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Abstract: Estimates of extreme precipitation are commonly associated with different sources of
uncertainty. One of the primary sources of uncertainty in the statistical modeling of precipitation
extremes comes from extreme data series (i.e., sampling uncertainty). Therefore, this research aimed
to quantify the sampling uncertainty in terms of confidence intervals. In addition, this article
examined how the data record length affects predicted extreme precipitation estimates and data set
statistics. A nonparametric bootstrap resample was utilized to quantify the precipitation quantile
sampling distribution at a particular non exceedance probability. This sampling distribution can
provide a point estimation of the precipitation quantile and the confidence interval at a particular
non exceedance probability. It has been shown that the different types of probability distributions
fit the extreme precipitation data series of various weather stations. Therefore, the uncertainty
analysis should be conducted using the best-fit probability distribution for extreme precipitation
data series rather than a predefined single probability distribution for all stations based on modern
extreme value theory. According to the 95% confidence intervals, precipitation quantiles are subject
to significant uncertainty and the band of the uncertainty intervals increases with the return period.
These uncertainty bounds need to be integrated into any frequency analysis from historical data.
The average, standard deviation, skewness and kurtosis are highly affected by the data record
length. Thus, a longer record length is desirable to decrease the sampling uncertainty and, therefore,
decrease the error in the predicted quantile values. Moreover, the results suggest that a series of at
least 40 years of data records is needed to obtain reasonably accurate estimates of the distribution
parameters and the precipitation quantiles for 100 years return periods and higher. Using only 20 to
25 years of data to obtain estimates of the higher return period quantile is risky, since it created high
sampling variability relative to the full data length.

Keywords: Amman/Jordan; bootstrap; confidence intervals; extreme precipitation; frequency
analysis; Kolmogorov–Smirnov test; L-moment; modified Mann–Kendall test; quantile estimation;
uncertainty analysis

1. Introduction

Extreme event statistics are still attracting considerable attention from many re-
searchers around the globe [1–7]. This is due to the fact of their potential impacts on
society and the economy through their importance in the design of various water man-
agement infrastructures, water resources modeling and planning, and climate change
studies [8–11]. In Jordan, the 50 and 100 year extreme precipitation events occurred more
frequently in recent years, with high precipitation extremes of 106.6–173.8 mm per day
for the 50 year return period and 127–194 mm per day for the 100 year return period [6].
Thus, numerous existing water-related infrastructures are at risk due to the fact of aging
and possible insufficient consideration of uncertainty when anticipating high precipitation
for design purposes. For example, in November 2015, a flash flood in Amman, Jordan,
resulting from approximately 45 mm of precipitation over 40 min, causing four deaths and
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bringing considerable losses to society [6]. In another incident, on 25 October 2018, Jordan’s
Dead Sea flash flood killed at least 22 people, mainly schoolchildren and teachers [12,13].

Until now, the frequency analysis concept has widely been considered to be the most
essential tool for statistically modeling extreme events. This concept involves selecting and
fitting an appropriate probability distribution to the available historical extreme precipita-
tion data [14,15]. From the frequency analysis, extreme precipitation amounts for a given
design return period, usually greater than the length of the recorded data series, can be
estimated [16]. However, the presence of multiple sources of inadequate accuracies in the
frequency analysis process may result in significant uncertainty when predicting extreme
precipitation events, resulting in poor design judgments [17–19].

Accordingly, the major sources of uncertainties in a precipitation frequency analysis
come from the extreme data series, the selection of the frequency distribution, and the
parameter estimation methods. The uncertainty associated with the used data set is
primarily due to the inaccuracies generated by the insufficiently representative data due
to the fact of missing records and the shortness of the recorded length of precipitation in
comparison to the return period of the projected extreme precipitation of interest [20–23].
Additionally, measuring errors owing to instrumental and human error are included,
especially when transferring precipitation records from station log files to computers.
Another source of uncertainty linked with a used data set is that the observed data set
fails to satisfy stationarity and serial independence presumptions [24–26]. Stationarity and
serial uncorrelation are inherent prerequisite assumptions for the reliability of frequency
analysis estimations [24–26].

Furthermore, there is also data uncertainty related to the method of sampling the
extreme precipitation (i.e., the method of defining extreme precipitation) from a historically
observed daily precipitation data set, either as an annual maximum (AM) series or as peaks
over a threshold (POT) series. Noteworthy, the differences in the various methods for
defining the threshold value when using a POT data series and their impact on the study
results present great uncertainty [3,27–29].

In the literature, a number of competitive theoretical probability distributions have
been available for describing/estimating extreme precipitation amounts in the frequency
analysis, and their selection is typically guided by a variety of statistical goodness of fit
tests/and the choices among them are generally based on several statistical goodness of tests
(e.g., Kolmogorov–Smirnov test (KS); Anderson–Darling test (AD); modified Anderson–
Darling test (AU2

n); root mean square error (RMSE); Akaike information criterion (AIC); and
Bayesian information criterion (BIC)). The commonly used distributions are the extreme
value type I, called the Gumbel; generalized extreme value (GEV); extreme value type III,
called the Weibull; normal; lognormal; generalized lognormal (GLN); gamma; Pearson
type 3; log Pearson type 3; exponential; generalized Pareto (GP); generalized logistic (GLO);
and Wakeby. However, choosing between the aforementioned distributions introduces
significant uncertainty, as two or more distributions may suit the historical data set (based
on the GOF test) but have significantly different predicted values [2,6,30].

