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Abstract: Land surface temperature (LST) and land surface albedo (LSA) are the two key regional
and global climate-controlling parameters; assessing their behavior would likely result in a better
understanding of the appropriate adaptation strategies to mitigate the consequences of climate
change. This study was conducted to explore the spatiotemporal variability in LST and LSA across
different land use/cover (LULC) classes in northwest Iran. To do so, we first applied an object-
oriented algorithm to the 10 m resolution Sentinel-2 images of summer 2019 to generate a LULC
map of a 3284 km? region in northwest Iran. Then, we computed the LST and LSA of each LULC
class using the SEBAL algorithm, which was applied to the Landsat-8 images from the summer of
2019 and winter of 2020. The results showed that during the summer season, the maximum and
minimum LSA values were associated with barren land (0.33) and water bodies (0.11), respectively;
during the winter season, the maximum LSA value was observed for farmland and snow cover, and
the minimum value was observed in forest areas (0.21). The maximum and minimum LST values in
summer were acquired from rangeland (37 °C) and water bodies (24 °C), respectively; the maximum
and minimum values of winter values were detected in forests (4.14 °C) and snow cover (—21.36 °C),
respectively. Our results revealed that barren land and residential areas, having the maximum LSA
in summer, were able to reduce the heating effects to some extent. Forest areas, due to their low
LSA and high LST, particularly in winter, had a greater effect on regional warming compared with
other LULC classes. Our study suggests that forests might not always mitigate the effects of global
warming as much as we expect.
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1. Introduction

Global warming refers to the impact of human-induced activities on the atmosphere,
particularly the consumption of fossil fuels (coal, oil, and gas) and large-scale land degrada-
tion and deforestation, which have rapidly increased since the industrial revolution [1-3].
There are increasing concerns regarding global warming, which has led to floods in some
parts and prolonged droughts in other parts of the world [4-6], leading to crop decline and
famine, which have ultimately caused major socioeconomic crises. Due to its complicated
nature, which arises from the simultaneous effects of different drivers, investigation and,
more importantly, prediction of the likelihood of global warming behavior remain challeng-
ing [7-9]. Greenhouse gases and solar radiation reflection, called albedo, both contribute to
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affecting the Earth’s surface temperature. Albedo is the parts of solar radiation reflected
by the Earth, which is a function of terrestrial features, material, and the amount of solar
energy absorbed by objects on the Earth’s surface [10]. Due to topographic complexities,
in-suite measurement of albedo is usually challenging, where satellite measurements are
widely used for its calculation. Through albedo, the net energy received from different land
use/land cover (LULC) is captured [11].

Scientific evidence shows that the global warming challenges will not be addressed
without human contribution and intelligent solutions [12,13]. Solar radiation management,
which has recently received more attention, is one of the expected strategies to mitigate the
effects of climate change. This approach aims to combat global warming by increasing the
reflection of solar radiation by increasing the average value of land surface albedo (LSA) in
the atmosphere. Scientific reports suggest that solar radiation management strategies are
effective enough to cool the globe to the preindustrial levels [14]. However, the dispersion
of aerosols into the atmosphere is one of the most imperative strategies in this case, but
it results in unintended and damaging consequences [15]. Therefore, naturally changing
the albedo seems to be a better solution, which can be achieved by whitewashing roofs
worldwide [16]. Deforestation and afforestation are the other available strategies to change
the albedo level [17]: their gradual implementation can reduce the risk of very rapid
and strong adverse weather feedback events [18]. Socioeconomic development, which
has been significantly exacerbated by urbanization, can also change LULC types on the
regional scale [19,20]. Natural surface replacement, i.e., converting bare soil to impermeable
surfaces, is one of the most fundamental changes that has occurred due to urbanization
that reduces water infiltration into the soil [21]. Therefore, it affects the soil moisture and
reduces evapotranspiration from the soil surface, which finally reduces surface cooling in
urban areas. In addition, tall buildings with complex geometries in urban areas reduce the
effects of radiation across the long wavelength range, which can significantly reduce the
cooling rate in urban compared with rural areas. The extensive commercial, industrial, and
transportation activities in urban areas also lead to the release of large amounts of heat
waste and pollutants into the atmosphere, which together affect the energy balance on the
Earth’s surface [22].

