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Abstract: Traditional integrated modeling (IM) is based on developing and aggregating all relevant
(sub)models and data into a single integrated linear programming (LP) model. Unfortunately,
this approach is not applicable for IM under asymmetric information (ASI), i.e., when “private”
information regarding sectoral/regional models is not available, or it cannot be shared by modeling
teams (sectoral agencies). The lack of common information about LP submodels makes LP methods
inapplicable for integrated LP modeling. The aim of this paper is to develop a new approach to link
and optimize distributed sectoral/regional optimization models, providing a means of decentralized
cross-sectoral coordination in the situation of ASI. Thus, the linkage methodology enables the
investigation of policies in interdependent systems in a “decentralized” fashion. For linkage, the
sectoral/regional models do not need recoding or reprogramming. They also do not require additional
data harmonization tasks. Instead, they solve their LP submodels independently and in parallel
by a specific iterative subgradient algorithm for nonsmooth optimization. The submodels continue
to be the same separate LP models. A social planner (regulatory agency) only needs to adjust the
joint resource constraints to simple subgradient changes calculated by the algorithm. The approach
enables more stable and resilient systems’ performance and resource allocation as compared to
the independent policies designed by separate models without accounting for interdependencies.
The paper illustrates the application of the methodology to link detailed energy and agricultural
production planning models under joint constraints on water and land use.

Keywords: asymmetric information; linkage; nonsmooth optimization; subgradient; integrated
modeling; food-energy-water-land nexus; machine learning

1. Introduction

The increasing interdependencies among food-energy-water-environmental (FEWE)
sectors require integrated coherent planning and coordinated policies for sustainable
development and security nexus. The sectors become more interconnected because they
utilize common, often rather limited, resources, both natural (e.g., land, water, air quality)
and socio-economic (e.g., investments, labor force). For example, land and water are needed
not only for agricultural production but also for hydropower generation, coal mining and
processing, power plants cooling, renewable energy, and hydrogen production.

The energy sector is one of the largest and fast-growing water consumers. The more
water is used by the energy sector, the more vulnerable energy production and production
in other water-dependent sectors, becomes [1]. Climate change concerns and rapid energy
sector transition towards renewable energy sources tighten the links between energy and

Sustainability 2022, 14, 1255. https://doi.org/10.3390/su14031255 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14031255
https://doi.org/10.3390/su14031255
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-9864-9120
https://orcid.org/0000-0003-2568-6179
https://doi.org/10.3390/su14031255
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14031255?type=check_update&version=3


Sustainability 2022, 14, 1255 2 of 14

agricultural markets. Agricultural commodities have become an important energy resource
because of biofuels mandates. Vulnerability of crop yields, increasing grain demand, and
price volatility directly and indirectly influence the market for fuel transportation and
transportation costs [2]. At the same time, crude oil, gas, and electricity markets and prices
have an effect on agricultural production costs and prices [2–4].

Additional linkages and interactions in FEWE systems emerge due to the introduc-
tion of new technologies, e.g., intermittent renewables, advanced irrigation, hydrogen
production, water desalination, etc. The interdependencies can trigger systemic failures
if sectoral policies ignore cross-sectoral interconnectedness [5]. The FEWE security nexus
management requires an integrated approach to understand and deal with the numerous
interactions between the FEWE systems [6]. This approach, compared to independent
analysis, contributes immensely to sustainable development within and across sectors
and scales.

Comprehensive sectoral models are being developed for planning and policy assess-
ment in respective sectors. These models account for multiple details of sectoral production
planning and resource utilization, including the analysis of factors and drivers determining
demand, supply, and commodity price relationships [7,8]. For example, energy sector
models investigate the interactions between renewables and fossil fuels, address energy
market volatilities, and analyze the effects of new technologies and policy interventions
to develop energy scenarios [7–12]. Land use and agricultural models support decision
making regarding agricultural policies, analyze land potentials for the production of suffi-
cient agricultural commodities to fulfill food security and biofuels mandates [13–15], and
assess the effects of policy responses, including export bans and high export taxes, to cope
with production shortfalls and offset increasing prices [2]. As a rule, these models con-
sider and optimize sectoral goals accounting for respective production, demand, resource
availability, and environmental quality constraints. Goals, production targets, resource
demand, and quality in other sectors are hardly, if at all, accounted for. Thus, the limitation
of the detailed sectoral models for FEWE security nexus lies in their restricted ability to
consider dependencies and interactions beyond the defined sectoral system [2,3,12], e.g.,
cross-sectoral resource competition and joint production and demand relationships. Sec-
toral models cannot properly account for the objectives of a larger system. The feedbacks
and interactions among FEWE systems are often analyzed through CGE (Computational
General Equilibrium) and/or IAMs (Integrated Assessment models) [6]. These models,
unfortunately, suffer from the lack of necessary details of sectoral models. They involve
considerable simplifications and aggregations and, therefore, may not be sufficiently fit to
provide insightful conclusions [16–19].

