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Abstract: As the construction of the energy internet progresses, the proportion of residential electric-
ity consumption in end-use energy consumption is increasing, the peak load on the grid is growing
year on year, and seasonal and regional peak power supply tensions, mainly for residential elec-
tricity consumption, have become common problems across the country. Accurate residential load
forecasting can provide strong data support for the operation of electricity demand response and
the incentive setting of the response. For the accuracy and stability of residential electricity load
forecasting, a forecasting model is presented in this paper based on fuzzy cluster analysis (FC), least-
squares support vector machine (LSSVM), and a fireworks algorithm (FWA). First of all, to reduce
the redundancy of input data, it is necessary to reduce the dimension of data features. Then, FWA is
used to optimize the arguments γ and σ2 of LSSVM, where γ is the penalty factor and σ2 denotes the
kernel width. Finally, a load forecasting method of FC–FWA–LSSVM is developed. Relevant data
from Beijing, China, are selected for training tests to demonstrate the effectiveness of the proposed
model. The results show that the FC–FWA–LSSVM hybrid model proposed in this paper has high
accuracy in residential power load forecasting, and the model has good stability and versatility.

Keywords: load forecasting; fuzzy cluster analysis; fireworks algorithm; demand response; residential
electricity load; least-squares support vector machine

1. Introduction

With a rapidly growing economy, the massive consumption of non-renewable energy,
the deterioration of people’s living environment, and the energy crisis, how to improve
energy utilization and achieve the coordinated development of economy and energy
have become the focus of attention for countries around the globe. Reasonable electricity
dispatch is one of the favorable means to improve energy utilization. A reasonable forecast
of residential electricity load can help power suppliers formulate reasonable demand
response strategies, prompt residents to change their inherent electricity consumption
habits, reduce customers’ electricity costs, and achieve the purpose of peak and valley
reduction.

Over the years, the techniques and methods of load forecasting have been developed
continuously, and there are two main research methods: classical forecasting methods and
modern intelligent load forecasting methods. Classical load forecasting methods principally
include time series methods [1], regression analysis methods [2], gray theory methods [3],
etc. These methods are simple to calculate and more mature in theory, but all have certain
defects leading to less than ideal forecasting accuracy. Among them, the time series method
only analyzes the time factor as a variable, ignoring the influence of other external factors,
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so when the external environment changes significantly, its prediction results will produce
a large error [4]. Regression forecasting methods are sometimes speculative in the selection
of explanatory variables or the way in which the explanatory variables are expressed, which
affects the diversity of explanatory variables and the unpredictability of some explanatory
variables to a certain extent, resulting in the limitation of regression analysis methods in
predicting the load of distributed energy systems [5]. The gray prediction method has a
better fitting effect for the original data as a smooth discrete series, while the influencing
factors of residential electricity load are mostly discrete and subjective data, so the accuracy
of the prediction will be greatly reduced when the gray prediction method is used to study
such problems [6]. In summary, classical forecasting methods are not suitable for residential
electricity load forecasting research.

At the present stage, scholars have gradually applied intelligent algorithms to the
field of load prediction. Since intelligent algorithms such as artificial neural networks can
simulate the human brain mechanism, the prediction accuracy has been improved with
the help of their self-learning and self-seeking functions to simulate the changing pattern
of the predicted object and build a suitable model [7]. BPNN is a typical representative
of artificial neural network algorithms, and a previous study in the literature [8] took
full account of the weather factors and established a short-term load forecasting model
based on BPNN. Another study [9], on the other hand, proposed a load forecasting model
based on improvement differential evolution and wavelet neural network. Forecasting
by artificial neural network models can control the error in a small range; however, the
disadvantage of this algorithm is that it is slow to converge and tends to be bogged down
in local operations [10], so some scholars use SVM for load forecasting to prevent the
problems of neural network structure selection and local optimization. Studies by [11,12]
constructed load prediction models based on the SVM algorithm, respectively, and the
prediction accuracy was improved, compared with BP neural net model, but the support
vector machine algorithm is often not suitable when the amount of training data are too
large, and the effect is poor in dealing with multi-classification problems.