Different traditional statistical procedures (e.g., maximum likelihood method (MLM);
method of moments (MoM); and L-moment methods) can be used to estimate the distri-
bution parameters in a frequency analysis [14,31,32]. This also adds to the uncertainty
associated with precipitation frequency analysis, as different methodologies can result
in wildly divergent predicted values. Due to the advantages of the L-moment approach
over other methods, it has found widespread applications in hydrology [2,5,6,11,30,33–38].
L-moments are less sensitive to sampling variability (i.e., less sensitive to outliers) [39], and
they are unbiased for small samples [31,39]. Additionally, because the maximum likelihood
method does not need numerical optimization [2], the computation required is relatively
small compared to other traditional statistical procedures, such as maximum likelihood and
least squares [40]. Furthermore, L-moments have several advantages over conventional
moments, including their unbiasedness, robustness, and consistency [41–43].
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Typically, probability theory has been utilized to address the uncertainty associated
with real-world phenomena, such as extreme precipitation [44]. Typically, the uncertainty
measure for the quantile estimate in the frequency analysis approach is provided as a
confidence interval [45] and/or standard error [46]. A predefined probability distribution
usually based on the modern extreme value theory is assumed to fit the historical data series
(i.e., Gumbel, Frechet, Weibull, and generalized extreme value (GEV) to fit an AM series
and generalized Pareto (GP) to fit a POT series) [9,29,45,47–51]. Numerous approaches
have been employed in the literature to generate confidence intervals, for example, using
a formula that depends on the probability distributions and the parameter estimation
techniques [52–54], using the profile-likelihood approach [7,32], using artificial neural
networks [55], using deep learning method (such as the long short-term memory (LSTM)
method) [56], Bayesian methods [48,50], Monte Carlo simulation methods [57,58], and
bootstrap methods [45,49,51].

In contrast to previous research, an uncertainty analysis was conducted using the “best-
fit” probability distribution of an extreme precipitation data series rather than a predefined
probability distribution based on the modern extreme value theory. Thus, this article
presents a statistical methodology for quantifying uncertainty in terms of the confidence
intervals of projected extreme precipitation estimation using the bootstrap resampling
technique. A particular emphasis was placed on obtaining the predicted precipitation
quantile estimates at a particular non exceedance probability (i.e., particular return period)
from its bootstrap sampling distribution as an alternative to the conventional method
typically employed in the literature to determine the predicted precipitation quantile
estimates (more details on this are given in Section 2). Moreover, this article investigates
the impact of the data record length on the predicted extreme precipitation estimates and
on the results of the summary statistics characteristics of the data set (i.e., the average,
standard deviation (SD), coefficient of variation (CV), skewness, and kurtosis).

For this purpose, this study made use of the annual maximum series (AM series)
extracted from the daily precipitation data for a period that exceeded 50 years at four
weather stations in Amman. To ensure inclusivity, eight probability distributions were used
to fit the extreme precipitation data series (i.e., Gumbel (GUM), three parameters Weibull
(W3P), generalized extreme value (GEV), generalized lognormal (GLN), generalized logistic
(GLO), generalized Pareto (GP), gamma (GAM), and Pearson type 3 (PE3)). Due to the
aforementioned advantages, the L-moment parameter estimate approach was preferentially
used rather than the other methods. The adequacy of fitting the observed data series by
the eight probability distributions was confirmed using the Kolmogorov–Smirnov (KS)
goodness-of-fit test. This methodology is expected to contribute to the efforts to accurately
forecast extreme precipitation and can thus be integrated into analysis procedures specified
for the construction of stormwater and flood control infrastructures as well as climate
change and flood risk assessment studies in Jordan.

2. Data and Methodology
2.1. Study Site and Data Sets

The study site is the city of Amman, Jordan’s capital and economic center. In addition,
Amman serves as the political and administrative center of the Jordanian government.
Moreover, according to the most recent population data from 2020 [59], it is home to more
than 42 percent of Jordan’s total population. Amman has a semiarid climate with hot dry
summers and cold, wet winters. The rainy season is between October and May (i.e., the
winter season) with an average annual precipitation of 285 mm (mm) [60]. The bulk of this
precipitation frequently occurs in January or February, with the maximum precipitation
usually occurring in December or January [6].

The city of Amman was chosen for this study due to the recent prevalence of extreme
precipitation events [6] and, therefore, there is rising interest from the Jordanian government,
greater Amman municipality and various stakeholders for the better analysis of extreme
precipitation events to strengthen the city and its inhabitants’ resilience to climate change.
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The annual maximum series (AM series) extracted from the daily precipitation data
from four weather stations were used in this study. The locations of these stations within the
city of Amman are shown in Figure 1, with the station ID, station name, station coordinates,
and statistical characteristics of each station given in Table 1. The daily precipitation records
for these four weather stations were collected from the Ministry of Water and Irrigation in
Jordan. There were no missing daily precipitation data for the whole period at the selected
four stations. Hence, no pretreatment was required for missing data. The POT series (i.e.,
all daily precipitation whose magnitude exceeded an optimal threshold value) was omitted
from this analysis to eliminate the uncertainty associated with determining the appropriate
threshold value through various methodologies and their impact on the study results.
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Figure 1. The location of the weather stations.

Table 1. Selected weather stations’ basic information (i.e., ID, name, coordinates, elevation, data
period, and record length) and their statistics based on the annual precipitations.

No.
Station

Station Name
Coordinates a

Elevation
Data Record

Length
(years)

Annual Precipitation (mm)

ID Latitude Longitude Period Mean SD Skewness Kurt CV

1 17 SWEILIH 1,159,000 229,500 1000 1942–2016 71 488.85 180.11 0.95 0.89 36.8
2 18 JUBEIHA 1,159,200 232,000 980 1936–2016 79 463.18 165.61 0.38 0.41 35.8

3 19 AMMAN
AIRPORT 1,153,800 243,500 790 1937–2016 79 262.55 92.63 0.42 −0.44 35.3

4 22
AMMAN
HUSSEIN
COLLEGE

1,152,000 238,200 834 1950–2016 66 373.00 137.82 0.65 0.06 36.9

a Palestine coordinates.

2.2. The Modified Mann–Kendall Trend Test

The presence of trends in the AM series was assessed at each station using the nonpara-
metric statistical test of the modified Mann–Kendall (MMK) proposed by Hamed and Rao
in 1998 [61]. The Mann–Kendall (MK) test [62,63] is a rank-based test with the benefit of
being less sensitive to outliers and missing values as well as not requiring any distribution
form for satisfying the data [64]. The latter benefit eliminates the uncertainty associated
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with meeting the normality assumptions. The MK test includes hypothesis testing, where
the null hypothesis, H0, states that no trend is observed in the data series (i.e., the data are
independent, identically distributed, and not correlated). The alternative hypothesis, Ha,
states that there will be a monotonic trend in the data series.

