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Abstract: Emission reductions could be achieved by replacing the single-depot mode with a multi-
depot mode of vehicle routing. In our study, we identified situations under which multiple depots
could be used to effectively reduce carbon emissions. We proposed a branch-and-price (BAP)
algorithm to obtain an optimal solution for the multi-depot green vehicle routing problem. Based
on the BAP algorithm, we accurately quantified the carbon emission reduction potential of the
multi-depot mode over the single-depot mode. Factors such as the number of depots, vehicle
speed, customer demand, and service time were considered and analyzed. Computational tests were
conducted, and the results showed that using multiple depots in a vehicle routing problem can reduce
carbon emissions by at most 37.6%. In sensitivity analyses, we show relationships between these
factors, and several managerial insights that can be used to successfully reduce carbon emissions
were summarized.

Keywords: vehicle routing problem; multi-depot; carbon emission; sensitivity analyses

1. Introduction

Worldwide economic development has also led to significantly improved transporta-
tion and logistics services. However, in the past two decades, growth in the economy and
logistics has caused a series of environmental problems, such as air pollution and climate
abnormality. As the primary source of greenhouse gases, carbon emissions also play an
important role in transportation and logistics. According to a report by the International
Energy Agency [1], transportation is responsible for 24% of direct carbon emissions from
fuel combustion. Meanwhile, road vehicles account for nearly three-quarters of transport
carbon emissions, which makes vehicles in road transportation the main avenue for air
pollution reduction.

In recent years, the vehicle routing problem (VRP) [2] that considers the reduction
of carbon emissions or fuel consumption has attracted increasing attention [3,4]. This
variant of the VRP is thus divided into two types: the green VRP (GVRP), which considers
carbon emissions in routing and scheduling, and the pollution routing problem (PRP),
which considers fuel consumption. Motivated by Chinese logistics development, our work
considers how the multi-depot mode can maximize carbon emissions reduction. Driven by
the Internet economy, the logistics industry in China has grown significantly, generating
more than 10.3 trillion RMB in 2019. However, many problems remain unresolved. The
efficiency of logistics in China is lower than that in developed countries. For example, the
total cost of logistics in China was 14.6 trillion RMB in 2019, which was 14.7 percent of the
GDP, while the corresponding rate in developed countries is 8–9%. On the other hand, the
carbon emissions related to logistics accounts for 18.9% of the total carbon emissions in
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China. Thus, it is worthwhile to investigate the relationship between energy consumption
in logistics and carbon emissions.

Benefitting from the e-commerce boom, customers currently prefer to shop on the
Internet. The purchased goods are delivered to buyers within several days by an express
delivery service. Thus, many distribution centers have been established by logistics compa-
nies to store goods and deliver them to customers. Compared to the single-depot situation,
multiple depots for logistics companies makes them more flexible and efficient in provid-
ing delivery services that also significantly reduce carbon emissions. In this paper, we
study the multi-depot GVRP with time windows (MDGVRPTW) to reduce the total carbon
emissions when scheduling vehicles for logistics services. We identify situations under
which multiple depots can be used to effectively reduce carbon emissions. The use of a
branch-and-price algorithm is proposed in this study to obtain the optimal solution of the
multi-depot GVRPTW. Based on the algorithm, we accurately evaluate the effect of the
multi-depot mode on the reduction of carbon emissions. Several main factors, such as the
number of depots, vehicle speed, customer demands and service time, are considered and
analyzed in this study. Given that pursuing minimum carbon emissions is the fundamental
target of this work, it is inevitable that other vehicle routing costs have been overlooked.

The remainder of this paper is structured as follows. Section 2 presents a literature
review of the MDGVRPTW. Section 3 provides the problem description and formulation for
calculating carbon emissions, and a brief description of the branch-and-price algorithm is
presented. Section 4 provides sensitivity analyses of the factors affecting carbon emissions
in the MDGVRP. Section 5 provides a conclusion and some suggestions to efficiently reduce
carbon emissions.

2. Literature Review

The traveling salesman problem (TSP) [5] is a classical problem that now has gained
remarkable achievements. We refer readers to [5–8] and the references therein for the recent
progress in these problems. As a generalization of the traveling salesman problem (TSP),
the vehicle routing problem (VRP) has been greatly developed, and lots of articles about
fractional calculus have been published. As the most practical and well-known variant
of the VRP, the multi-depot vehicle routing problem (MDVRP) has been widely studied
and utilized [9,10]. The MDVRP was first proposed by Tillman [11]. After many years
of research, the MDVRP has been considered in many generalizations, and many exact,
heuristic, and meta-heuristic algorithms have been developed to solve these generalizations.
Typically, MDVRP models represent realistic cases, and heuristic algorithms are thus
proposed to solve the large-scale MDVRPs. Zhou et al. [12] focus on the half open MDVRP
with heterogeneous vehicles for hazardous materials transportation. Compared to the
single-depot VRP, MDVRPs are more complicated for exact algorithms to solve; however,
there are some exact algorithms for MDVRPs. For example, Bettinelliet al. [13] proposed
a branch-and-cut-and-price algorithm for solving a multi-depot heterogeneous VRPTW.
Contardo and Martinelli [14] proposed a column generation and cut algorithm to solve the
MDVRP. Considering replenishment in scheduling, Muter et al. [15] solved the MDVRP
using a branch-and-price algorithm. These multi-depot variants concentrate more on the
total route cost of the problem.

Increasing amounts of carbon emissions in the atmosphere are gradually causing
global climate change; thus, carbon emission reduction has become an effective measure to
mitigate climate change. Işık et al. [16] considered the ecological footprint to evaluate the
economic impact brought by carbon emissions and other types of pollution. Işık et al. [17,18]
investigate the validity of the environment Kuznets curve hypothesis to effectively decrease
the carbon emissions. In the VRP, there is a variant classified as the green vehicle routing
problem (GVRP), which considers the effect of vehicle routing on the environment. Several
reviews on green logistics and the GVRP have been presented to better understand the
issues, such as [3,4,19–22]. To provide a more precise calculation of vehicle emissions, Demir
et al. [23] analyzed several carbon emission models. Many studies have attempted to model
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the GVRP by minimizing the total fuel consumption and operational cost, such as [24–28].
There have also been studies that directly considered carbon emissions as the main objective
of the model. Wang et al. [29] proposed a cooperation strategy for green pickup and delivery
problems to calculate the compensation and profit distribution. Peng et al. [30] solved
the GVRP by using a population-based algorithm called memetic algorithm. Yu et al. [31]
solved the heterogeneous fleet GVRP with a branch-and-price algorithm to minimize
the total carbon emissions. Figliozzi [32] analyzed the efficiency of autonomous air and
ground delivery vehicles to reduce carbon emissions. Pribyl et al. [33] considered using
cooperative and automated vehicles and proposed a complementary approach that focuses
on harmonizing the flow of traffic in urban centers to reduce carbon emissions. Saleh and
Hatzopoulou [34] assessed the impact of private autonomous vehicles on greenhouse gas
emissions. Zeng et al. [35] developed an eco-routing algorithm for navigation systems to
find a path that consumes the minimum amount of gasoline. Wang and Wen [36] proposed
an adaptive genetic algorithm to solve the two-echelon heterogeneous fleet GVRP. Li
et al. [37] studied an electric VRP with constraints on battery life and battery swapping
stations, an on hill climbing optimization and neighborhood search is developed to reduce
carbon emissions and total logistics delivery costs.