In this situation, the analysis of systemic regulations for FEWE security nexus can rely
on distributed models’ optimization and linkage methods enabling the establishment of
relationships and dialogues between separate models of FEWE systems for the analysis of
coordinated solutions without requiring to share or reveal systems-specific information.

In this paper, we consider the problem of linking sectoral and/or regional linear
programming (LP) models into a cross-sectoral integrated model (IM) in the presence of
joint constraints when “private” information regarding sectoral/regional models’ is not
available or cannot be shared by modeling teams (sectoral agencies), i.e., under asymmetric
information (ASI). Such linkage is necessary for producing truly integrative management
scenarios, especially when sectors utilize and compete for common resources or act under
joint regulatory constraints or environmental mandates. The approach provides a means
of decentralized cross-sectoral coordination and enables the investigation of policies in
interdependent systems in a “decentralized” fashion. This facilitates more stable and
resilient systems’ performance and resource allocation as compared to the independent
policies designed by separate models without accounting for interdependencies.

Cross-sectoral policy analysis in the presence of joint constraints can be addressed,
e.g., with the generalized Nash equilibrium (GNE) approach [20]. Böhringer and Ruther-
ford (2009) [21] consider linking energy system mathematical programming models into
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a general equilibrium (GE) model of the overall economy. Ermoliev and von Winterfeldt
(2012) [22] discuss the game-theoretic approaches, e.g., the Stackelberg leadership model,
and their complexity due to the assumptions that each player (sector/region) has infor-
mation about other players’ goals and constraints. Traditional integrated deterministic
optimization modeling also assumes full knowledge about the systems. It incorporates
goals, individual and joint constraints, and data of all systems into a single code (hard
integration), which can be considered as a multi-criteria optimization problem [23].

Our approach for linking separate optimization models under ASI is based on the
parallel solving of equivalent nonsmooth optimization models by a simple iterative stochas-
tic quasigradient (SQG) procedure [24,25] based on subgradients or generalised gradi-
ents [25–27] converging to an optimal welfare-maximizing linkage solution, i.e., to the
solution of a “hard-integrated” model. This approach does not require sharing details
about models’ specifications. We can assume there is a network of distributed computers
connecting computer models of a “social planner” (decision-makers or regulatory agencies),
who attempt to achieve the best result for all sectors/regions (parties) involved. The linkage
procedure can be interpreted as a kind of a “decentralized market system” [28]. Accord-
ing to this procedure, sectors/regions independently and in parallel optimize their goal
functions under individual constraints without considering joint constraints. In general,
joint constraints impose restrictions on total production, resource use, and emissions by all
sectors/regions. The constraints can establish supply–demand relationships between the
systems enabling the estimation of optimal production, resource use, and emission quotas
for each system. The balance between the total energy (including biofuels) production and
demand defines energy security; agricultural production and consumption reflect food
security; total emissions and pollution constraints correspond to environmental security.
The joint FEWE constraints satisfaction establishes the FEWE security nexus [29]. After in-
dependent optimization using initial approximations of various (e.g., production, resource
use, emission) quotas, the sectors/regions provide the social planner with the informa-
tion on their actual production, resource use, and respective shadow prices. The planner
checks if the joint constraints are fulfilled. If not, i.e., there is “excess demand” or “excess
supply” (i.e., total resource use, production, emissions by all systems are higher/lower
than required), the planner revises the individual systems’ quotas via shifting their current
approximation in the direction defined by the corresponding dual variables. Thus, shadow
prices signal systems to adjust their activities accordingly. Formally, the procedure is
described in Section 2.3 and Appendix A.

In this way, the linkage allows us to avoid the “hard linking” of models in a single
code, which is not possible because the systems do not want to share the information or
because the individual models are too detailed and complex to be “hard-linked”. The
approach saves reprogramming efforts and allows parallel distributed (decentralized)
computations of sectoral models instead of a large-scale integrated (centralized) model. This
also preserves the original models in their initial state for other linkages. The use of detailed
sectoral and regional models instead of their aggregated simplified versions also enables
us to account for critically important local details. Similar computerized decentralized
“negotiation” processes between distributed models (agents) have been developed for
the design of robust carbon trading markets (e.g., [30] and references therein) and for the
allocation of water quotas (e.g., [31]). The linkage procedure can be considered as a new
machine learning algorithm, namely, as a general endogenous reinforced learning problem
of how software agents (models) take decisions in order to maximize the cumulative reward
(total welfare) [32].