The MK test statistics S and Var(S) and standardized test statistics Z for a time series
of n observation data points are defined as follows [63]:

S =
n−1

∑
i=1

n

∑
j=i+1

sign
(
xj − xi

)
(1)

where xj − xi are the sequential data point values at times i and j (xj is the later-measured
value) and sign(xj− xi) = {1 if xj is greater than xi; 0 if xj is equal to xi; and −1 if xj is less
than xi}.

The statistic S is approximately normally distributed for large values of n [63], with
a mean equal to zero, and the variance is given by Var(S) = n(n−1)(2n+5)

18 . Therefore, the
standardized MK test statistic Z is given by:

Z =



S−1√
V(S)

for S > 0

0 for S = 0

S+1√
V(S)

for S < 0

(2)

Time series data are often influenced by the presence of autocorrelation, which affects
the variance of the Mann–Kendall test (i.e., Var(S)). Thus, the MMK provides variance
correction to address this issue according to the following equation:

Var∗(S) = Var(S)
(

n
n∗e

)
=

n(n− 1)(2n + 5)
18

(
n
n∗e

)
(3)

where n represents the actual sample size, n∗e is the effective sample size, and
(

n
n∗e

)
is

correlation due to the autocorrelation in the data and is given by:

n
n∗e

= 1 +
(

2
n(n− 1)(n− 2)

) n−1

∑
i=1

(n− 1)(n− i− 1)(n− 1− 2)ρe(i) (4)

where ρe(i) is the autocorrelation function of the ranks of the observations.
The modified MK package within the statistical software S-plus (or R scripting lan-

guage) was used to obtain the Z statistic value based on the MMK test (https://cran.r-
project.org/web/packages/modifiedmk/index.html, accessed date: 18 August 2022).

The Z value can be used to evaluate whether the time series data have a significant
trend. A significant trend exists (i.e., the null hypothesis is rejected at a significance level of
α) if |Z| > Z1−α/2 in a two-sided test. The Z1−α/2 is the critical value and can be obtained
from the standard normal table at the significance level α. This critical value is equal to
1.96 at a 5% significance level.

2.3. Extreme Precipitation Probability Distributions

In this research, eight probability distributions (namely, GUM, W3P, GAM, GEV,
GP, GLN, PE3, and GLO) were used to fit the AM data series. The cumulative density
functions (CDFs) (i.e., F(x) = P(x ≤ x)) of these distributions are shown in Table 2. In these
distributions, the random variable x represents an extreme precipitation amount, ξ is the
location parameter, α is the scale parameter, and k is the shape parameter. Additionally,
Table 2 provides the quantity of the extreme precipitation (i.e., the quantile) denoted as XT
for each of these eight distributions at a specified return period of T years. The cumulative

https://cran.r-project.org/web/packages/modifiedmk/index.html
https://cran.r-project.org/web/packages/modifiedmk/index.html
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density function F, or non-exceedance probability, at a particular event x is expressed
mathematically in terms of return period T in years as F = 1− 1

T . The ξ̂, α̂, and k̂ are the
estimates of ξ, α, and k, respectively. More details on this are given in Section 2.4.

Table 2. The cumulative distribution function (CDF), L-moment estimates of the parameters, and
predicted precipitation amount associated with return period T years for the selected extreme
probability distribution in this study.

Distributions CDF L-Moment Parameters Estimators
Predicted Rainfall Amount

Associated with Return Period T
Years (Quantiles)

GUM F(x) = e−e−{(x−ξ)/α}
α̂ = λ2

ln(2) , ξ̂ = λ1 − 0.5772α̂ XT = ξ̂ − α̂ ln
(
− ln

[
1− 1

T

])

GAM F(x) = 1
βαΓ(α)

∫ x
0 xα−1e−

x
β dx

If 0 < τ2 < 1
2 then z = π τ2

2,
α̂ ≈ 1−0.3080 z

z−0.05812 z2+0.01765 z3

If 1
2 ≤ τ2 < 1 then z = 1 − τ2,

α̂ ≈ 0.7213 z−0.5947z2

1−2.1817 z+1.2113 z2 , β̂ = λ1
α̂

The quantile of GAM has no explicit
analytical form

PE3
F(x) =

1
βαΓ(α)

∫ x
0 (x− ξ)α−1e−

(x−ξ)
β dx

If 0 < |τ3| < 1
3 then z = 3π τ3

2,
α̂ ≈ 1+0.2906 z

z−0.1882 z2+0.0442 z3

If 1
3 ≤ |τ3| < 1 then z = 1 − |τ3|,

α̂ ≈ 0.36067 z−0.59567z2+0.25361z3

1−2.78861 z+2.5609 z2−0.77045 z3

β̂ =
√

πλ2Γ(α̂)
Γ(α̂+ 1

2 )
, ξ̂ = λ1 − α̂β̂

The quantile of GAM has no explicit
analytical form

W3P F(x) = 1− e−{(x−ξ)/α}k

First, the shape parameter k̂ is found by iteratively

solving equation τ3 =
1− 3

21/k̂
+ 2

31/k̂

1− 1
21/k̂

, here τ3 is

replaced by its sample estimate.

α̂ = λ2

Γ
(

1+ 1
k̂

)(
1− 1

21/k̂

) , ξ̂ = λ1 − α̂Γ
(

1 + 1
k̂

) XT = ξ̂ + α̂
(
− ln

[
1
T

]) 1
k̂

GEV F(x) = e−e−y k̂ ≈ 7.8590c + 2.9554c2,c = 2
3+τ3
− log 2

log 3

α̂ = λ2 k̂(
1−2−k̂

)
Γ(1+k̂)

, ξ̂ = λ1 − α
{

1− Γ
(

1 + k̂
)}

/k̂ XT = ξ̂ +
α̂

{
1−(− ln[1− 1

T ])
k̂
}

k̂

GP F(x) = 1− e−y k̂ = (1−3τ3)
(1+τ3)

, α̂ =
(

1 + k̂
)(

2 + k̂
)

λ2

ξ̂ = λ1 −
(

2 + k̂
)