Therefore, some scholars have improved the SVM by proposing the least-squares
support vector machine (LSSVM), using kernel functions to transform the prediction
problem into solutions of equations and thereby transforming unequal constraints into
equation constraints. In addition to the significant improvement in the accuracy of load
forecasting, this method also increases the operation speed [13]. Thus, some researchers
sought to use LSSVM for load forecasting of other power systems, for example, one
study [14] proposed an LSSVM-based electricity load forecasting model and also used a
rolling mechanism to forecast the annual electricity consumption in China, and the results
showed that, in contrast with the single prediction model, this model has better prediction
performance [15]. Another study [16], on the other hand, applied the cuckoo algorithm to
optimize the LSSVM and applied the optimized LSSVM model for short-term electricity
load forecasting, which achieved more satisfactory forecasting results. Considering the
relatively satisfactory results achieved by LSSVM in these studies, it was decided to use
the LSSVM model for prediction in this paper. However, although the performance of the
LSSVM model is superior to the SVM model in the process of load forecasting, it continues
to be plagued by a blind selection of penalty coefficients and kernel arguments, and the
selection of appropriate penalty coefficients and kernel arguments is crucial to enhance
learning and generalize the capabilities of LSSVM, so suitable intelligent algorithms need
to be selected to optimize it. At present, the main intelligent algorithms used include
genetic algorithm [17], particle swarm algorithm [18], CS algorithm [19], bat algorithm [20],
etc. However, genetic algorithms suffer from premature maturity, being computationally
cumbersome, small processing scale, difficulty in dealing with nonlinear constraints, and
poor stability. The particle swarm algorithm, on the other hand, has low local search
accuracy and cannot fully meet the needs of the LSSVM model in the problem of parameter
optimization. The CS and bat algorithms cannot converge to the optimal point, so they are
susceptible to slip into local optimization, which leads to the reduction in load forecasting
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accuracy. For this reason, this paper proposes to use the fireworks algorithm to optimize
the arguments of LSSVM. The fireworks algorithm does not affect the performance of the
algorithm, to a large extent, due to small changes in the arguments, and arguments of the
method are selected with low difficulty; therefore, the fireworks algorithm has good global
convergence and high computational stability [21].

In addition, the residential electrical system is a complex system, with very many
influencing factors; when all impact conditions are given as input data to the forecasting
model, extensive redundant data will be generated in the process of operation, so it is
necessary to select the input index data [22]. Fuzzy clustering is a statistical method for
categorizing objective matters in accordance with specific demands and laws based on the
attribute characteristics between factors [23]. Considering that the load curves are basically
the same between dates with similar factors influencing the daily load of filling residential
electricity consumption, better prediction results can be achieved by using similar daily
load samples for prediction. Thus, this paper decided to use the fuzzy cluster analysis
method to process and analyze the influencing factors.

Therefore, this paper analyzes the influencing factors of residential electricity load
and constructs a residential electricity load forecasting model (FC–FWA–LSSVM) based on
fuzzy cluster analysis and the fireworks algorithm to optimize LSSVM. The arrangement of
the remaining parts of the paper is as follows: Section 2 describes the algorithms utilized
in this paper, including the fuzzy cue analysis, the LSSVM model, and the fireworks
algorithm, and constructs a complete forecasting framework. Section 3 selects practical
cases to investigate the accuracy and stability of the model proposed in this paper. In
Section 4, four typical scenarios are selected to validate the prediction results. In Section 5,
the research results of the article are summarized.

2. Contributions

The main contributions of this paper are as follows:

(1) Based on support vector machines, this paper proposes a method for short-term
load prediction, which effectively reduces the difficulty of prediction by least-squares
support vector machines while alleviating the possibility of overfitting and improving
the inductive ability of learners and prediction accuracy.

(2) This paper proposes a feature extraction method for data compression through fuzzy
cluster analysis and parameter optimization using the fireworks algorithm, which can
reduce the redundancy of data more effectively, further improve the prediction effect,
and reduce the difficulty of prediction, compared with traditional cluster analysis.

(3) Based on an empirical analysis of a residential neighborhood in China, this paper vali-
dates the effectiveness of the proposed method. Compared with traditional methods,
the proposed method in this paper can reduce RMSE to 2.32%, MAPE to 2.21%, and
AAE to 2.1%, which is suitable for high accuracy load prediction under large-scale
features.