The paper is organized as follows. Section 2 discusses the problem of models’ linkage
under joint constraints. Section 2.1 presents a short overview and the main shortfalls of
several existing approaches, Section 2.2. formulates the problem of distributed LP models’
linkage in the presence of joint resource constraints and ASI, and Section 2.3 outlines
the linkage solution procedure based on the parallel solving of equivalent nonsmooth
optimization model following a simple iterative subgradient algorithm. The details and
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main properties of the algorithms are presented in the Appendix A. Section 3 illustrates
the application of the methodology to link detailed energy and agricultural production
planning models under joint constraints on water and land use. In addition, the joint con-
straints can impose restrictions on total energy production by the energy sector (electricity,
gas, diesel, etc.) and land use sector (biodiesel, methanol); total energy use by energy
and agricultural sectors; total agricultural production by distributed farmers/regions, etc.
Section 4 concludes and outlines potential further extensions of the approach, for example,
to include more details of energy and natural resources dynamics in general.

2. Linking Distributed Optimization Models under Joint Resource Constraints
2.1. Social Equilibrium Game Approach

In the absence of coordination between systems (sectors, regions), they can act selfishly
and aim at maximizing their own objective function. They attempt to secure as high resource
quotas as possible. Such a situation can be modeled using the non-cooperative game-
theoretic framework. For example, social equilibrium games [20] have been formulated
to include joint constraints. The generalized Nash equilibrium (GNE) solution, if it exists,
allocates production and resources among systems (sectors/regions), fulfilling the joint
constraint. However, the decisions are made independently, and collective efforts for
managing common resources are ignored. Importantly, the existence, uniqueness, and
stability of the GNE, as well as a realistic large-scale implementation of this concept, cannot
be guaranteed, as emphasized by Harker (1991) [20]. Moreover, in [20], it is highlighted
that the GNE solutions set are rarely connected. Hence, a complete analysis of equilibriums,
in this case, is a complex task, requiring additional assumptions.

The analysis can become even more complex if the joint constraints are based on the
equilibrium (optimality) conditions arising from the problem formulated in the form of a
principal-agent game or a leader-follower Stackelberg game [22]. For example, in the case
of nonsmooth goal functions required for linking systems under ASI (distributed models’
optimization), the use of optimality conditions would require implicit sets of generalized
gradients. Due to the computational complexity, heuristic methods are often used; however,
they lack rigorous convergence proof.

Linking bottom-up mathematical programming models of the energy system into a
top-down general equilibrium model of the overall economy is discussed by Böhringer and
Rutherford in [21]. The paper shows that the formulation of market equilibrium conditions
using complementarity equations permit the integration of models, but the convergence
of the iterative procedure integrating the models cannot be guaranteed. In specific cases,
models of general equilibrium are reduced to optimization problems [33].

Ermoliev and von Winterfeldt (2012) [3] demonstrate that the complexity of the game-
theoretic approaches is due to quite unrealistic assumptions that each player (sector/region)
is in possession of the knowledge on exact and unique responses of other players. Therefore,
even in the simplest linear cases, this assumption leads to extremely complex discontinuous
problems. More realistic assumptions of uncertain response functions in combination with
a concept of robust decisions results in stable large-scale solutions.

There exists a vast literature on important problems and methods for distributed
systems’ optimization under joint constraints, e.g., optimal control and economic dispatch
in smart grids [34], agricultural production planning for the multi-farmer systems [35],
network optimization [36–38], and optimal transportation problems [39–41]. Yet, these
approaches consider the optimization of a total objective function representing a sum of
individual objective functions of the involved systems. Thus, the problems assume full
information regarding the systems is available to a social planner. They are formulated
similarly to traditional integrated “centralized” optimization modeling, combining goals,
constraints, and data of all models into a single code.

Our problem is more complex as it deals with the coordination of decentralized
systems’ models in the presence of joint constraints and ASI. In this case, the approach is
based on a specific iterative nonsmooth optimization procedure (see Sections 2.2 and 2.3
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and Appendix A). As we noted, the integrated solution of separate LP models under ASI
cannot be accomplished by LP methods. In Section 2.2, we formulate the problem of
distributed systems optimization in the presence of joint resource constraints under ASI,
and in Section 2.3, we present the models’ linkage algorithm.