λ2
XT = ξ̂ +

α̂

{
1−(1−[1− 1

T ])
k̂
}

k̂

GLO F(x) = 1
(1+e−y) k̂ = −τ3, ξ̂ = λ1 +

(λ2−α̂)

k̂
, α̂ = λ2

Γ(1+k̂)Γ(1−k̂) XT = ξ̂ +
α̂

{
1−[(1−[1− 1

T ])/[1− 1
T ]]

k̂
}

k̂

GLN F(x) = φ(y)
k̂ = −τ3

2.0466−3.6544τ2
3 +1.8397τ4

3−0.2036τ6
3

1−2.0182τ2
3 +1.242τ4

3−0.21742τ6
3

α̂ =
λ2 k̂ exp(−k̂2/2)
1−2φ(−k̂/

√
2)

,ξ̂ = λ1 − α̂
k̂

(
1− exp

(
−k̂2/2

)) The quantile of GLN has no explicit
analytical form

Γ( ) is the gamma function, φ( ) is the cumulative distribution function of the standard normal distribution, and
y = −k−1ln{1− k(x− ξ)/α}.

2.4. L-Moment Method for Parameter Estimation

The L-moment method was applied to estimate the distribution parameters in this
study due to the fact of its advantages over other estimation methods, as reported earlier in
Section 1. It is noteworthy that this work did not attempt to quantify the uncertainty associ-
ated with the parameter estimate as a result of varying estimation methods or resulting
from the use of various estimation methods. More details on the L-moment method and its
advantages can be found in [31,39] and briefly described herein.

L-moments are linear combinations of probability-weighted moments (PWMs), as
proposed by Greenwood et al. (1979) [65]. In practice, L-moments are estimated using the
observation data x(i) from a finite sample of size n that have been arranged in ascending
order. The first four L-moments are given by λ1 = b0 = X, λ2 = 2b1 − b0, λ3 = 6b2 −
6b1 + b0, and λ4 = 20b3 − 30b2 + 12b1 − b0, where b0, b1, b2, and b3 are sample unbiased
estimators of the PWMs and defined by [31]:

b0 =
n

∑
i=1

1
n

x(i) (5)



Sustainability 2022, 14, 17052 7 of 20

b1 =
n

∑
i=2

(i− 1)
n(n− 1)

x(i) (6)

b2 =
n

∑
i=3

(i− 1)(i− 2)
n(n− 1)(n− 2)

x(i) (7)

b3 =
n

∑
i=1

(i− 1)(i− 2)(i− 3)
n(n− 1)(n− 2)(n− 3)

x(i) (8)

In addition, Hosking [39] defined other dimensionless quantities called L-moment
ratios, which are computed as the L-variation τ2 (τ2 = λ2/λ1), L-skewness τ3 (τ3 = λ3/λ2),
and L-kurtosis τ4 (τ4 = λ4/λ2). The estimates of the location ξ, scale α, and shape k
parameters (denoted as ξ̂, α̂, and k̂, respectively) of the eight distributions by L-moments
are given in Table 2, as developed in [31].

2.5. Kolmogorov–Smirnov (KS) Goodness-of-Fit Test

The Kolmogorov–Smirnov (KS) goodness-of-fit test was used in this study to select the
optimal distribution to fit the AM data series for each weather station at a 95% confidence
level from aforementioned probability distributions. It is a nonparametric statistical test
based on the testing of the hypothesis technique [66,67]. The null hypothesis (Ho) states
that the data suitably fit the candidate probability distribution at a specified confidence
level. The KS test compares the empirical and theoretical cumulative distribution function.
The empirical cumulative distribution Fn(x) obtained from the observed data (i.e., AM
data series) is given by Equation (9). The KS test statistic (Dmax) is the maximum absolute
difference between F0(x) and Fn(x) over the entire range of X and mathematically expressed
as Dmax = max|F0(x)− Fn(x)| . The null hypothesis (Ho) is rejected if the calculated
Dmax value exceeds a critical value (Dcritical = 1.36/

√
n ) for the sample size n and 95%

confidence level.

Fn(x) =


0 , x < x1

k
n , xk < x < xk+1

1 , x > xn

(9)

where x1,x2, . . . ,xn are the values of the ordered extreme precipitation amount; k is the rank
of the precipitation amount in the data organized in an ascending order. The probability
distribution that best-fit the data among the applicable distributions is the one with the
minimum value of the KS test statistic.

2.6. Bootstrap Approach

Resampling using the bootstrap approach was originally introduced in 1979 by
Efron [68] to estimate the variance of a sample statistic. This approach was further mod-
ified in 1993 by Efron and Tibshirani [69]. It is a nonparametric statistical approach that
has the benefit of eliminating assumptions regarding the statistical distribution represent-
ing the data sample to process this data (i.e., normality assumption). In addition, this
approach has the benefit that it is easier to implement relative to classical resampling
approaches. The rationale behind the bootstrap approach is that the sample values are
the best indicator of the true distribution, even when information concerning the true
distribution is unavailable [70]. The bootstrap approach was used in this study to quantify
the uncertainty in terms of the confidence intervals of the predicted extreme precipitation
estimates and to evaluate the impact of the data record length on the results of the sum-
mary statistics characteristics of the data set (i.e., the average, standard deviation (SD),
coefficient of variation (CV), skewness, and kurtosis) and, therefore, the predicted extreme
precipitation estimates.

The basic concept of bootstrap was to create several replicate sample series (i.e., boot-
strap samples) of size n from the original observed sample of an unknown distribution.
This procedure involves randomly selecting data from the original sample with replace-
ments. Then, these bootstrap samples were utilized to perform various statistical tests [68].
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Although the bootstrap procedure requires a relatively intensive amount of computing [57],
only a minimal amount of programming is necessary. The bootstrap technique was carried
out in this study using the S-Plus programming language. The bootstrap procedure used
in this study to construct the two-side confidence interval and the sampling distribution of
predicted extreme precipitation estimates can be summarized as follows:

(1) For each selected weather station, 10,000 bootstrap samples of sizes n were extracted
from the AM extreme precipitation data series.

(2) For each bootstrap sample, the extreme precipitation quantile (XT) at a chosen return
period of T years was extracted using the best-fit probability distribution to represent
that station using the L-moment method for parameters estimation.