Some MDGVRP studies have focused more on the algorithms used to solve the
problem. Li et al. [38] considered shared depot resources for a MDGVRP, and the factors
that affect the benefit ratio were analyzed. Li et al. [39] proposed an ant colony optimization
algorithm to solve the MDGVRP with multiple objectives. Considering the time-dependent
speed and piecewise penalty cost, Wang et al. [40] studied the MDGVRP with shared
transportation resources, and they found that transportation resource sharing reduces
travel distance and carbon emissions. Zhang et al. [41] considered using alternative fuel-
powered vehicles in the MDGVRP to minimize the total carbon emissions. Peng et al. [42]
presented a hybrid evolutionary algorithm to tackle the MDGVRP. Despite recent research
on the MDGVRP, there is still a lack of analysis on the relationships between the related
factors in the MDGVRP to reduce carbon emissions.

The scope of this study is to identify the MDGVRPTW, schedule vehicle routes to serve
a set of customers, and minimize the total carbon emissions, subject to routing problem
constraints, particularly load, speed, time windows, and the number of depots. A branch-
and-price algorithm is proposed to optimize the potential carbon emissions reductions
over multi-depot mode. Furthermore, sensitivity analyses for each factor in this problem
were performed in order to explore the influence of carbon emissions reductions, such as
the number of depots, vehicle speed, customer demands, and service time. Some useful
suggestions that can efficiently reduce multi-depot carbon emissions are also provided.

3. Problem Description and Formulation
3.1. Mathematical Description of MDGVRPTW

Let G = (V, A) be a completely directed multi-graph, where the set V denotes the
vertex set and A denotes the arc set. V = V0 ∪Vd, where V0 = {1, 2, . . . , n} denotes the set
of customers, and Vd = {n + 1, n + 2, . . . , n + m} represents the set of depots. Each customer
i ∈ V0 has a positive demand fi, a service time si, and a time window [ei, li] that indicates the
earliest and latest time the service starts at customer i. In this problem, if the vehicle reaches
customer i before time ei, then it must wait until ei. Additionally, the number of visits to
each customer i ∈ V0 is restricted to one. For the depots i ∈ Vd, let fi = ei = si = 0, and li = H,
where H represents the length of planning horizon. A =

{
(i, j)q : i, j ∈ V, q = 0, 1, . . . , Q

}
represents the set of arcs, where Q represents the maximal capacity of the vehicle. The arc
(i, j)q indicates that a vehicle travels along arc (i, j) with load q. A travel cost with carbon
emissions cq

ij, travel distance dij, and travel time tij are associated with each arc (i, j)q ∈ A.
Several homogeneous fleets of vehicles with capacity Q are located at different depots, and
each depot has at most K vehicles. These vehicles start their service from one depot and
return to the original depot from which they left. In the MDGVRPTW, the optimal solution
is composed of a set of feasible routes with minimal carbon emissions. A feasible route
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corresponds to an elementary path p = (i0, i1, i2, . . . , ik, ik+1), ik ∈ V which consists of a
subset of customers, where i0 = ik+1 ∈ Vd. The route p allows a maximum of Q loads (i.e.,

k
∑

j=1
fij ≤ Q). The departure time τij at every visited vertex ij (j ∈ {0, 1, . . . , k, k + 1}) can be

calculated recursively as follows.

τi0 = ei0 + si0 = 0, (1)

τij+1 = max
{

eij+1 + sij+1 , τij + tijij+1 + sij+1

}
≤ lij+1 , ∀j ∈ {0, 1, . . . , k}. (2)

Additionally, the carbon emissions of route r are calculated by cr =
k
∑

j=0
c

qij
ijij+1

, where

qij =
k
∑
t=j

fit+1 represents the total load when a vehicle travels along the arc (ij, ij+1). Conse-

quently, the MDGVRPTW aims to obtain a set of feasible routes while minimizing the total
carbon emissions.

3.2. Modeling Carbon Emissions

Several common carbon emissions calculation methods are reviewed by [21,23]. In
this study, we adopt the method from Bektaş and Laporte [24]. The related parameters are
listed in Appendix A, Table A1.

For an arc (i, j)q, the carbon emissions when the vehicle leaves vertex i to j with loads q
can be calculated by

cq
ij = γ× ζ

κ
[(N f NeNd +

0.5CdρAv3

1000εω
) +

v(g sin φ + gCr cos φ + at)

1000εω
× (w + q)]× tij (3)

The travel time tij = dij/v. Let α1 = γ× ζ
κ

(
N f NeNd +

0.5CdρAv2

1000εω

)
, and α2 = γ× ζ

κ ×
(g sin φ+gCr cos φ+at)

1000εω ; then, Equation (3) can be reformulated as follows:

cq
ij = [α1 + α2(w + q)]× dij. (4)

Generally, for a feasible route r with path (i0, i1, . . . , ik, ik+1), ik ∈ V, i0 = ik+1 ∈ Vd,
the carbon emissions can be represented as

cr =
k

∑
j=0

c
qij
ijij+1

= (α1 + α2w)
k

∑
j=0

dijij+1 + α2

k

∑
j=0

fij+1

j

∑
t=0

ditit+1 . (5)

3.3. Set-Partitioning Model for the MDGVRPTW

In this study, we propose a set-partitioning (SP) model for the MDGVRPTW. The SP
model has been widely applied to solve VRPs with exact algorithms [13,15]. Let Ωd denote
the route set for all feasible routes of the depot d ∈ Vd. For each route r in Ωd, a binary
variable λr is proposed to represent whether this route is used in the solution, and the
carbon emissions for r are represented by cr. Let air be a 0-1 coefficient equal to 1 if vertex
i ∈ V is visited by route r, and 0 otherwise. Typically, the SP model for MDGVRPTW can
be described as follows:

min ∑
d∈Vd

∑
r∈Ωd

crλr. (6)

s.t. ∑
d∈Vd

∑
r∈Ωd

airλr = 1, ∀i ∈ Vc (7)

∑
d∈Vd

∑
r∈Ωd

airλr ≤ K, ∀i ∈ Vd (8)
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λr ∈ {0, 1}, ∀r ∈ Ωd, d ∈ Vd (9)

In this SP model, the objective in (6) is to minimize the total carbon emissions. Con-
straint (7) limits each customer to only one visit, and constraint (8) ensures that every
depot can schedule at most K vehicles; in our study, the number of vehicles is not limited.
Constraint (9) is the binary constraint. The relaxation of the SP model, which is called the
master problem (MP), can be solved by proposing a column generation algorithm, and
the routes with a negative reduced cost can be calculated by the pricing problem with a
bidirectional labeling algorithm.