2.2. LP Models under Joint Constraints

Let us formulate the basic problem of separate sectoral or regional LP models opti-
mization under joint resource constraints. Consider separate models of K systems in the
following LP form: 〈

c(k), x(k)
〉
→ max (1)

x(k) ≥ 0 (2)

A(k)x(k) ≤ b(k) (3)

where components of vector x(k) are variables to be determined, vector b(k) defines system-
specific demand or resource constraints, and vector c(k) corresponds to net unit profits,
k = 1, 2, . . . , K. The dependence of system k on common resources are defined by con-
straint (4)

B(k)x(k) ≤ y(k) (4)

where y(k) defines resource quota allocated to system k. Therefore, Formula (3) represents
system-specific constraints and Formula (4) establishes systemic relations among systems
by allocating quotas y(k). The quotas y(k) fulfil the joint resource constraint on the use of
common resources

K

∑
k=1

D(k)y(k) ≤ d, (5)

where matrix D(k) defines the marginal resource use by system k and d is the total available
resource, d ≥ 0. Thus, each system k maximizes its objective function (1) by choosing x(k)

and y(k) from the feasible set defined by (2) and (3), so that (4) and (5) are also fulfilled.
In the presence of full information regarding a system, the problem of models’ link-

age can be formulated and solved by a central planner (regulator) as a total net profit
maximization

∑K
k=1

〈
c(k), x(k)

〉
→ max (6)

s.t. to constraints (2)–(5), k = 1, 2, . . . , K. In this model, the net profits are defined as the
amount of money left after subtracting production costs from the total profit. In a more
general case, the net profits can account for taxes, interest, and other expenses.

However, when the information on b(k), c(k), A(k), B(k), x(k) of system k is not available
to the planner, the integrated LP model (2)–(6) under ASI cannot be solved by LP method
due to the lack of common information about submodels.

We propose the consistent approach for linking distributed optimization models under
ASI based on the parallel solving of equivalent nonsmooth optimization models following
a simple iterative subgradient algorithm. The convergence and other properties of the
algorithm are presented in Appendix A. The proposed linkage approach does not require
full, common information regarding the models’ specification, and it can be seen as an
endogenous reinforced learning algorithm describing how distributed agents (models) can
make decisions to maximize the “cumulative reward”. Section 2.3. outlines the algorithm.

2.3. Nonsmooth Model and Linking Algorithm

The basic nonsmooth optimization model under ASI can be solved by a specific
iterative subgradient linkage algorithm. For a given vector y =

(
y(1), . . . , y(K)

)
let us

denote by F(y) the optimal value of function (6) under constraints (2)–(4). Therefore,
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F(y) = ∑K
k=1 f (k)(y), where f (k)(y) =

(
c(k),

(
x(k)(y)

)
are concave nonsmooth functions.

In this function x(k)(y) are optimal solutions of (1)–(4).
The required linkage algorithm is defined as a subgradient procedure maximizing

function F(y) s.t. the joint constraints (5). These constraints identify the feasible set of the
algorithm, which can be denoted as Y. Therefore, an optimal solution maximizing F(y),
y∈ Y, also defines an optimal linkage or a solution of the integrated LP model under ASI.
In the following, we assume the existence of solutions x(k)(y), y∈ Y, for all k.

The linkage algorithm can be summarized as follows. Imagine there is a network
of distributed computers connecting submodels, say sectors, with a computer of a social
planner. At the initial step, sectors k, k = 1, . . . , K, use arbitrary chosen vectors y0(k)

of resource quotas. They submit the information on y0(k) to the central computer. The
computer updates quotas y0 =

(
y0(1), . . . , y0(K)

)
by projecting them onto set Y, defining

a first feasible approximation y1 =
(

y1(1), . . . , y1(K)
)

. All sectors independently solve

models (1)–(4) with resource quotas y1, calculate shadow prices v1(k) of common resources
(constraint (4)), and submit them to the central computer. The central computer calculates
y1 + ρ1v1 with a step-size ρ1 such that the product ρ1v1 corresponds to the scale of y1.
Vector y1 + ρ1v1 is projected onto Y to derive quotas y2. At the iteration s + 1, the algorithm
derives the next approximation of quotas ys+1 =

(
ys+1(1), . . . , ys+1(K)

)
by shifting ys in the

direction of vector vs =
(

vs(1), . . . , vs(K)
)

, according to the following procedure.

ys+1 = πY(ys + ρsvs), s = 1, 2, . . . , (7)

where ρs is a step-dependent multiplier, which is a method’s parameter, πY(·) is the orthog-
onal projection operator onto set Y defined by (5). Vector vs is a generalized gradient or a
subgradient of function F(y) at y = ys. The step-size ρs is chosen from rather general and
natural requirements: ρs ≥ 0, ρs → 0 , ∑∞

s=1 ρs = ∞, (e.g., ρs = 1/s), because subgradients
(generalized gradients) are not, in general, the increasing directions of functions.