(3) The 10,000 XT values for a chosen return period of T years (obtained in step (2)) in
ascending order were ranked.

(4) The two-sided confidence intervals for the ranked XT at α = 5% (i.e., 95% confidence
interval) were obtained. For the 10,000 resampling times used in this study, the upper
and lower values of the two-sided confidence interval for XT correspond to the 9750th
(i.e., 97.5th percentile) and 250th (i.e., 2.5th percentile) of the ranked XT values.

(5) The bootstrap sampling distributions for the extreme precipitation quantile (XT) from
10,000 XT values were obtained for a chosen return period of T years (obtained in step (2)).

(6) The expected value of the sampling distribution of the extreme precipitation quantile
(XT) (obtained in step (5)) was obtained.

(7) Steps (2) to (6) were repeated for each of the selected weather stations for a different
return period of T years.

In addition, to investigate the impact of the data record length on the results of the
summary statistics characteristics of the data set, the average, SD, CV, skewness, and
kurtosis were calculated for each 10,000 bootstrap sample obtained in step (1) from the
above procedure. Then, the average and the standard deviation of the 10,000 average, SD,
CV, skewness, and kurtosis were obtained. These two steps were repeated for the different
sample sizes n (i.e., n = 10, 15, 20, 30, 40, 50, 75, 80 100,150, 200, and 500 years).

3. Results and Discussion
3.1. Trend Analysis of Extreme Precipitation

The AM series is presented in Figure 2 for each selected weather station. In addition,
Table 3 summarizes the results of the modified Mann–Kendall (MMK) test statistic value Z
obtained at each station for the AM data series. The Z values indicate that no statistically
significant trend was detected in the AM data series (i.e., the null hypothesis Ho for the
MMK test was accepted, since

∣∣ZMK
∣∣ < 1.96). The above results (Figure 2 and Table 3) indi-

cate that the AM data series was stationary, independent, and identically distributed.
Therefore, the frequency analysis stationarity and serial independence presumptions
were valid.

Table 3. Summary of the modified Mann–Kendall (MMK) trend test statistic value (Z) and the
Kolmogorov–Smirnov (KS) goodness-of-fit test statistic value (Dmax) of the AM data series for the
selected weather stations.

Station MMK Trend Test KS Goodness-of-Fit Test Dmax Value

ID Z Value GEV GP GLO PE3D W3P GLN GAM GUM Best Distribution

17 0.46 0.078 0.083 0.091 0.074 0.064 0.077 0.074 0.082 W3P
18 1.93 0.069 0.101 0.066 0.069 0.074 0.067 0.076 0.090 GLO
19 −0.73 0.044 0.083 0.060 0.052 0.061 0.043 0.060 0.050 GLN
22 1.68 0.043 0.082 0.055 0.062 0.068 0.050 0.077 0.068 GEV

3.2. The Best-Fit Probability Distribution for Extreme Precipitation

In this study, eight probability distributions were used to fit the AM extreme precipita-
tion series (i.e., GUM, W3P, GEV, GLN, GLO, GP, GAM, and PE3). The GUM and GAM
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distributions were two parameters distributions (i.e., location and scale parameters for
GUM and shape and scale for GAM). The remaining probability distributions were three
parameters distributions (i.e., shape, scale, and location parameter). The parameters for
each distribution were estimated by the L-moment method. Table 3 summarizes the results
of the KS goodness-of-fit test. The table shows the test statistics value Dmax obtained at
each station for the AM series using the eight distributions. The smaller the test statistic
Dmax value, the better the probability distribution fits the extreme precipitation data series.
displays the optimal distribution for each station. All distributions passed the KS test at
the 5% significance level, indicating that the sample distribution followed the theoretical
distribution (i.e., the null hypothesis Ho for the KS test was accepted), since the Dn values
were less than the related critical value (Dcritica = 1.36/

√
n for a sample size n at the 5%

significance level).
Based on the KS test (Table 3), the AM series best-fit distribution for stations 17, 18, 19,

and 22 was the W3P, GLO, GLN, and GEV, respectively. These findings suggest that various
distributions may suit the AM series for various stations. As a result, it is emphasized that
an uncertainty analysis should be conducted using the best-fit probability distribution for
extreme precipitation data series rather than a predefined single probability distribution
based on modern extreme value theory. As a result, the best-fit distribution at each station
was used for the uncertainty analysis at that station, which is the innovative aspect of
this paper. This will reduce the uncertainty in the predicted extreme precipitation value
associated with selecting the proper probability distribution for the given extreme data.
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Figure 2. The annual maximum precipitation (mm) time series with the straight line represents the
data series’s linear trend line for the selected stations.

3.3. Quantile Estimations and Uncertainty Bounds

The predicted precipitation quantiles XT based on the optimal distribution obtained
from equations at Table 2 (henceforth named conventional method XT) as well as their
uncertainty bounds (i.e., 95% confidence intervals estimated based on bootstrap resampling)
for the selected location at different return periods are presented in Figure 3 along with the
observed AM extreme precipitation data and the expected value, which form the sampling
distribution. These expected values obtained from the sampling distributions of XT at
a particular return period will represent the predicted extreme precipitation quantile of
that return period (henceforth named sampling distribution XT). The return periods (T)
associated with the observed AM precipitation extremes were calculated using the Weibull
plotting position formula, T = 1

1− i
n+1

, where i is the rank of the extreme precipitation

amount in the data series organized in ascending order, and n is the data series length.
Table 4 illustrates the relative differences of the lower and upper 95% confidence limits
from the predicted quantile.
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Figure 3. Predicted precipitation quantiles with 95% uncertainty bounds based on the optimal
distribution and observed precipitation amount for the AM series for each weather station.

Table 4. Predicted precipitation quantile, their lower and upper 95% confidence limits, the relative
differences of the confidence limits from the predicted quantile and expectation value that form the
sampling distribution.