4. Methodology

In this section, we propose a branch-and-price (BAP) algorithm for solving the
MDGVRPTW optimally, and the details are shown below. Combined with branch-and-
bound and column generation, the BAP algorithm has become the most popular technology
to obtain the optimal solution in VRPs. We refer readers to the paper by Costa et al. [43] for
more information.

4.1. Column Generation Algorithm

To solve the relaxation of the SP model, we use the column generation algorithm; a
simple description of this algorithm is shown in Algorithm 1 as follows:

Algorithm 1: Column generation algorithm for MDGVRPTW

while (true)
Solve the restricted MP (RMP) with added routes.
Obtain the dual prices corresponding to constraint (7, 8).
for (d in Vd)

Solve the bidirectional label-setting algorithm under distinct depot d.
if (No route with negative reduced cost exists)

break
else

Add the route with minimal reduced cost to RMP.
Output current solution in RMP as the final solution.
return final solution.

Let µi, i ∈ Vc and υd, d ∈ Vd denote the dual price of constraints (7, 8), respectively;
then, the objective of the pricing problem can be described as follows:

min

{
cr − ∑

i∈Vc

airµi − υd, r ∈ Ωd, d ∈ Vd

}
. (10)

From Equation (10), it can be seen that for each depot, the pricing problem must first
calculate the corresponding route with minimal reduced cost. Then, at most |Vd| routes
with negative reduced costs need to be compared, and the minimal one is output to the SP
model for calculation. In our study, we propose a bidirectional label-setting algorithm to
solve the pricing problem.

4.2. Bidirectional Label-Setting Algorithm

In our study, we use a bidirectional label-setting algorithm reviewed by Costa et al. [43].
For a partial path pf in forward that starts at the depot d, we have that p f =

{
i1, . . . , il

}
,

il ∈ V0, and let v = i|p f | denote the latest visited customer. A label thus be presented to
indicate the state of the partial path pf in the label-setting algorithm and can be described as

a tuple L f =
(

p f , d, v, c, q, t, S
)

. The reduced cost c associated with the partial path {d} ∪ p f

is presented, and can be calculated by c = cd,i1 + ∑
l=1:|p f |

cil ,il+1
, where ci,j represents the

route cost associated with dual variables of the arc (i, j). In contrast to the general label-
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setting algorithm in which the route cost is the distance of the arc, in the GVRPTW, the
route cost is calculated by the multiple of the loads and distance, which is also described
in Equation (4). The cumulative load q is calculated by q = ∑

il∈p f

fil . The attribute t in

L represents the earliest start time at customer v for service, and the set of forbidden
vertices S that the vehicle cannot visit. A forward label can thus be initialized by the form
L0 = ({0}, d, 0, 0, 0, 0, O). For an arc (i, j) that i = v(Lf) and j /∈ S, let Lf’ denote the label that
be extended by Lf along the arc (i, j), then the extension rule for forward labeling algorithm
can thus be described as:

p(L′f ) = p(L f )∪ {j}, d(L′f ) = d(L f ), v(L′f ) = j, c(L′f ) = c(L f )+cij, q(L′f ) = q(L f )+ f j,

t(L′f ) = min
{

t(L f )+tij, ej

}
, S(L′f ) = S(L f ) ∪

{
c
∣∣∣t(L′f ) + tjc > lc

∣∣∣∣∣∣q(L′f ) + fc > Q, c ∈ Vc

}
.

For a partial path pb in backward that ends at depot d, we have that pb =
{

il, . . . , i1
}

,
il ∈ V0. Then a tuple for backward label is presented by Lb = (pb, d, v, c, q, t, S), where
the difference with the forward label is that the attribute t represents the latest start
time at customer v for service. Then the backward labeling algorithm is initialized
by the form L0 = ({0}, d, 0, 0, 0, H, O). The extension rule for backward variant is
similar to that of forward variant except for the arrival time and forbidden set for Lb’:
t(L′b) = max

{
t(Lb)− tji, lj

}
, S(L′b) = S(Lb)∪

{
c
∣∣t(L′b)− tcj < ec

∣∣∣∣q(L′b) + fc > Q, c ∈ Vc
}

.
To eliminate those promising labels that cannot find the minimal reduced cost, domi-

nance rules are thus proposed for both forward and backward labels. Let L1 and L2 denote
separately two forward (backward) labels and L1 dominates L2 when following rules are
satisfied: d(L1) = d(L2), v(L1) = v(L2), c(L1) ≤ c(L2), q(L1)≤ q(L2), t(L1)≤ t(L2) (for backward
labels, t(L1) ≥ t(L2)), and S(L1) ⊆ S(L2).

After the extension for both forward and backward variants, a combination rule is
utilized to concatenate both forward and backward labels. In our study, when the following
rule is satisfied, then a forward and backward label can thus be concatenated: v(Lf) = v(Lb),
t(Lf) ≤ t(Lb), q(Lf) + q(Lb) ≤ Q, S(Lf) ∩ p(Lb) = Ø.

4.3. Branching Rule

Two strategies are used in the BAP algorithm to obtain the lower and ultimate integer
solutions of the MDGVRPTW. First, we branch on the number of vehicles used when the
solution ∑

d∈Vd

∑
r∈Ωd

λr is fractional. Then we branch on the arc if the number of vehicles used

is an integer. This rule finds an arc in the routes constituting a fractional solution. If there is
an arc (i, j) whose fractional variable λr with a corresponding route r is close to 0.5, then
one sub-branch prohibits the arc (i, j) when every feasible route leaves node i, and another
branch prohibits any other arc (i, k) (k ∈ V0\{j}) after leaving node i instead.