At each iteration, all sectors independently calculate stopping criteria
εk(s) =

(
b(k), us(k)(ys)

)
+
(

ys(k), vs(k)(ys)
)
− wk

(
c(k), xs(k)(ys)

)
and submit values εk(s)

to the central computer. If ∑k εk(s) ≤ ε ≥ 0, where ε is an admissible accuracy, then the
algorithm stops. Otherwise, it continues further.

The convergence theorem shows that the parallel independent optimization (linkage)
of sectoral/regional models according to this algorithm without revealing sectoral/regional
information is possible due to the additional requirement ∑s ρ2

s < ∞. This allows us to
prove the convergence of solutions (linkages) ys rather than the convergence of objective
function F(ys). The convergence of the proposed linkage algorithm under ASI is based on
the theory of (continuously) non-differentiable optimization. The details of convergence
theorem, stopping criterion, subgradients, and computing projections can be found in
Appendix A.

3. Linking Energy and Agricultural Models for Food-Energy-Water Nexus

The proposed iterative algorithm has been applied for linking energy and agricultural
sectoral models under joint constraints on water and land use. Both models can be used for
optimal energy and agricultural production and allocation planning. In the following, we
only briefly outline the models. Further details can be found, for example, in [9–11,13–15].
The models are spatially explicit, which allows us to link the models across locations
and thus control local drivers having significant implications on the overall results of
models’ integration.

The energy model incorporates the main stages of energy flows from resources to de-
mands: energy extraction from energy resources, primary energy conversion into secondary
energy forms, transport and distribution of energy to the point of end, and conversion into
products for end-users to fulfill specific demands. The structure of the model is such that it
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can incorporate various energy resources, e.g., coal, gas, crude oil, renewables. Primary
energy sources include coal, crude oil, gas, solar, wind, etc.; secondary energy sources are
fuel oil, methanol, hydrogen, electricity, ammonia, etc.; final energy products are coal, fuel
oil, gas, hydrogen, ammonia, methanol, electricity, etc. Demands for useful energy products
come from main sectors of the economy: industrial, residential, transport, agricultural,
water, and energy. Each technology is characterized by uniting costs, efficiency, lifetime,
emissions, etc. Additional sectoral (and cross-sectoral joint) constraints are imposed to
capture the requirements and the limitations on natural resource use and availability and
investments. The model can include existing technologies, as well as new zero-carbon
green technologies, at the beginning of implementation or even in the research stage, e.g.,
various renewable and carbon-capturing technologies.

The agricultural model includes main crops and livestock production and manage-
ment systems, characterized by systems-specific production costs, water and fertilizer
requirements, emission factors, and other parameters. The supply of crops and livestock
products need to cover food, feed, and biofuel demands and fulfill security constraints. The
food security constraint requires that the energy and nutrients consumption from grain
and livestock products is not less than the required kilocalories and nutrients needed to
satisfy dietary requirements in cereals, vegetables, and animal products (meat and dairy
products). Livestock feeds fulfill livestock dietary requirements in energy intake measured
in megacalories. Biofuel production from crops (and agricultural residues) must fulfill
biofuel mandates. In the model, land uses comprise agricultural (crop and pasture) land,
grassland, and natural land. Land use changes can be regulated by setting regulatory
constraints on land expansion and conversion. Security constraints introduce competition
for limited natural resources (land and water) among different land uses.

Energy and agricultural sectors compete for common land and water resources. As-
sume that regional planners, decision makers, and sectoral authorities pursue a goal to
minimize costs and maximize profits from energy and agricultural production under
various joint balance (supply-demand) and resource constraints to fulfill the energy and
agricultural demands. Namely, the goal is to choose a portfolio of energy technologies
to be installed and operated to produce, convert, and transfer energy products among
locations; and a portfolio of agricultural technologies and management systems to produce
and transfer among locations agricultural commodities fulfilling constraints on natural re-
sources, environmental pollution, and end-product demands. The models include relevant
risk-related systems’ performance criteria. These performance measures enable a better
understanding of how systems (individually and jointly) might perform in the uncertain
environment, in the presence of climate change, weather variability, market uncertainties,
etc. A better understanding of how interdependent energy-water-agricultural systems
may operate and how dangerous impacts of inappropriate decisions may be can motivate
regional and sectoral planners, experts, and involved stakeholders in making cross-sectoral
coherent and risk-adjusted robust decisions [9–11,14,15,22,29].