3. Materials and Methods
3.1. Fuzzy Clustering Analysis

Fuzzy clustering is a statistical method for categorizing objective matters in accordance
with specific demands by establishing fuzzy similarity relationships based on different
characteristics, closeness, and similarity between them [24]. In this paper, we used the
fuzzy equivalence matrix dynamic cluster analysis method.

x = [x1, x2, . . . , xn] (1)

xj =
[
xj1, xj2, . . . , xjm

]T, (j = 1, 2, . . . , n) (2)

Let the set of n samples for the forecast date as shown in Equation (1) and each sample
xj has m characteristic indicators, i.e., the sample xj can be expressed as Equation (2).

The concrete steps of the cluster analysis are as follows:
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(1) Specification of data: Each characteristic indicator has a different scale and order
of magnitude and needs to be normalized. The following Equation (3) was used to
process the historical data:

x′jk = (xjk − xkmin/(xkmax − xkmin),
(j = 1, 2, · · · n; k = 1, 2, · · ·m)

(3)

where x′jk is the original datum; xkmin is the minimum value; xkmax is the maximum value
in x1k, x2k, . . . , xnk; xjk is the datum after specification.

(2) Establishing fuzzy similarity relationship matrix: To measure the similarity between
the samples that need to be classified, a fuzzy similarity relationship matrix R =

{
Rij
}

was established. The methods to determine rij are similarity coefficient method,
distance method, closeness method, etc., and the absolute value index method was
used in this paper [25].

The formula is

rij = exp(−
m
∑

k=1

∣∣∣x′ik − x′jk
∣∣∣),

(i = 1, 2, · · · n; j = 1, 2, · · · n; k = 1, 2, · · ·m)
(4)

After obtaining the fuzzy similarity relation matrix, the squared self-synthesis method
was used to construct the transfer closure R* of R.

(3) Dynamic clustering: We had to choose a reasonable threshold L to truncate R*. The
size of the clustering level L directly affects the clustering results, and the classification
gradually merges from coarse to fine as L decreases from 1 to 0, forming a kinetic
gathering plot. The optimal L value can be obtained by using the rate of change of
L [26].

Ci =
Li−1 − Li
ni − ni−1

(5)

where i is the number of aggregation order from high to low L, ni, and ni−1 is the number
of elements in the i and i− 1 clustering; Li and Li−1 are the confidence levels in the i and
i− 1 clustering. If Cj = max(Cj), then the confidence level Li clustering is considered the
optimal threshold.

dij =
1√
m

√
m

∑
k=1

(x′ik − x′jk)
2 (6)

where x′ik is the vector of characteristic indicators for the forecast day, and x′jk is the vector
of characteristic indicators for each category. Finally, the Euclidean distance had to be
calculated, and therefore, the category associated with the minimum value was picked as
the category for the forecast date, and the corresponding prediction models for forecasting
were established.

3.2. Fireworks Optimization Algorithm

The fireworks algorithm (FWA) [27] is the calculation of the total firework blast
sequence. Fireworks explode to make sparks, and the sparks make more new sparks at the
same time, so as to constitute rich patterns. Converting the process of exploding fireworks
into a computational process for FWA and viewing fireworks as a practical alternative for
optimizing the problem-solving scope allowed us to comprehend the process of the spark
generated as a way of seeking the perfect solution. In the process of achieving the perfect
solution, the influencing factors of FWA include the number of sparks, the blast radius, and
the best set of fireworks and sparklers to be selected by the next explosion (search process).

FWA has a superior self-regulation mechanism of local search capability and global
search capability. In the FWA model, each firework has a different blast radius and the
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number of sparks that explode. A larger blast radius of fireworks with a poor adaptation
value empowers the firework more “ability to explore”—exploration capabilities. Addition-
ally, fireworks that have good fitness values have lower blast radii, enabling them to have
greater “ability of excavation”—exploitability around the location. In addition, to further
increase the variety of the population, the introduction of Gaussian mutation spark is very
necessary.

Therefore, it can be seen that the three most vital elements of FWA are the explosion
operator, mutation operator, and selection strategy.

(1) Explosion operator: According to the adaptation value of fireworks, we can calculate
the number of sparks produced by each firework blast and the blast radius. The
formulas for calculating the number of fireworks SI and blast radius Ai toward the
fireworks xi(i = 1, 2, . . . , N) are as follows:

Si = M× ymax − f (xi) + ε
N
∑

i=1
(ymax − f (xi)) + ε

(7)

Ri = R̂× f (xi)− ymin + ε
N
∑

i=1
( f (xi)− ymin) + ε

(8)

In Equations (7) and (8), ymax, ymin stands for largest and least adaptive values of the
current population, respectively; the adaptation value of the fireworks xi is expressed in
f (xi); M adjusts the number of blast sparks as a constant; in addition, R̂ is to resize the
blast radius of fireworks as a constant; moreover, ε is intended to prevent zero operation as
the minimum machine value.