5. Discussion

In this section, we identify situations under which multiple depots can be used to
effectively reduce carbon emissions. We aim to analyze the factors that can efficiently
reduce the carbon emissions resulting from multiple depots. Several factors are proposed
in the analysis, such as the number of depots, vehicle speed, customer demand, and service
time. To reveal the effectiveness of our proposed branch-and-price method, we test the
instances with 50 customers, and the details of these tests are shown in Table 1. Sensitivity
analyses that compare different factors on carbon reduction are proposed and analyzed.

Table 1. Geographical distribution of depots.

No. Instance Class 1 2 3 4 5

Coordinate
R [35,35] [0,0] [67,77] [0,77] [67,0]
C [40,50] [22,25] [75,58] [13,63] [65,20]

RC [40,50] [0,0] [75,58] [14,73] [70,20]



Sustainability 2022, 14, 1264 7 of 18

5.1. Experiment Environment

The branch-and-price algorithm was coded in C# by embedding an ILOG CPLEX
12.10 solver to solve the relaxation of the set-partitioning model. The calculation time limit
for each instance was set to 1 h. The results obtained when this limit was reached were
considered to be the final solution of the instance.

The test cases used were derived from the Solomon benchmark instances (https://
www.sintef.no/projectweb/top/vrptw/solomon-benchmark/ accessed date 29 December
2021) with three customer geographical distribution classes: R (random), C (clustered),
and RC (random-clustered). Meanwhile, each class of instances is divided into two groups
according to the length of time windows, those groups are denoted respectively by R1, R2,
C1, C2, RC1, and RC2. Totally, 56 instances were used in the experiment.

For ease of computation, we modified the Solomon benchmark instances for a better
analysis. In these instances, the time horizon was set at 24 h; thus, all customers’ time
windows can be scaled by a coefficient of 24/ln+1, where ln+1 is the latest depot time.
Moreover, the distance between every pair of vertices was set to dij’ = 2dij.

5.2. Factor Setup

Factors such as the number of depots, vehicle speed, customer demand, and service
time were considered in this comparison to estimate which factors affect the emission of
carbon in vehicle routing. The setup and information for these factors are presented below:

Depot (Vd): number of depots. Let Di denote the number of depots. In this study, we
set three values for Di: D1 = 1, D2 = 3, and D3 = 5. Moreover, based on the distribution
of the customers, we set the geographical distribution of the depots, which are shown in
Figure 1 for types R, C, and RC. The specific locations of the depots are listed in Table 1;
when the number of depots was three, the data from the table for the first three columns
were used in testing.

Figure 1. Geographical distribution of the customers and depots for distinct classes.

Vehicle speed (v). The vehicle speed is directly related to carbon emissions as given in
Equation (3). Based on the report by (https://report.amap.com/download_city.do accessed
date 29 December 2021) in China, the free flow speed in major cities in China is between 42
and 51 km/h, and we set our speed in this study at 42, 47, and 51 km/h, denoted by v1, v2,
and v3, respectively.

Customer demand (F). With the upsurge and development in e-commerce, logistics
have also been actively developed. Increasing demand drives logistics companies to
schedule more vehicles to satisfy customer requirements. On the other hand, with the rapid
growth of GDP, differences in regional economic performances are increasingly evident.

https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/
https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/
https://report.amap.com/download_city.do
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The loads on a vehicle also affect the carbon emissions based on Equation (3); thus, the
growth in demand is meaningful for evaluating how this change affects the carbon emission
reduction. In our assumption, customers with larger demands have a higher requirement
than general customers when they encounter aggregate demand growth. To analyze how
aggregate demand growth affects carbon emissions under the mode of multiple depots, we
created a new case for this situation. The sum of demands for a problem can be represented
as s f = ∑

i∈Vc

fi, and the average demands are avg = s f
n , where n denotes the number of

customers. Let the rate of growth of the aggregate demand increase by 20%, then for each
customer l whose demands satisfy the condition fl ≥ avg, the increased demands fl

′ of this
customer can be calculated by

fl
′ = fl +

0.8× 0.2× s f × fl

∑
i∈Vc& fi≥avg

fi

 (11)

where 0.2 × sf represents the growth of the total demands, and customers whose demands
exceed avg would hold 80% of increasement (i.e., 0.8 × 0.2 × sf ). On the other hand, for
customer l whose fl < avg, the new demand fl

′ is thus calculated by:

fl
′ = fl +

0.2× 0.2× s f × fl

∑
i∈Vc& fi<avg

fi

 (12)

Therefore, let F1 denote instances with unchanged demands and F2 denote instances
with increased demands.

Service time (t). Generally, the service time for each customer in this study was fixed
at 0.5 h. However, in reality, the service time is more relevant to the goods delivered by
vehicles. Therefore, service time based on customers’ demands was proposed to test the
instance. Let T1 denote the fixed service time for every customer, T2 denote the demands-
based service time for every customer, and the new service time si

′ for customer i can be
calculated by:

si
′ =

0.5× fi
max{ fl , l ∈ Vc}

(13)

In total, there were six parameters with 16 conditions, the details of which are listed in
Table 2. Moreover, 216 (3 × 2 × 3 × 3 × 2 × 2) combinations were examined in this study
for various conditions of each parameter. In this study, 2016 (56 × 3 × 3 × 2 × 2) tests were
executed, and the details are described in Section 5.4. For different parameter conditions
of the tested instance, we used the following naming convention: <class>–D–v–F–T. For
example, R1–D1–v1–F1–T1 denotes an instance of group R1 with conditions D1, v1, F1, and
T1 for the different parameters.

Table 2. Classification of the factors.

Factor Class of Instances Number of Depots Speed Demands Service Time

Condition

R1 D1 v1 F1 T1
R2 D2 v2 F2 T2
C1 D3 v3
C2

RC1
RC2



Sustainability 2022, 14, 1264 9 of 18

5.3. Performance of the BAP Algorithm

The BAP is time-consuming and cannot obtain the optimal solution within the time
limit, and the result obtained at the time limit still has a small gap with the relaxation of
the model at the root node. This feature of the BAP makes it relatively stable to the optimal
solution, and its results are suitable for our analysis. In total, the branch-and-price algorithm
in this study is executed within an hour limit, and once the calculation is terminated, the
current upper bound of the solution is the final solution of the solved instance.