3.1. Energy, Water, and Agricultural Security Nexus in Shanxi Province, China

In the case study in Shanxi province, China [15], the energy model includes coal-based
industries and processes, i.e., mining, washing, chemical production, and power generation.
Most of the electricity in China comes from coal, which accounted for approximately 65%
of the electricity generation mix in 2019. The coal-based technologies consume a vast
amount of water, for example, for coal mining and washing, coal power plants cooling and
steam production. About 51% of China’s coal reserves lie in areas of high or extreme water
scarcity, and about 30% are in water-stressed regions. Shanxi province is one of them.

The integrated energy-agricultural-water model is formulated as follows. A regional
planner decides on the amount of coal xijlmt and type i, i = 1, . . . , I, to be extracted
in location j, j = 1, . . . , J, transported to location m, m = 1, . . . , M, and converted by
technology t, t = 1, . . . , T. In addition, decisions zkjm are made concerning the amount
of agricultural commodities k, k = 1, . . . , K, to be produced in location j and exported to
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location m. The overall goal of the planner is to minimize the total costs related to energy
(coal) and agricultural production, transportation, and conversion.

Individual sectoral goal functions are formulated as follows

∑
i,j,k,m,t

[
cCP

ij + cCT
ijm + cCC

ijt

]
xijmt → min (8)

and
∑

i,j,k,m,t

[
cAP

kj + cAT
kj

]
zkjm → min (9)

for energy (8) and agricultural (9) sectors. Production costs cCP
ij define all components of

coal production costs, including extraction and washing, of a unit (tonne) coal of type i in
location j, transportation costs cCT

ijm represent all costs associated with transporting unit coal

i from location j to location m, cCC
ijt define conversion costs of a unit coal i by technology t in

location j, cAP
kj denote agricultural production cost per unit (tonne) agricultural commodity

k in location j, and cAT
kjm stands for the transportation costs of a unit agricultural commodity

k from j to m, i = 1, . . . , I; j = 1, . . . , J; m = 1, . . . , M; t = 1, . . . , T; k = 1, . . . , K. The energy
model includes energy security constraints ensuring consumers demands for end products
from coal, for example, electricity, heat, coke, gas, and oil:

∑
ijt

αd
imtxijmt ≥ Dd

m (10)

where αd
ijt denotes the conversion efficiency of coal i in location j by technology t, the end

product d, and Dd
j stands for the end product d demand.

Agricultural production is required to fulfil food security constraints defined by
the sufficient kilocalories and nutrients provided to the population from agricultural
commodities k in location m:

∑
j

zkjm ≥ DA
km (11)

where DA
km is the required production of agricultural commodity k in location m to meet

food security requirements, which can be calculated according to daily nutrients and
calories requirements per capita approved by the World Health Organization (WHO).

Sectoral land use constraints

∑
i,m,t

xijmt
(
1− rij

)
∆ljSij + g ∑

i,m,t
xijmt ≤ LC

j (12)

and
∑
k,m

lkjzkjm ≤ LA
j (13)

incorporate land demand by coal (12) and crop (13) production activities, where LC
j and

LA
j are land use constraints for coal and agricultural sectors in location j, respectively. In

Equation (12), parameter Sij defines the area that can deteriorate (e.g., subside) as a result of
coal mining of unit coal i in location j, ∆lj is a portion of agricultural land overlapping with
a coal field in location j, land reclamation rate (or efficiency rate) is defined by parameter
rij for coal i in location j, and gij is a coal fraction that allows us to calculate the land under
reject material. In Equation (13), parameter lkj defines the area required for a unit crop k
production in location j. Equation (14) introduces the restriction on the total land use in
location j by energy and agricultural sectors

∑
k,m

lkjykjm + ∑
i,m,t

xijmt

(
1− rij

)
∆ljlij + gij ∑

i,m,t
xijmt ≤ Lj (14)
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Total available water Wj for both sectors and sectoral water quotas (WE
j and WA

j )
significantly affect the choice of coal and crop (energy) production technologies through
water utilization constraints:

∑
i,m,t

[wP
ij + wd

ij]xijmt ≤WE
j (15)

and
∑
k,m

wc
kjzkmj ≤WA

j (16)

where WE
j and WA

j are quotas on water use by coal and agricultural activities in location

j, wP
ij defines water requirement for a unit coal i production in location j, wd

ij is water
required for a unit coal i conversion in location j, and wc

km is water required for a unit crop
k production in location j. Water use WE

j for coal and WA
j for agricultural production are

constrained by the total water Wj available in j:

WE
j + WA

j ≤Wj (17)

The models can be extended by including various other constraints, for example, water
and air quality, SO2 and CO2 emissions targets, biofuel production mandates, etc.