(2) Mutation operator: Mutation operators can add to the variety of the sparks popula-
tion. The variation sparks in FWA are the Gaussian mutation sparks produced by the
explosion sparks through Gaussian mutation. When selecting fireworks xi for Gaus-
sian mutation, the k-dimensional Gaussian mutation exercise is used as x̂ik = xik × e,
where x̂ik delegates k-dimensional variation spark, and e delegates obeying Gaussian
distribution.

In FWA, when the explosion sparks and abrupt sparks that are created by the explosion
arithmetic and abruptness arithmetic drop out of the search space, they are required to be
plotted to a new place; the formula is as follows:

x̂ik = xLB,k + |x̂ik|%(xUB,k − xLB,k) (9)

where xUB,k, xLB,k represent the upper and lower search spaces on the k dimension.

(3) Selection strategy: A certain number of individuals need to be selected for the next
generation of fireworks in explosion fireworks and mutation sparks, in order to
transmit more complete data and information to the next generation of fireworks.

Candidates with the best fitness value were identified as the next generation of fire-
works when K individuals were picked, and N is the size of the population. For the
remaining N − 1 fireworks, the selection was carried out in a proportional manner. For
fireworks xi, the odds of being selected were computed as follows:

p(xi) =
R(xi)

∑
xj∈K

xj
(10)

R(xi) = ∑
xj∈K

d
(
xi − xj

)
= ∑

xj∈K
‖xi − xj‖ (11)
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where R(x) is the ratio of distances among all individuals in the present individual candi-
date set. In the candidate set, the probability that the individual is selected will decrease
when the individual has a higher density, which also means there are other candidates
around this individual.

According to the foregoing statement, the concrete stages of FWA are as follows [28]:
Step 1. Randomly pick N fireworks in the solution volume and normalize their

parameters;
Step 2. Calculate the fitness value f (xi) for every firework and calculate the explosion

radius Ri and number of sparks Si for every firework. Randomly pick the ZD coordinate in
KD to update the coordinates.

Step 3. Generate M̂ Gaussian mutation sparks; randomly pick the spark xi; then,
calculate the result x̂ik of M̂ Gaussian mutation sparks based on the Gaussian mutation
formula, and save them to the population of Gaussian mutation sparks;

Step 4. Use the probability selection formula to pick N individuals from the fireworks,
blast sparks, and populations of Gaussian mutation sparks as the fireworks for next-
generation heterogeneous computation;

Step 5. Determine the stop condition. If the stop condition is met, the program is
exited and the optimal result is output; otherwise, return to Step 2 to continue the cycle.

3.3. LSSVM

LSSVM is an extension of the SVM, which replaces the inequality constraint of the
support vector machine with an equation constraint and transforms the quadratic program-
ming problem in SVM into finding the solution of a linear system of equations. As a result,
the convergence speed of the model is significantly improved [29].

Let the given specimen group T{(xi, yi)}N
i=1, N be the total size of the group; then,

the retrospective model of the samples is

y(x) = wT × φ(x) + b (12)

where φ(∗) is the training group projected onto a high-dimensional universe, w is the
weighted vector, and b is the bias.

For LSSVM, the optimization issue becomes

min
1
2

wTw +
1
2

γ
N

∑
i=1

ξ2
i (13)

yi = wT f (xi) + b + ξi, i = 1, 2, 3, LN (14)

where γ is the penalty factor, which is utilized to ensure the balance between sophistication
and precision of the model; ξi is the estimation error.