In this study, the number of customers is set at 50, and the details of the solved instances
are listed in Tables A2–A4 in Appendix A. The column “#Root” denotes the relaxation
solution at root node, column “#Opt” denotes the best-obtained solution obtained by the
BAP with 1 h limit, and the “Gap (%)” represents the gap between the current lower bound
obtained at the time when ends\terminates of the algorithm to the solved instance and the
best-obtained solution. The brief description for the performance of the BAP is shown in
Table 3, where the column “No. of inst” represents the total number of instances, columns
under factors (i.e., D1, D2, and D3) represent the number of solved instances, average
computing time of solved instances, and average gap of instances between the lower bound
and the upper bound when the algorithm is terminated.

Table 3. Performance of the BAP algorithm.

Class No. of
Inst

D1 D2 D3

No. of
Solved Time (s) Gap (%) No. of

Solved Time (s) Gap (%) No. of
Solved Time (s) Gap (%)

R1 12 12 1343.3 0 12 337.31 0 12 168.83 0
R2 11 11 1408.28 0 11 369.43 0 11 136.21 0
C1 9 8 914.04 0.03 5 319.95 0.71 4 586.65 1.27
C2 8 8 95.61 0 6 1005.8 0.04 8 1194.13 0

RC1 8 1 2862.65 6.08 1 102.07 5.24 1 84.55 5.1
RC2 8 1 10.42 5.91 1 7.17 4.68 2 330.26 3.89

Average 1105.72 2 356.96 1.78 416.77 1.71

Table 3 illustrates that the BAP algorithm can obtain relatively good results in instances
in all classes, and the average gaps of these three are less than 2%. The results also illustrate
that most instances in classes RC1 and RC2 cannot be solved in optimality within the time
limit, but the average gap is relatively small. Though the BAP algorithm is time-consuming
when searching for appropriate optimal results, it still can be utilized to get optimal\sub-
optimal results within one hour limit. Consequently, the BAP algorithm can be seen as
relatively stable and sufficiently competitive for our comparison and analysis.

5.4. Sensitivity Analyses

In this section, we identify situations under which multiple depots can be utilized to
effectively reduce carbon emissions. First, we compare the impact on carbon emissions
when changing a single condition for a single factor in the problem. The baseline of the
carbon emissions is provided by condition *–D1–v1–F1–T1, where the asterisk (*) represents
an arbitrary group of the Solomon instances.

The average reduction in carbon emissions for each group is described in Table 4; the
conditions D1, v1, F1, and T1 are not listed in the table because they represent the conditions
in the baseline problem solution. For each instance in the Solomon group, the reduction in
carbon emissions can be evaluated using the formula reducedcarbonemissions

originalcarbonemissions × 100%.
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Table 4. Average reduction of carbon emissions (%) from a single condition change.

Condition\Group R1 R2 C1 C2 RC1 RC2 Avg. R (%)

D2 4.8 4.7 11.4 9.3 14 14 9.7
D3 11.6 11.7 23.3 26.4 32.7 32.8 23.1
v2 4.9 4.7 4.3 4.4 4.3 4.4 4.5
v3 7.4 6.5 6.1 5.8 6.5 6.6 6.5
F2 −4.7 −5.1 −14.6 −12.3 −1 −1.2 −6.5
T2 2.8 1.4 0.4 0 0.9 0.8 1.1

Figure 2 also depicts the comparison of the carbon emissions reductions with changed
conditions and corresponds to Table 4, where the column “Avg. R (%)” represents the
average reduction of an instance among the Solomon instance groups. Table 4 illustrates
that a change in condition D3 significantly reduced carbon emissions by an average of
23.1%. Compared to condition D2, the reduction in carbon emissions for D3 was more than
double. Most importantly, the multi-depot mode in group RC showed a superior ability to
reduce carbon emissions. Changes in vehicle speed decreased carbon emissions by 4.5%
and 6.5%, which did not indicate a superior performance. Additionally, the difference in
scheduling horizon (for example, R1 and R2) was less crucial for reducing carbon emissions,
even when considering the load-based service time (T2); a reduction of only 1.1% was
obtained compared to the original problem. On the other hand, the growth in customer
demand increased carbon emissions by 6.5%, especially when the distribution of customers
was cluster-based (i.e., groups C1 and C2)

Figure 2. Average reduction in carbon emissions for a single condition change.

Table A5 in Appendix A indicates the reduction in carbon emissions for different
combinations of conditions. For example, the average reduction in groups *–D2–v1–F1–T1
was 9.7 percent. To reveal the interrelationship between the multi-depot condition and
other conditions, the influence of each factor on carbon emission reductions is analyzed in
detail as follows.

Depot (Vd). The number of depots significantly affects the reduction in carbon emis-
sions, and the results of the average reduction for conditions D1 to D3 are depicted in
Figure 3. Compared to the other conditions, D3 showed the most reduced carbon emissions
(at most a 37.6% reduction) for the vehicle routing under all conditions, and the reduction
in D3 was twice that in D2. Moreover, under the condition D3, customer distribution
significantly affected the carbon emissions reductions. From Figure 2, it can be seen that
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the advantage of D3 in groups R1 and R2 was small and occurred only when the customer
distribution was cluster related (i.e., groups C and RC). Thus, if customer distribution is
clustered, multiple depots can significantly reduce the carbon emissions. In our test, the
best reduction in carbon emissions was obtained under conditions of D3–v3–F1–T2, and
undoubtedly, groups RC1 and RC2 benefited most from these conditions. These two groups
showed average carbon emissions reductions of 37.5% compared to the original conditions
with a single depot.

Figure 3. Reduction in carbon emissions with different numbers of depots, where the first asterisk (*)
represents the condition of the number of depots and the second asterisk represents the condition of
vehicle speed.

Vehicle speed (v), From Figure 4 it can be observed that the carbon emissions reductions
caused by vehicle speed were relatively weak. At the same speed, the reductions for
different distributions were close, which indicates that customer distribution has little effect
on carbon emissions reductions when the vehicle speed changes. As shown in Table A5,
changes in vehicle speed under different conditions caused a stable reduction in carbon
emissions. We then analyzed the effect of the rate of reduction between conditions v1 to
v2 and v1 to v3. The difference was calculated using column “Avg. R (%)” in Table A5
and depicted in Figure 4. The figure shows that the increased vehicle speed influences the
carbon emissions for the single depot condition more, although the multi-depot condition
almost always causes a reduction in carbon emissions. From Figure 4, the maximum
reduction provided by vehicle speed was under conditions D1–v3–F2–T1 at a rate of 7.1%.
Consequently, improving the vehicle speed benefits the carbon emissions reductions more
when there is only one depot. When there are multiple depots, carbon emissions can be
reduced to a smaller extent by increasing vehicle speed.