In the condition of ASI, the planner does not have full information regarding separate
LP energy ((8), (10), (12) and (15)) and agricultural ((9), (11), (13) and (14)) submodels. To
link the models under joint constraints (14) and (17) we implement procedure (7). Thus,
at the initial step s = 0, individual sectoral models are solved using initial sectoral land
and water quotas LC

j (0), LA
j (0) and WC

j (0), WA
j (0). Resource quotas ys = (LC

j (s), LA
j (s),

WC
j (s), WA

j (s)) at step s are adjusted according to (7) using shadow prices (dual variables)
of energy and agricultural sectors land and water resource constraints

∑
i,m,t

xijmt
(
1− rij

)
∆ljSij + g ∑

i,m,t
xijmt ≤ LC

j (s− 1) (18)

∑
k,m

lkjykjm ≤ LA
j (s− 1) (19)

∑
i,m,t

wP
ijximlt + ∑

i,m,t
wd

ijxijmt ≤WC
j (s− 1) (20)

∑
k,m

wc
kjykmj ≤WA

j (s− 1) (21)

and constraints (14) and (17).

3.2. Selected Results

Results are compared for three cases: 1. Separately optimized energy and agricultural
models; 2. The hard-linked integrated model (one-code model); 3. Separate models
integrated via the linkage procedure (7). In case 1, the sectors are not restricted by joint
resource constraints, and therefore the net profits can be higher than in cases 2 and 3;
however, this is a misleading conclusion. In cases 2 and 3, results show that the iterative
linkage process converges rather quickly. In 10 iterations, the optimal value of the integrated
linked model (case 3) is almost equal to the optimal value of the integrated “hard-linked”
model (case 2). In case 3, the proposed linkage algorithm allows to link models installed
on remote computers through an iterative dialogue establishing optimal redistribution of
water and land quotas among the sectors and locations.

Figure 1 illustrate the non-monotonic convergence of the linkage algorithm for three
different scenarios of initial y0 quotas allocated to energy and agricultural sectors. The
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choice of the step-size ρs in (7) affects the convergence rate, the value of the product ρsνs

must correspond to the value of solutions ys.
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Figure 1. Convergence of the iterative linking procedure in terms of the goal function values F(ys).
Vertical axis displays net profits; the iteration step is marked on the horizontal axis. The three curves
(Scen1, Scen2, Scen3) correspond to three different initial land and water quota scenarios at s = 0.

4. Conclusions

In the paper, we consider the problem of linking separate distributed sectoral and/or
regional optimization models into an inter-sectoral integrated model. The approach for
linking models is based on an iterative algorithm that does not require models to exchange
full information regarding their specifications. The resource quotas for each system and
each resource are recalculated by systems independently and in parallel via shifting their
current approximation in the direction defined by the corresponding dual variables from
the primal sectoral optimization problem. In this way, the approach allows to avoid hard
linking of the models in a single code that saves programming time and enables parallel
distributed computations of sectoral models instead of a large-scale integrated model, i.e.,
addressing the well-known “curse of dimensionality” and large-scale data harmonization
(management). This also preserves the original models in their initial state for other
possible linkages. The proposed computational algorithm is based on an iterative stochastic
quasigradient (SQG) procedure of, in general, nonsmooth nondifferentiable optimization
converging to a socially optimal solution maximizing an implicit nested non-differentiable
social welfare function. The convergence of the algorithm relies on the duality theory
and non-differentiable optimization [20]. The iterative solution procedure can be used for
robust estimation and machine learning problems. In particular, it can be viewed as an
endogenous reinforced learning problem [32].