Station: 17

Return period, T (years) 2 5 10 20 50 100 150 200 500

Predicted precipitation quantiles (mm) 68.42 94.78 110.10 123.37 138.86 149.47 155.33 159.35 171.53
Upper Limit 95% confidence interval (ULC) (mm) 75.97 103.63 121.48 138.29 159.18 174.12 182.70 188.53 207.42
Lower Limit 95% confidence interval (LLC) (mm) 61.09 85.54 98.10 107.65 117.87 124.30 127.70 130.10 136.89
ULC relative differences from the predicted (%) 11.04 9.34 10.33 12.09 14.63 16.50 17.62 18.31 20.92
LLC relative differences from the predicted (%) −10.70 −9.75 −10.90 −12.74 −15.11 −16.84 −17.78 −18.36 −20.20

Expectation value (mm) 68.59 94.42 109.45 122.49 137.75 148.24 154.04 158.03 170.13

Station: 18

Return period, T (years) 2 5 10 20 50 100 150 200 500

Predicted precipitation quantiles (mm) 64.76 87.47 102.43 117.44 138.31 155.25 165.72 173.41 199.52
Upper Limit 95% confidence interval (ULC) (mm) 71.42 95.61 112.68 131.10 159.04 183.39 199.23 211.64 256.16
Lower Limit 95% confidence interval (LLC) (mm) 58.37 79.46 91.97 102.98 116.95 127.13 133.24 137.47 150.21
ULC relative differences from the predicted (%) 10.28 9.31 10.00 11.64 14.99 18.13 20.22 22.04 28.38
LLC relative differences from the predicted (%) −9.87 −9.15 −10.21 −12.31 −15.44 −18.12 −19.60 −20.73 −24.71

Expectation value (mm) 64.87 87.25 102.01 116.84 137.55 154.46 164.96 172.69 199.13

Station: 19

Return period, T (years) 2 5 10 20 50 100 150 200 500

Predicted precipitation quantiles (mm) 35.26 48.70 57.75 66.53 78.06 86.88 92.10 95.83 107.96
Upper Limit 95% confidence interval (ULC) (mm) 38.71 53.57 64.07 74.75 90.26 103.03 110.66 116.08 135.13
Lower Limit 95% confidence interval (LLC) (mm) 32.31 44.11 51.28 57.54 64.82 70.03 72.94 74.98 81.24
ULC relative differences from the predicted (%) 9.80 10.00 10.95 12.36 15.62 18.59 20.16 21.13 25.16
LLC relative differences from the predicted (%) −8.35 −9.41 −11.19 −13.50 −16.97 −19.39 −20.80 −21.76 −24.75

Expectation value (mm) 35.39 48.60 57.46 66.06 77.37 86.03 91.17 94.86 106.85

Station: 22

Return period, T (years) 2 5 10 20 50 100 150 200 500

Predicted precipitation quantiles (mm) 53.88 77.31 94.43 112.16 137.19 157.61 170.23 179.50 210.93
Upper Limit 95% confidence interval (ULC) (mm) 60.64 87.29 106.97 127.85 160.07 188.80 207.88 222.39 276.12
Lower Limit 95% confidence interval (LLC) (mm) 48.35 67.93 81.42 93.98 108.88 119.51 125.28 129.22 141.12
ULC relative differences from the predicted (%) 12.56 12.91 13.28 13.99 16.68 19.79 22.12 23.89 30.91
LLC relative differences from the predicted (%) −10.26 −12.13 −13.77 −16.21 −20.63 −24.18 −26.41 −28.01 −33.10

Expectation value (mm) 54.12 77.13 93.78 110.96 135.16 154.95 167.20 176.24 207.04

The findings revealed that the precipitation quantiles were subject to significant uncer-
tainty. Furthermore, the band of uncertainty intervals increased as the return period rose
(Figure 3). This suggests that, among the return periods taken into account in this study,
the predicted precipitation quantiles for the 500- year return period had the largest level
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of uncertainty (especially for station 22). For weather station 22, for example, the relative
differences (%) of the lower and upper 95% confidence limits from the predicted quantile
ranged from −10.26 to 12.56 for the return periods of the 2 years and increased with the
increase in the return periods to range from−33.10 to 30. 91 for a return period of 500 years.
These confidence intervals for several return periods are beneficial for water sector poli-
cymakers to take appropriate actions, such as the design of various water infrastructures
(construction of a proper drainage system, construction of flood control structures, etc.)
to control and minimize the risks of large damages caused by the frequent precipitation
extremes that have occurred in recent years in Amman. Another noteworthy finding
from Figure 3 is that the values of the observed precipitation were within the confidence
interval limits.

Figure 4 depicts a histogram as well as a normal quantile plot of the bootstrap sampling
distribution of extreme precipitation quantile (XT) for station 22 (as example). These plots
indicate the sampling distribution of XT for the different return periods (i.e., different
non exceedance probability). In a similar way, it was possible to obtain the sampling
distributions of XT at any return period. For other locations, the findings are comparable to
those displayed in Figure 4 and, as a consequence, they are not provided in this article as a
separate figure. The findings from other locations are provided in Figures S1–S3 for the
weather stations 17, 18, and 19, respectively, in the Supplementary Materials. This article
utilized the normal quantile plot to determine if the sampling distribution of XT matched
with a normal distribution.

As can be seen in Figure 4, the normal distribution may match well with the probability
histograms. In addition, the normal quantile plot shows that the fitted normal frequency
line was consistent with the observed data. Therefore, the sampling distribution of the
extreme precipitation quantile was approximately the normal distribution, even if the
population were not normal (based on the central limit theorem; when the sample size is
large enough, the sample size is 10,000). Accordingly, the expected value of the bootstrap
sampling distribution of the extreme precipitation quantile (XT) was evaluated (i.e., the
mean of sampling distribution) at a particular return period and are shown in Table 4.

As seen in in Table 4, the results of the extreme precipitation quantile (XT) obtained
by the two methods (the conventional and the sampling distribution methods) look quite
similar. Nevertheless, compared to the conventional method, the sampling distribution
method provides more information regarding the statistical parameter of interest (i.e., XT).
The bootstrap sampling distribution is useful for quantifying the behavior of a parameter
estimate (i.e., how the statistic varies across many random data sets, such as its standard
error, skewness, bias, or for calculating confidence intervals). Consequently, the estimation
of XT at a particular non exceedance probability (i.e., particular return period) should be
based on its sampling distribution. Since, for a given data set, this sampling distribution
allows not only the point estimation of the precipitation quantile as the expected value of
sampling distribution (i.e., sampling distribution XT), which can be employed in place of the
XT based on the optimal distribution obtained by conventional method (i.e., conventional
method XT), but also quantifying the uncertainty associated with XT in terms of the
confidence interval.