Customer demand (F). There is no doubt that the growth in customer demand leads
to an increase in carbon emissions, especially when the customer distribution is C1 and
C2 (see instances D1–*–F2–* in Table A5). On the other hand, multiple depots can not only
significantly cover the customer requirements but also reduce total carbon emissions. To
a certain extent, the increase in carbon emissions provided by the growing requirements
of customers can be counteracted by multiple depots. In Table A5 in Appendix A, the
growth in customer demands under the single-depot condition increased carbon emissions
by a maximum of 14.5% (see conditions C1–D1–v1–F2–T2); however, under multi-depot
conditions, the vehicles can save 32.8% of the emissions (see conditions C2–D3–v1–F2–T2
and C2–D1–v1–F2–T2).



Sustainability 2022, 14, 1264 12 of 18Sustainability 2022, 14, x FOR PEER REVIEW 1 of 19 
 

 

Figure 4. Difference in reduction rates for different vehicle speeds. 

Service time (t). Changes in the service time do not significantly affect carbon emis-

sions reductions. The results in Table A5 demonstrate that more flexible service time to 

customers can reduce total carbon emissions, but the impact is limited. To improve the 

comparison, Table A6 in Appendix A compares the results when the service time is 

changed from T1 to T2. It can be seen that the demand-based service time can reduce car-

bon emissions more when the customer distribution is a type R (see R1 and R2). Moreover, 

when multiple depots are applied, the reduction obtained from T2 instantly becomes ir-

relevant, with an average reduction of 0.5% in the multi-depot mode. 

Overall, carbon emissions reductions provided by multiple depots is the most useful 

and straightforward approach when other costs are not considered. From the preceding 

analysis, we demonstrate that increasing the number of depots and vehicle speed is effec-

tive in reducing carbon emissions. When facing customer demand growth, increasing the 

number of depots is an efficient way to both cover customer demands and reduce carbon 

emissions. Based on this study, changing the service time for each customer according to 

their demands can also reduce carbon emissions, although the reduction is small. 

6. Conclusions 

In this study, we identified conditions under which multiple depots can be utilized 

to effectively reduce carbon emissions. A branch-and-price algorithm was proposed to 

obtain the optimal solution of the instance. Based on the results, we accurately evaluated 

the carbon emissions reductions potential for the multi-depot mode over the single-depot 

mode. Numerous experiments were conducted, and a maximum reduction of 37.6% in 

carbon emissions was achieved using the multi-depot mode with other factors. We also 

analyzed the influence of vehicle speed, customer demand, and service time on the carbon 

emissions reductions caused by multiple depots. Different customer distributions also af-

fected the reduction in carbon emissions. Consequently, we propose the following recom-

mendations for effective measures in carbon emissions reductions: 

• Without considering other costs, the multi-depot mode is the most useful and bene-

ficial way to reduce carbon emissions, especially when the customer distribution is 

RC (semi-clustered). Based on our tests, carbon emissions can be effectively reduced 

by a maximum of 37.6%. 

• The single-depot mode benefits more from improving the vehicle speed to reduce 

carbon emissions, and at most a 7.1% reduction can be achieved by changing the 

Commented [M13]: Please add explanation for 

“*”. 

Figure 4. Difference in reduction rates for different vehicle speeds, where the first asterisk (*)
represents the condition of the number of depots and the second asterisk represents the condition of
vehicle speed.

Service time (t). Changes in the service time do not significantly affect carbon emissions
reductions. The results in Table A5 demonstrate that more flexible service time to customers
can reduce total carbon emissions, but the impact is limited. To improve the comparison,
Table A6 in Appendix A compares the results when the service time is changed from T1 to
T2. It can be seen that the demand-based service time can reduce carbon emissions more
when the customer distribution is a type R (see R1 and R2). Moreover, when multiple
depots are applied, the reduction obtained from T2 instantly becomes irrelevant, with an
average reduction of 0.5% in the multi-depot mode.

Overall, carbon emissions reductions provided by multiple depots is the most useful
and straightforward approach when other costs are not considered. From the preceding
analysis, we demonstrate that increasing the number of depots and vehicle speed is effective
in reducing carbon emissions. When facing customer demand growth, increasing the
number of depots is an efficient way to both cover customer demands and reduce carbon
emissions. Based on this study, changing the service time for each customer according to
their demands can also reduce carbon emissions, although the reduction is small.

6. Conclusions

In this study, we identified conditions under which multiple depots can be utilized to
effectively reduce carbon emissions. A branch-and-price algorithm was proposed to obtain
the optimal solution of the instance. Based on the results, we accurately evaluated the
carbon emissions reductions potential for the multi-depot mode over the single-depot mode.
Numerous experiments were conducted, and a maximum reduction of 37.6% in carbon
emissions was achieved using the multi-depot mode with other factors. We also analyzed
the influence of vehicle speed, customer demand, and service time on the carbon emissions
reductions caused by multiple depots. Different customer distributions also affected the
reduction in carbon emissions. Consequently, we propose the following recommendations
for effective measures in carbon emissions reductions:

• Without considering other costs, the multi-depot mode is the most useful and beneficial
way to reduce carbon emissions, especially when the customer distribution is RC
(semi-clustered). Based on our tests, carbon emissions can be effectively reduced by a
maximum of 37.6%.
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• The single-depot mode benefits more from improving the vehicle speed to reduce
carbon emissions, and at most a 7.1% reduction can be achieved by changing the
vehicle speed. On the other hand, improving the speed of vehicles is the most direct
method of reducing carbon emissions without changing other factors.

• The growth in customer requirements could cause more greenhouse gases to be
emitted into the environment. However, this type of growth in carbon emissions can
be counteracted somewhat by multiple depots.

• The service time to customers has little effect on carbon emissions, especially when
multiple depots are utilized.

Limited to the current crowd traffic condition, it seems hard to increase the vehicle
speed to reduce carbon emissions. Companies should provide their service during off-peak
periods to not only reduce carbon emissions but also improve operational efficiency. On the
other hand, carbon emissions reduction could be further benefited by appropriate depots,
this will definitely be a long-term benefit for both companies and the environment.

Since the data used in this study comes from the Solomon benchmark instances,
more practical instances would be considered in future research. Moreover, the growing
popularity of hybrid and electric vehicles has spurred a lot of research into greener, more
efficient, more sustainable, and less environmentally damaging transportation. In future
research, we will analyze the benefits of using hybrid and electric vehicles with multiple
rechargeable depots.
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Appendix A

Table A1. Typical vehicle parameter values.