To address the above issue, establishing the Lagrangian function yields

L(w, b, ξi, αi) =
1
2 wTw + 1

2 γ
N
∑

i=1
ξ2

i

−
N
∑

i=1
αi
[
wTφ(xi) + b + ξi − yi

] (15)
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where αi is the Lagrangian multiplier. Taking the differentiator for every parameter of the
function and making it 0 gives

∂L
∂w = 0→ w =

N
∑

i=1
αi φ(xi )

∂L
∂b = 0→

N
∑

i=1
αi = 0

∂L
∂ξ = 0→ αi = γξi
∂L
∂α = 0→ wT + b + ξi − yi = 0

(16)

Eliminating w and ξi translates into the following expression:[
0 eT

n
en Ω + γ−1 · I

]
·
[

b
a

]
=

[
0
y

]
(17)

where
Ω = φT(xi)φ(xi) (18)

en = [1, 1, . . . , 1]T (19)

α = [α1 , α2 , . . . , αn ] (20)

y = [y1 , y2 , . . . , yn ]
T (21)

Solving the above system of linear equations yields

y(x) =
N

∑
i=1

αi K(xi , x) + b (22)

where K(xi, x) is the kernel function that satisfies the mercer condition. Viewing that the
radial basis RBF kernel function has a broad convergence domain and a wide range of
applicability, it was chosen in this paper as the kernel function for the least-squares support
vector machine with the following Equation (23):

K(xi, x) = exp
{
−‖x− xi‖2/2σ2

}
(23)

where σ2 denotes the kernel width, reflecting the features of the training dataset and having
implications for the system’s ability to mineralize genes.

From the above analysis, it is clear that the difficulty in building the LSSVM prediction
model is the determination of the arguments of the model—the kernel function parameter
σ2 and the penalty parameter γ. The selection of appropriate σ2 and γ is crucial to increasing
model learning and summarization skills.

3.4. Model Construction

The factors influencing the load forecast include seasonal type, maximum temperature,
minimum temperature, weather type, day type, and historical load values. In this paper,
we first analyzed the influencing factors of residential electricity load and used fuzzy
cluster analysis to extract the dates with similar influencing factors to be predicted day and
form similar day load samples as the training samples of the prediction model; then, we
used the fireworks algorithm to optimize LSSVM, so as to gain best results of γ and σ2,
and eventually, obtained the prediction results and analyzed the results. The proposed
combined forecasting framework is shown in Figure 1.
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4. Example Analysis

In this paper, a residential neighborhood in China was selected as a case study for
analysis, the arithmetic data of the neighborhood were selected as the load data from
October 2018 to October 2019, and the training set was used from 1 October 2018 to
30 October 2019; the test set was used from 31 October 2019, with 30 min as the data
collection frequency.

4.1. Input Variable Selection and Processing

In this paper, seasonal type, maximum temperature, minimum temperature, weather
type, day type, and load values at the same moment 4 days before the forecast day were
selected as input variables. The seasonal-type data were divided into 4 categories: 1 for
spring, 2 for summer, 3 for autumn, and 4 for winter. The weather-type data were divided
into 2 categories: 1 for sunny and cloudy type, and 0.5 for rain and snow type. The day-type
data were divided into 2 categories: 1 for weekdays and 0.5 for weekends. The temperature
data and load data had to be normalized according to Equation (24).

Y = {yi} = xi−xmin
xmax−xmin

i = 1, 2, 3, . . . , n
(24)
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where xi is the real value, xmin and xmax are the minimum and maximum sample data, and
yi is the normalized load value.

(1) Relative error (RE)

RE =
xi − x̂i

xi
× 100% (25)

(2) Root-mean-squared error (RMSE)

RMSE =

√
1
n

n

∑
i=1

(
xi − x̂i

xi
)

2
(26)

(3) Mean absolute percentage error (MAPE)

MAPE =
1
n

n

∑
i=1
|(xi − x̂i)/xi| · 100% (27)

(4) Average absolute error (AAE)

AAE =
1
n
(

n

∑
i=1
|xi − x̂i|)/(

1
n

n

∑
i=1

xi) (28)

In the above Equations (25)–(28), x is the actual value of the load, x̂ is the predicted
value of the load, and n is the number of datasets. The smaller the value of the above
indicators, the higher the prediction accuracy [27].

4.2. Evaluation Indices of Forecasting Results

Initialize the FWA parameter: The highest size of cycles is Maxgen = 1000, the size
of the population is PopNum = 40, the size of spark determines the constant M = 150,
and the radius of blast determines the constant x̂ = 200. To validate the performance
of the prediction method presented in this article, this study relied on the test sample
data and conducted comparison experiments using the fireworks-algorithm-optimized
LSSVM model (FWA–LSSVM), the standard LSSVM model, and the standard BPNN model.
Figure 2 and Table 1 show the forecasting results of the proposed model, FWA–LSSVM,
LSSVM, and BPNN models for loads in this paper. Figure 3 and Table 2 show the RE of
each prediction model.
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Table 1. Prediction results.