3.4. Effects of Data Resolution from which the AMS Was Extracted

A simulation using the bootstrap method was carried out to address the research
question of how the record length of the data set alters the results of its summary statistics
characteristics (i.e., the average, SD, CV, skewness, and kurtosis). The SD value of each
characteristic of these summary statistics was used to quantify their variability over different
record lengths. These characteristics may influence the effectiveness of the probability
distributions to accurately depict the precipitation extremes at the investigated weather
stations [6,11] and, consequently, affects their projected precipitation quantile estimate. The
10,000 bootstrap resampling summary statistics characteristics results and their variability in
terms of their standard deviation are summarized in Table 5 for the different record lengths
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for station 18, as an example. The findings of the other locations are provided in Tables S1–S3
for weather stations 17, 19, and 22, respectively, in the Supplementary Materials.

As anticipated, the findings in Table 5 clearly demonstrated that the larger the record
length, the less the variability in terms of the SD of the average, SD, CV, skewness, and
kurtosis of 10,000 bootstrap samples. The SD values of the 10,000 bootstrap samples
average values varied from 8.852 (when n = 10 years) to 1.229 (when n = 500 years), which
presents a 620.312% change. The SD values of the 10,000 bootstrap samples SD values
were in the range of 7.014 (n = 10 years)–0.972 (n = 500 years), which presents a 621.234%
change. The SD values of the 10,000 bootstrap samples skewness values were between
0.599 (n = 10 years) and 0.090 (n = 500 years), which presents 569.526% change. The SD
values of the 10,000 bootstrap samples kurtosis values are in the range from 1.028 (when n
= 10 years) to 0.234 (when n = 500 years) which presents 338.975% change.
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Another noteworthy finding from Table 5 is that the average values of the 10,000 bootstrap
samples average and SD values were almost the same as the observed data average and
SD values (79 years record length) with percent change of 0.255% and 3.288%, respectively.
While the average values of the 10,000 bootstrap samples skewness and kurtosis values
were different from the observed data skewness and kurtosis values, particularly when
the record length was small, with percent change of 106.179% and 34.982%, respectively.
This suggests that a longer record length is desirable to decrease sampling uncertainty and
therefore decrease the error in predicted quantile values. Since the predicted quantile values
are highly influenced by these summary statistics characteristics (specially the skewness
and kurtosis values) as mentioned earlier.
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Table 5. The results of the 10,000 bootstrap samples summary statistics characteristics (i.e., the
average, standard deviation (SD), coefficient of variation (CV), skewness, and kurtosis) and their
standard deviation for the different record lengths for station 18.

Record Length
Average Standard Deviation

(SD)
Coefficient of

Variation (CV) Skewness Kurtosis

Average SD Average SD Average SD Average SD Average SD

10 67.692 8.852 26.711 7.014 0.395 0.093 0.334 0.599 2.548 1.028
15 67.653 7.199 27.030 5.727 0.400 0.076 0.440 0.545 2.818 1.024
20 67.576 6.173 27.170 4.939 0.402 0.066 0.498 0.485 2.964 1.021
30 67.570 5.047 27.345 3.994 0.405 0.053 0.571 0.398 3.151 0.953
40 67.556 4.356 27.384 3.452 0.406 0.046 0.603 0.340 3.232 0.853
50 67.531 3.888 27.457 3.102 0.407 0.041 0.626 0.303 3.287 0.770
75 67.555 3.186 27.539 2.507 0.408 0.033 0.652 0.239 3.350 0.618
80 67.555 3.109 27.540 2.437 0.408 0.032 0.655 0.234 3.356 0.605
90 67.549 2.910 27.553 2.277 0.408 0.030 0.661 0.217 3.370 0.565
100 67.542 2.745 27.554 2.183 0.408 0.029 0.664 0.208 3.376 0.534
150 67.536 2.237 27.557 1.782 0.408 0.024 0.674 0.167 3.407 0.436
200 67.540 1.943 27.565 1.531 0.408 0.021 0.680 0.143 3.420 0.375
500 67.520 1.229 27.589 0.972 0.409 0.013 0.689 0.090 3.439 0.234

Max. 67.692 8.852 27.589 7.014 0.409 0.093 0.689 0.599 3.439 1.028
Min. 67.520 1.229 26.711 0.972 0.395 0.013 0.334 0.090 2.548 0.234

Percent change 0.255 620.312 3.288 621.234 3.348 613.520 106.179 569.526 34.982 338.975

Observed data summary statistics characteristics for station 18 are as follows: average = 67.52, SD = 27.759,
CV = 0.411, skewness = 0.695, and kurtosis = 3.455.

To further assess the influence of the data record length for station 18, the actual data
set was partitioned into subsets representing 12.5%, 25%, and 50% of the original data set
length (full original data length n = 79 years). The 50% partition contained two data length
scenarios of 39 and 40 years. The 25% partition consisted of four data length scenarios of
19, 20, 20, and 20 years. The 12.5% partition contained eight data length scenarios: one with
a duration of nine years and seven with a duration of ten years. Table 6 demonstrates the
percent change in the GLO distribution parameters estimates and precipitation quantile
estimates when the record lengths were n = 10, 20, 20, 20, 19, 39, and 40 years for station
18 compared to the full observed data length. The GLO distribution was the optimal
distribution at this particular station (recall the results of the KS test, Table 3).