Notation Description Typical Values

Q Capacity (Kg) 1200
w Weight of empty vehicle (Kg) 1890
ρ Air density (kg/m3) 1.2041
A Frontal surface of the vehicle (m2) 4
g Gravitational constant (m/s2) 9.81
ζ Fuel-to-air mass 1
φ Declination of the road 0

Cd Coefficient of aerodynamic drag 0.7
Cr Rolling resistance 0.01
v Vehicle velocity (m/s) 11.67 (42 km/h)
at Acceleration (m/s2) 0
K Heating value of typical diesel fuel (kJ/g) 44
Nf Engine friction factor (kJ/rev/liter) 0.2
Ne Engine speed (rev/s) 40
Nd Engine displacement (liters) 5
ε Vehicle drive train efficiency 0.4
ω Efficiency parameter for diesel engines 0.9
γ Index of fuel to carbon emission 3.164
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Table A2. Computational results of solved instances for the one-depot mode.

Inst #Root #Opt Gap (%) Time Inst #Root #Opt Gap (%) Time

r101 619.29 621.63 0 6.06 c106 333.74 357.34 0 73.25
r102 533.2 538.51 0 57.55 c107 332.09 354.81 0 186.84
r103 471.12 479.95 0 157.97 c108 331.08 351.68 0 68.57
r105 544.62 545.92 0 24.66 c201 415.62 429.39 0 16.78
r106 491.88 498.01 0 145.28 c202 413.03 426.29 0 42.78
r107 449.16 461.88 0 1098.33 c203 407.62 418.69 0 217.94
r108 421.76 432.3 0 2184.29 c204 405.75 416.07 0 356.88
r109 467.48 480.71 0 1057.52 c205 412.02 417.33 0 4.09
r110 438.94 455.9 0 2568.15 c206 411.38 420.75 0 25.43
r111 441.47 451.95 0 1214.95 c207 409.74 416.6 0 63.51
r112 420.34 431.22 0 1260.88 c208 410.85 417.3 0 37.47
r201 568.16 574.04 0 41.44 rc101 575.03 641.85 0 2862.65
r202 509.85 517.28 0 215.62 rc102 557.88 632.61 6.5 -
r203 457.64 465.23 0 56.63 rc103 544.56 623.34 7.3 -
r204 426.48 439.92 0 10050.5 rc104 528.58 613.63 7.6 -
r205 499.6 505.13 0 9.54 rc105 560.5 634.26 6.3 -
r206 465.84 472.64 0 70.96 rc106 544.24 627.64 6.7 -
r207 437.52 444.95 0 53.06 rc107 529.94 614.67 6.7 -
r208 421.13 431.82 0 594.92 rc108 526.77 612.87 7.5 -
r209 458.34 471.44 0 456.34 rc201 601.16 657.51 0 10.42
r210 473.27 485.67 0 630.78 rc202 569.33 643.53 6.2 -
r211 431.79 446.73 0 3311.23 rc203 545.63 623.4 7.2 -
c101 333.74 358.23 0 41.24 rc204 528.58 618.69 8.3 -
c102 331.14 350.98 0 608.34 rc205 572.11 642.7 5.5 -
c103 328.87 341.78 0 3455.21 rc206 558.95 633.72 5.2 -
c104 326.24 345.89 0.3 - rc207 539.37 625.4 6.9 -
c105 333.3 355.19 0 54.46 rc208 527 616.66 8 -

Table A3. Computational results of solved instances for the three-depot mode.

Inst #Root #Opt Gap (%) Time Inst #Root #Opt Gap (%) Time

r101 582.78 587.02 0 6.76 c106 298.49 316.21 0 37.11
r102 507.82 510.61 0 77.11 c107 295.39 313.2 0 578.21
r103 453.21 459.13 0 99.28 c108 292.73 310.01 1 -
r104 412.9 422.36 0 299.61 c109 289.47 308.93 2 -
r105 510.64 513.55 0 6.7 c201 376.48 382.65 0 14.25
r106 462.23 469.22 0 22.13 c202 373.42 382.65 0 320.51
r107 431.76 441.38 0 112.85 c203 368.99 378.22 0 1397.41
r108 402.78 414.55 0 1945.46 c204 363.45 372.66 0.2 -
r109 449.89 460.36 0 202.54 c205 374.3 381.96 0 131.24
r110 417.46 428.28 0 337.39 c206 373.35 382.94 0 409.82
r111 422.36 426.76 0 858.39 c207 368.89 380.22 0.1 -
r112 399.77 408.82 0 79.52 c208 373.26 381.61 0 3761.58
r201 543.26 545.41 0 6.12 rc101 511.65 562.53 0 102.07
r202 488.71 494.15 0 64.8 rc102 492.6 547.69 4.8 -
r203 443.09 450.11 0 187.42 rc103 481.88 540.44 6.1 -
r204 408.66 414.83 0 1453.08 rc104 466.18 526.81 6.8 -
r205 485.93 490.96 0 76.76 rc105 496.12 547.88 4.6 -
r206 444.42 449.89 0 142.9 rc106 481.81 538.73 5.8 -
r207 420.37 428.6 0 436.83 rc107 466.88 528.23 6.7 -
r208 400.37 409.86 0 519.95 rc108 464.32 526.58 7.1 -
r209 436.66 450.21 0 371 rc201 531.27 565.91 0 7.17
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Table A3. Cont.

Inst #Root #Opt Gap (%) Time Inst #Root #Opt Gap (%) Time

r210 451.41 462.61 0 460.02 rc202 497.67 549.49 4.5 -
r211 408.54 418.76 0 344.8 rc203 482.54 540.44 6.1 -
c101 298.87 315.83 0 31.64 rc204 466.53 526.81 6.6 -
c102 292.8 312.26 0 912.02 rc205 504.53 550.79 3 -
c103 286.97 306.53 0.7 - rc206 498.52 547.25 4.3 -
c104 281.41 307.19 2.7 - rc207 477.73 533.32 5.8 -

Table A4. Computational results of solved instances for the five-depot mode.

