 1366 14 of 15

also be implemented by the concept of an automatic filtering method without human
expert knowledge using selected similar patterns that would improve the predictability of
interactive CBR.
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