As can be seen in Table 6, the GLO distribution parameters estimates were affected by
the data record length. For example, the percent change in the shape parameter (k) varied
from −10.147 to −301.727 for the 12.5% partition scenario, from −35.018 to −120.323 for
the 25% partition scenario, and from −19.858 to −24.548. In addition, it can be seen from
Table 6 that the precipitation quantile estimates were greatly affected by the data record
length, especially at the higher return periods. For example, the percent change in the
precipitation quantile when the return period was 500 years varied from 5.47 to 68.424
for the 12.5% partition scenario, from 0.911 to 13.303 for the 25% partition scenario, and
from 0.83 to 1.68. The results in Table 6 also suggest that a series of at least 40 years of data
records is needed to obtain reasonably accurate estimates of the precipitation quantiles
for 100 year return periods and higher. As is well known, the precipitation quantiles for
100 year return periods and higher are commonly employed in the design of a variety of
water-related infrastructure projects. Consequently, the high degree of estimate variability
of these quantiles due to the variable length of the data records is a key factor to consider.
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Table 6. Percent change in the probability distribution parameters estimates and precipitation quantile
estimates for the various record lengths (segmentation of observed data set lengths were n = 9, 10, 19,
20, 20, 20, 39, and 40 years) for station 18 compared to the full observed data length (full observed
data length n = 79 years). The optimal distribution for station 18 was GLO distribution.

Partition
Scenarios

Record
Length

GLO Probability Distribution
Parameters Return Periods (T)

Location
Parameter

(ξ)

Scale
Parameter

(α)

Shape
Parameter

(k)
2 5 10 20 50 100 150 200 500

12.5%

9 54.168 14.398 −268.665 54.168 38.435 28.112 18.635 7.088 0.992 5.470 8.539 17.726
10 24.552 58.928 −281.295 24.552 30.783 30.460 27.766 20.898 13.027 7.221 2.509 16.234
10 7.421 7.463 −10.147 7.421 3.337 1.445 0.090 1.828 3.007 3.658 4.106 5.470
10 13.754 18.146 −301.727 13.754 1.194 6.945 14.338 23.242 29.403 32.793 35.106 41.979
10 8.452 28.300 −118.273 8.452 4.330 12.725 21.175 33.010 42.706 48.733 53.185 68.424
10 2.341 33.279 −213.760 2.341 9.483 16.282 22.293 29.475 34.461 37.221 39.114 44.794
10 0.582 21.118 −13.651 0.582 6.247 8.899 11.064 13.537 15.226 16.164 16.811 18.793
10 0.710 33.018 −289.330 0.710 11.423 18.793 25.360 33.177 38.550 41.498 43.506 49.468

25%

19 16.297 13.858 −41.706 16.297 14.730 13.299 11.765 9.605 7.889 6.857 6.114 3.698
20 16.952 23.512 −120.323 16.952 16.687 14.709 11.904 7.103 2.670 0.247 2.463 10.363
20 2.219 11.070 −35.018 2.219 3.749 3.744 3.353 2.465 1.591 1.016 0.584 0.911
20 0.468 6.807 −41.162 0.468 2.175 3.905 5.574 7.761 9.421 10.395 11.088 13.303

50%
39 7.247 2.603 −19.858 7.247 5.636 4.622 3.654 2.390 1.430 0.865 0.462 0.830
40 7.209 3.516 −24.548 7.209 5.769 4.746 3.709 2.283 1.151 0.466 0.031 1.670

4. Conclusions

This research aimed to evaluate the uncertainties in terms of confidence intervals
related to the predicted extreme precipitation estimates based on the bootstrap resample
simulation framework. In addition, this article studied the impact of the data record length
on the predicted extreme precipitation estimates and on the results of summary statistics
characteristics of the data set.

The current study was limited to the uncertainty in the statistical modeling of the
precipitation extremes associated with the extreme data series (i.e., sampling uncertainty).
Future studies should appropriately investigate other sources of uncertainty, such as the
model uncertainty (i.e., probability distribution selection) and the parameter uncertainty,
(i.e., the uncertainty of parameter estimation), which are not considered in this work.

Based on the results, the following specific conclusions can be drawn:

• The trend analysis indicated that the observed AM series could be considered station-
ary, independent, and identically distributed. Therefore, the stationarity and serial
independence stationarity assumptions were valid for the frequency analysis;

• Different types of probability distributions fit the extreme precipitation data series
of the various weather stations, indicating that a careful selection of distributions is
essential. Therefore, it is emphasized that an uncertainty analysis should be conducted
using the best-fit probability distribution for extreme precipitation data series rather
than a predefined single probability distribution for all stations based on modern
extreme value theory;

• The sampling distribution of the precipitation quantile at a particular nonexceedance
probability (i.e., particular return period) was obtained using a bootstrap resample
simulation framework. This bootstrap sampling distribution allowed not only for the
point estimation of the precipitation quantile as the expected value of the sampling
distribution (i.e., sampling distribution precipitation quantile estimates) but also for
quantifying the behavior of the precipitation quantile, such as the confidence interval,
standard error, and skewness;

• The uncertainty associated with the used data (i.e., the sampling uncertainty) in
a precipitation frequency analysis was evaluated in terms of the 95% confidence
intervals based on the bootstrap resample simulation framework. It is concluded
that the precipitation quantiles were subject to significant uncertainty and the band
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of uncertainty intervals increased as the return period increased. These confidence
intervals for several return periods are beneficial for water sector policymakers to take
appropriate actions to design and manage various water-related infrastructure;

• The extreme precipitation quantile (XT) obtained by the two methods (the conventional
method, typically employed in the literature, and the sampling distribution methods)
was comparable;

• The bootstrap resampling for the evaluation of how the record length of the data set
alters the results of its summary statistics characteristics showed that a longer record
length is desirable to decrease the sampling uncertainty and, therefore, decrease the
error in the predicted quantile values, since the predicted quantile values are highly
influenced by these summary statistics characteristics (specially the skewness and
kurtosis values).

• The study showed that the distribution parameters estimates as well as the precipita-
tion quantile estimates (specially at the higher return periods) were greatly affected by
the data record length;

• The results suggest that a series of at least 40 years data records is needed to obtain
reasonably accurate estimates of the precipitation quantiles for 100 year return periods
and higher. Using only 20 to 25 years of data to obtain reasonably accurate estimates
of the higher return periods quantile is risky, since it creates high sampling variability
relative to the full data length.

In terms of the application, the methodology followed in this study to quantify uncer-
tainty bounds needs to be integrated into any frequency analysis using historical data and,
therefore, is expected to contribute to accurately forecasting extreme precipitation quantiles
and, thus, will provide the theoretical support to water managers and policymakers for
proper actions to design and manage various water-related infrastructures.
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