Inst #Root #Opt Gap (%) Time Inst #Root #Opt Gap (%) Time

r101 539.02 541.61 0 7.61 c106 260.21 275.17 0 50.06
r102 473.02 468.02 0 12.53 c107 255.02 264.13 0 1452.71
r103 417.14 418.63 0 35.93 c108 252.27 266.35 0.7 -
r104 381.99 383.95 0 298.49 c109 249.67 263.47 1.3 -
r105 478.14 478.14 0 3.52 c201 304.57 318.2 0 17.61
r106 433.97 433.97 0 6.8 c202 305.23 311.62 0 165.52
r107 405.69 407.49 0 116.02 c203 299.92 309.91 0 4126.34
r108 377.21 376.99 0 748.11 c204 295.9 299.98 0 1003.86
r109 433.94 439.73 0 260.2 c205 305.07 310.26 0 60.42
r110 396.01 402.43 0 139.63 c206 299.6 309.12 0 111.74
r111 399.68 404.8 0 210.78 c207 296.97 305.29 0 3025.16
r112 374.49 378.51 0 186.33 c208 299.63 305.61 0 1042.35
r201 498.87 498.87 0 2.64 rc101 407.78 444.92 0 84.55
r202 460.05 461.44 0 24 rc102 392.11 433.18 5.6 -
r203 408.57 408.79 0 21.93 rc103 382.91 420.91 5.2 -
r204 379.49 384.96 0 347.49 rc104 369.11 410.31 7.6 -
r205 464.48 466.34 0 20.89 rc105 396.54 432.27 3.7 -
r206 420.75 423.88 0 56.49 rc106 378.07 415.46 5.2 -
r207 394.9 396.77 0 66.31 rc107 371.11 408.31 6.2 -
r208 375.03 380.19 0 636.76 rc108 367.37 405.56 7.3 -
r209 419.14 422.96 0 11.88 rc201 418.12 449.29 0 30.22
r210 419.51 425.24 0 225.15 rc202 397.94 434.96 4 -
r211 384.17 389.77 0 84.78 rc203 389.65 419.17 4.7 -
c101 260.59 276.72 0 28.18 rc204 369.11 407.9 7.1 -
c102 254.32 271.95 1.8 - rc205 407.97 438.02 0 630.3
c103 245.91 263.21 1.8 - rc206 397.08 427.58 2.1 -
c104 240.05 267.48 5.8 - rc207 379.87 416.19 5.6 -
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Table A5. Average reduction of carbon emissions (%) for combination of multiple conditions.

Condition
D1 Avg. R

(%)

D2 Avg. R
(%)

D3 Avg. R
(%)R1 R2 C1 C2 RC1 RC2 R1 R2 C1 C2 RC1 RC2 R1 R2 C1 C2 RC1 RC2

v1–F1–T1 0 0 0 0 0 0 0 4.8 4.7 11.4 9.3 14 14 9.7 11.6 11.7 23.3 26.4 32.7 32.8 23.1
v2–F1–T1 4.9 4.7 4.3 4.4 4.3 4.4 4.5 9.6 9 15.3 13.2 17.5 17.8 13.7 15.9 15.7 26.3 29.8 35.5 35.7 26.5
v3–F1–T1 7.4 6.5 6.1 5.8 6.5 6.6 6.5 11.6 11 16.6 14.9 19.6 19.7 15.6 18.1 17.3 27.6 31.2 36.9 36.9 28
v1–F2–T1 −4.7 −5.1 −14.6 −12.3 −1 −1.2 −6.5 0.9 0.3 1.2 0 4.1 4.5 1.8 8.4 8.2 17.2 21.2 23.8 24.3 17.2
v2–F2–T1 0.4 −0.3 −9.5 −7.2 3.3 3.1 −1.7 5.3 5 5.6 4.4 7.9 8.3 6.1 12.5 12.5 20.8 23.8 27.5 27.5 20.8
v3–F2–T1 2.7 1.9 −6.8 −5.1 5.4 5.2 0.6 7.7 7.2 7.7 6.5 10.5 10.1 8.3 14.8 14.5 22.6 25.5 28.8 29.1 22.6
v1–F1–T2 2.8 1.4 0.4 0 0.9 0.8 1.1 7.4 6.7 11.3 9.4 14.3 14.4 10.6 13.9 12.9 23.3 26.9 33.5 33.1 23.9
v2–F1–T2 6.9 5.9 4.4 4.2 5 5 5.2 11.3 10.7 14.9 13.4 18 18.1 14.4 17.5 16.8 26.5 30.1 35.9 35.8 27.1
v3–F1–T2 9.1 8.2 6.5 6.3 7 7.1 7.4 13.5 13.3 16.9 15.2 19.9 19.9 16.5 19.4 18.7 28.1 31.7 37.6 37.4 28.8
v1–F2–T2 −3.4 −4.2 −14.5 −12.2 −0.7 −0.9 −6 1.7 1.5 1.5 0.4 4.2 3.7 2.2 9.7 9.3 17.4 20.6 23.8 23.8 17.4
v2–F2–T2 1.5 0.3 −9.6 −7.3 3.7 3.5 −1.3 6.3 5.8 5.7 4.7 7.8 8.1 6.4 13.7 13.2 21 24.6 27.2 26.8 21.1
v3–F2–T2 3.5 2.6 −7.1 −5 5.8 5.7 0.9 8.4 7.9 7.7 6.7 9.8 9.9 8.4 15.7 15 22.7 26 29.2 28.7 22.9

Table A6. Average reduction of T2 vs. T1 in same conditions.

Condition
D1 Avg. R

(%)

D2 Avg. R
(%)

D3 Avg. R
(%)R1 R2 C1 C2 RC1 RC2 R1 R2 C1 C2 RC1 RC2 R1 R2 C1 C2 RC1 RC2

v1–F1 2.8 1.4 0.4 0 0.9 0.8 1.1 2.6 2 −0.1 0.1 0.3 0.4 0.9 2.3 1.2 0 0.5 0.8 0.3 0.8
v2–F1 2 1.2 0.1 −0.2 0.7 0.6 0.7 1.7 1.7 −0.4 0.2 0.5 0.3 0.7 1.6 1.1 0.2 0.3 0.4 0.1 0.6
v3–F1 1.7 1.7 0.4 0.5 0.5 0.5 0.9 1.9 2.3 0.3 0.3 0.3 0.2 0.9 1.3 1.4 0.5 0.5 0.7 0.5 0.8
v1–F2 1.3 0.9 0.1 0.1 0.3 0.3 0.5 0.8 1.2 0.3 0.4 0.1 −0.8 0.4 1.3 1.1 0.2 −0.6 0 −0.5 0.2
v2–F2 1.1 0.6 −0.1 −0.1 0.4 0.4 0.4 1 0.8 0.1 0.3 −0.1 −0.2 0.3 1.2 0.7 0.2 0.8 −0.3 −0.7 0.3
v3–F2 0.8 0.7 −0.3 0.1 0.4 0.5 0.3 0.7 0.7 0 0.2 −0.7 −0.2 0.1 0.9 0.5 0.1 0.5 0.4 −0.4 0.3
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23. Demir, E.; Bektaş, T.; Laporte, G. A Comparative Analysis of Several Vehicle Emission Models for Road Freight Transportation.
Transp. Res. Part Transp. Environ. 2011, 16, 347–357. [CrossRef]
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