The iterative SQG-based methods and their stochastic versions are intended for the
robust optimization of deterministic and stochastic systems with a large number of decision
variables and scenarios of uncertainties due to the ability of these methods to link scenario-
simulation and optimization procedures [42,43]. Therefore, the proposed method will
be developed further for linking stochastic models enabling integrated management of
global systemic risks, which are not detectable under traditional independent sectorial
management ignoring cross-sectoral risk exposures. Fundamentally important to the
possible extension of the presented method is the case of stochastic sectoral/regional models
with interdependent systemic uncertainties and risks shaped by decisions of various agents.
This includes the mitigation of floods by new land use decisions, for example, affecting
flood scenarios. As a rule, this makes it impossible to separate scenario-generation and
optimization processes calling for linking both simulation and optimization procedures in
a way similar to algorithm (7), thus combining simulations of scenarios, new optimization
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steps, new simulation of scenarios, and so on. In this case, we can determine new types of
machine learning processes.

In the paper, we referred to linking regional and/or sectoral models. More generally,
the problem can address the linkage of models at different spatial and temporal resolutions
(e.g., local-global, considering more details of energy and natural resources dynamics in
general). Therefore, the linkage problem can be formulated much more generally in terms
of sub-models and integrated models, and the approach presented in this paper can still
be applicable.

The linkage of models is, in a sense, opposite to decomposition methods. While
in the decomposition (e.g., [44,45]), we split an existing integrated optimization model
into a number of smaller sub-models, in the linkage, we obtain an integrated model of
the system by linking existing explicitly unknown sub-models. The proposed linkage
procedure provides flexibility, enabling the simultaneous use of linkage and decomposition
procedures, in other words, endogenously disaggregating models to make their further
integration (linkage) more efficient.
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Appendix A

Appendix A.1. Convergence

Proposition (stopping criterion, subgradients): Assume there exist solutions x(k)(y) of
all K sectoral/regional models for feasible y satisfying constraints (5). Then:

(a) Functions f (k)(y) =
(

c(k), x(k)(y)
)

, F(y) = ∑K
k=1 f (k)

(
x(k)

)
are continuously con-

cave non-differentiable functions for all k.
(b) The dual problem to (1)–(3) has a solution

(
u(k)(y), v(k)(y)

)
for all k, and these

solutions satisfy the stopping criterion of the linkage algorithm:

f (k)(y) =
(

c(k), x(y)
)
=
(

b(k), u(y)
)
+ (y, v(y)).

From this proposition follows the following important fact ([8,10,25]), which is funda-
mental for solving the linkage problem through maximizing non-differentiable function
F(y) using algorithm (7):

(c) For any feasible solution z and y, f (k)(y) − f (k)(z) ≥
(

v(k)(y), y− z
)

, that is,

v(k)(y) is a subgradient of the concave non-differentiable function f (k)(y). Vector v(y) =
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(
v(1)(y), . . . , v(K)(y)

)
is a subgradient of function F(y) = ∑K

k=1 f (k)(y), Fy(y) = v(y), that
is, F(y)− F(z) ≥ (v(y), y− z).

Therefore, procedure (7) is a specific subgradient algorithm for maximizing the (con-
tinuously) non-differentiable concave function F(y).

The following proposition shows that ys converges to an optimal linking vector y∗,
maximizing F(y) subject to joint constraints (5). Let us denote this feasible set by Y.

Appendix A.2. Convergence Theorem (Non-Monotonic Convergence)

Assume that
(1) The feasible set Y is bounded;
(2) Step size ρs satisfies the conditions:
ρs ≥ 0, ∑∞

s=1 ρs = ∞, ∑∞
s=1 ρ2

s < ∞, say ps = 1/s.
Then lim ys ∈ Y∗ for s→ ∞ .
The following sequence of ρs satisfies the conditions of the theorem: ρs = γs/s,

0 ≤ γ ≤ γs ≤ γ < ∞ for some positive constants γ and γ.

Appendix A.3. Computing the Projection

The orthogonal projection ys+1 of vector ys = ys + ρsvs onto Y is calculated by min-
imizing the quadratic function ‖ ys + ρsvs − y ‖2 subject to joint constraints (5). This
minimization is very fast due to ρsνs → 0 , as vectors vs are bounded optimal dual solu-
tions, and if ys is used as an initial approximation for ys+1.

Appendix A.4. Mixed Constraints

Joint constraints (5) may have the following form:

K

∑
k=1

M(k)x(k) +
K

∑
k=1

D(k)y(k) ≤ δ (A1)

with some matrices M(k). Yet, problem (1)–(4) s.t. (A1) can be reformulated similar to
problem (1)–(5). Let us define vectors y(K+k) such that M(k)x(k) = y(K+k), k = 1, . . . , K.
Now it is possible to rewrite (A1) as ∑K

k=1 D(k)y(k) ≤ δ − ∑2K
k=k+1 y(k) and after some

renotation, derive the problem in the form (1)–(5).
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