Time Actual Value BPNN LSSVM FWA–
LSSVM

FC–FWA–
LSSVM

0:00 9357 8683 9904 9743 9239
0:30 9676 10,418 10,296 9870 9785
1:00 10,373 9487 9776 10,744 10,469
1:30 9763 10,570 10,273 10,168 9874
2:00 9510 8817 9765 9685 9452
2:30 9894 10,718 9289 10,326 10,030
3:00 9461 10,226 9991 9161 9527
. . . . . . . . . . . . . . . . . .

19:00 11,524 12,369 12,235 10,976 11,582
19:30 11,483 12,299 12,074 10,942 11,586
20:00 10,644 9720 10,049 11,107 10,503
20:30 10,972 11,912 11,720 11,304 11,038
21:00 10,624 11,492 11,187 10,261 10,493
21:30 11,173 11,979 11,897 11,568 11,310
22:00 10,852 9930 11,537 11,126 11,006
22:30 10,559 11,455 11,214 10,173 10,856
23:00 10,531 11,473 9884 10,911 10,393
23:30 9746 10,470 9212 10,168 9879
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Figure 3. RE of each prediction model.

From Figures 2 and 3, we can infer that the prediction errors of the proposed model
are controlled within (−3%, 3%) for all time points, with the smallest absolute value of
0.50% and the highest point of 2.99%; only three of them are outside the range of (−1.5%,
1.5%)—namely, −2.52% at 4:30, −2.99% at 10:00, and 2.81% at 22:30. The FWA–LSSVM
prediction model has five time points with relative errors controlled in the range of (−3%,
3%)—namely, 2.01% at 0:30, 1.85% at 2:00, 1.45% at 7:00, 1.46% at 15:00, and 2.53% at 22:00,
with the smallest absolute value of 1.45% and the highest point of 4.98%. The LSSVM
model prediction results have the smallest absolute value of 1.62% and the highest point
of 6.98%, and the majority of the time points are in the range of (−1.5%, 1.5%), with the
smallest absolute value 1.62% and the highest point of −4%. The smallest absolute value of
the relative error of the BPNN model is −1.55%, and the maximum value is 9.97%, and the
errors of the majority of the time points are between (−7%, −5%) and (5%, 7%), with a large
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fluctuation. From this perspective, the FC–FWA–LSSVM model has the highest forecasting
precision, followed by the FWA–LSSVM model and the LSSVM model, and the worst is the
BPNN model. It can be seen that fuzzy clustering analysis can effectively prevent ignorance
in choosing similar days by manual experience. Compared with the traditional LSSVM
model, the FWA-optimized LSSVM model improved its prediction accuracy because it
found better model arguments.

Table 2. RE of each prediction model.

Time BPNN (%) LSSVM (%) FWA–LSSVM (%) FC–FWA–LSSVM (%)

0:00 −7.199 5.85 4.13 −1.265
0:30 7.667 6.41 2.01 1.133
1:00 −8.546 −5.757 3.575 0.924
1:30 8.27 5.232 4.156 1.136
2:00 −7.284 2.685 1.848 −0.61
2:30 8.321 −6.115 4.368 1.376
3:00 8.09 5.601 −3.165 0.7
. . . . . . . . . . . . . . .

19:00 7.335 6.168 −4.754 0.501
19:30 7.11 5.15 −4.713 0.899
20:00 −8.68 −5.591 4.348 −1.322
20:30 8.573 6.821 3.029 0.603
21:00 8.169 5.3 −3.42 −1.234
21:30 7.215 6.481 3.537 1.222
22:00 −8.496 6.306 2.526 1.418
22:30 8.484 6.206 −3.658 2.813
23:00 8.943 −6.149 3.6 −1.317
23:30 7.427 −5.475 4.325 1.367

Figure 4 and Table 3 show the RMSE, MAPE, and AAE of each model for the overall
prediction results. It is evident that the RMSE of the method presented in this article is
calculated as 2.32%, while the RMSE of the FWA–LSSVM, LSSVM, and BPNN models are
calculated as 4.25%, 6.12%, and 8.26%, respectively. This shows that the forecasting outcome
of the model introduced in this article has small errors and the highest general precision of
forecasting. Additionally, the FC–FWA–LSSVM model has the best-calculated results for
MAPE (2.21%) and AAE (2.10%). Compared with the FWA–LSSVM model, fuzzy clustering
analysis overcomes, to some extent, the negative impact of non-conventional load data on
LSSVM training due to unexpected changes in influencing agents. Contrasting this with
the LSSVM model reveals that its generalization capability and forecasting precision can be
enhanced by enhancing the arguments of the LSSVM. In contrast to the BPNN model, the
LSSVM model can protect against the disadvantages of delayed restraint and the tendency
to become stuck in a local optimum of the BPNN model. Overall, the FC–FWA–LSSVM
model has the best forecasting performance, the FWA–LSSVM model and the LSSVM
model are the next best, and the BPNN model has the worst prediction performance.

Table 3. RMSE, MAPE, and AAE of the prediction results.

BPNN LSSVM FWA–LSSVM FC–FWA–LSSVM

RMSE 8.26% 6.12% 4.25% 2.32%
MAPE 8.15% 6.09% 4.16% 2.21%
AAE 8.11% 6.07% 4.12% 2.10%
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5. Scenario Validation

To remove the specificity of the target day and to check the generalization behavior of
the model, one day of data from each of the four seasons was picked as the test sample:
17 April as the spring test sample; 21 July as the summer test day; 9 October as the autumn
test day; 28 January as the winter test day.

Figure 5 shows the curve of the forecasting load values against the true values of the
load for the four seasons of spring, summer, autumn, and winter.
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Figure 5. Electricity load forecast graph.

By comparing the predicted and true load values for the four seasons, it can be
concluded that the total predicted tendency of all four models is near to the true value,
which validates the advantages of the model proposed in this paper for residential electricity
load forecasting.

From Table 4, it can be concluded that the RMSE, MAPE, and MAE values of the
FC–FWA–LSSVM forecasting model proposed in this paper are the lowest for the four
seasonal test samples, as shown in the table. The RMSE, MAPE, and MAE values for spring
load forecasting are 1.3901%, 1.4112%, and 1.4349%, respectively; the RMSE, MAPE, and
MAE values for summer load forecasting are 1.3912%, 1.5812%, and 1.4424%; the RMSE,
MAPE, and MAE values for summer load forecasting are 1.5123%, 1.4671%, and 1.4291%;
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the RMSE, MAPE, and MAE values for winter load forecasting are 1.3941%, 1.4214%, and
1.4042%, all of which are lower than the other models; this, again, illustrates the optimal
overall prediction performance of the prediction model proposed in this paper.

Table 4. RMSE, MAPE, and AAE of the prediction results.

Season Index FC–FWA–LSSVM

Spring
RMSE 2.09%
MAPE 2.21%
MAE 2.03%

Summer
RMSE 2.01%
MAPE 2.08%
MAE 2.44%

Autumn
RMSE 2.21%
MAPE 2.17%
MAE 2.03%

Winter
RMSE 2.19%
MAPE 2.32%
MAE 2.40%

6. Conclusions

In this article, we presented a hybrid load forecasting model that combines fuzzy
cluster analysis and LSSVM and is optimized by FWA. First, to forecast residential electric
load loads, fuzzy cluster analysis was used to select the input features. In addition, FWA
was used to optimize the criteria of LSSVM. Finally, upon acquiring an optimized feed
subset and the optimal values of γ and σ2, the proposed model was used for residential
electricity load forecasting. Based on these studies, several conclusions can be drawn
as follows: (a) By using fuzzy clustering analysis, the influence of uncorrelated factors
can be mitigated, which effectively improves forecasting capabilities; (b) the optimization
algorithm FWA increases the global search capability of the model, and the LSSVM model
optimized by FWA shows good performance; (c) based on the error evaluation criteria, with
SVM, LSSVM achieves better prediction results, indicating that the method of improving
SVM by introducing least-squares linear system is effective. The model based on FCA
and KELM optimized with FWA proposed in this paper offers a new research direction
for load forecasting and is highly feasible. In the example of load forecasting, the desired
forecasting results were obtained. In future research, the forecasting model can be applied
to develop demand corresponding strategies to contribute to peak and valley reduction in
electricity loads.
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