Land surface temperature (LST), as one of the key parameters in surface energy
balance, regional climate, heat flux, and energy exchange, has received special attention
in urban climate and surface heat island, evapotranspiration, forest fire monitoring, and
geological and geothermal studies. In addition, LST is known as one of the dominant
parameters in the International Geosphere-Biosphere Program (IGBP) and can be estimated
by measuring radiation at meteorological stations. In the spot methods used to measure
the LST, there is no possibility of its accuracy, because the measurement is point-based.
Satellite measurements deal with such challenges and enable the capture of the LST on any
spatiotemporal scale, including globally [23]. Remote sensing is an important technology
for Earth observation that provides accurate, inexpensive, and faster results on large
scales than conventional methods. Thermal remote sensing works by processing and
interpreting the obtained data in the thermal infrared (TIR) domain of the electromagnetic
(EM) spectrum [24,25]. Thermal remote sensing, in addition to capturing LST, is able to
estimate surface diffusion, soil moisture, and evapotranspiration. Because these parameters
influence Earth—atmosphere interactions as well as energy flux, their accurate evaluation
is of utmost importance [23]. However, accurately measuring the LST through thermal
remote sensing depends on atmospheric conditions, the spectral extent, the sensor angle,
and surface parameters such as scattering and topography [26-28]. Changes in LULC
affect LSA and LST because the radiation received on the Earth’s surface is affected by
various surface reflection and absorption processes. There is little evidence concerning the
assessment of the spatiotemporal variation in LSA and LST across different LULC classes.
Therefore, this lack of high-resolution study is hindering progress in understanding how
LULC affects the functional and surface energy balance of landscapes.
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Our aim in this study was to explore the LSA and LST changes across the different
LULC classes using geospatial measurements to quantify the spatiotemporal variation in
these two climate-controlling factors during summer and winter timeframes. The results
of this study depict the contribution of different LULC types to the surface energy budget
based on satellite data and, therefore, provide insight into plausible mitigation strategies
to combat global warming. Our main hypothesis in this study was that forests might not
always mitigate global warming as much as we expect.

2. Materials and Methods
2.1. Study Area

The study area, extending between 47°48’ and 48°41” E and 37°56’ and 38°37’ N lati-
tude, includes the cities of Ardabil, Namin, and Astara, covers approximately 3284 km? on
the western coast of the Caspian Sea, in northwest Iran (Figure 1). The meteorological and
topographical features are presented in Table 1 across the study regions. The temperature
and precipitation vary across regions (Table 1). The maximum and minimum temperatures
recorded in Astara and Namin are 29.7 and —6.6 °C, respectively; Astara and Ardabil
receive the maximum and minimum precipitation of 1328 and 307 mm, respectively.

Table 1. Main topographic and meteorological characteristics of the study area.

Average Average
. Minimum Maximum Minimum Maximum Average Annual
2
County Area (km?®) Climate Height (m) Height (m) Monthly Monthly Rainfall (mm)
Temperature (°C) Temperature (°C)
Ardabil 2017 Cold semidr 1157 4409 8 246 307
y (January) (August)
. . —6.6 25.1
Namin 945 Mediterranean 1204 2391 (February) (August) 378
Mild and 2.7 29.7
Astara 322 humid -9 1910 (February) (June) 1328
47.83 48.05 48.28 48.5 48.73
1 1 1 1 1
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Figure 1. Map of the study area location.
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2.2. Data

Sentinel 2 and Landsat 8 images were downloaded from the ESA (https:/ /www.esa.int;
accessed on 1 September 2020) USGS (www.earthexplorer.usgs.gov; 1 September 2020)
websites and used to develop LULC and surface energy controlling factors (surface albedo
and temperature), respectively. For the LULC map, we first collected at least 100 field
samples from each given land-use class of the study area. Then, Sentinel 2 image, with
a spatial resolution of 10 m from July 2019, were employed to develop a LULC map. To
determine LSA and LST, the Landsat 8 images from July 2019 were used.

2.3. Image Classification
2.3.1. Preprocessing

Error adjustment is the first step in image classification, which mostly leads to accurate
analysis and therefore accurate results [29,30]. Using this process, the Landsat 8 image
was corrected by radiometric enhancement through Equations (1) and (2) using ENVI 5.3
software. To that end, first, Equation (1) was used to convert the digital values to spectral
radiation using the calibration coefficients of the sensor [31].

Y = Gain x DN + Offset 1

where Y is the spectral radiation (Wm-2Ster ! um~1), DN is the pixel digital value (0 to 255),
and Gain and Offset are the calibration coefficients of the sensor. Then, Equation (2) was
applied to convert the spectral radiation into spectral reflection.

nLD?

~ Esun. cos(SZ) @

p
where p is the spectral reflection, L is the total radiation measured in the sensor, and D is the
distance between the Sun and Earth at the space unit. The effects of changes in the exposure,
season, latitude, and weather conditions on the images were removed by converting the
spectral radiation to spectral reflectance values, which resulted in a standardized ratio
that was directly applied to compare the reflections between different images and between
images captured at different times. Then, the dark object subtraction (DOS) algorithm
was used to ensure the quality of data and bands as well as to eliminate the atmospheric
scattering effects in the Sentinel 2 image using QGIS 3.10.

2.3.2. Object-Oriented Algorithm

Segmentation and classification are the two important image classification steps using
the object-oriented approach. Image segmentation into objects (homogeneous areas) can
deal with the inherent error in pixel-based algorithms and therefore facilitates multiscale
analysis [32]. This means that the image is first broken down into homogeneous areas
and then classified, which is more effective than the pixel-based approach. Segmentation,
as the fundamental step that subdivides the entire image into segments, is considered
automatic feature extraction in the object-oriented procedure. The multiresolution algo-
rithm, a bottom-up region-merging technique, was employed in this study to perform the
segmentation processes.

In this study, eCognition software ver. 10.3 was used for object-oriented classification.
Object-oriented classification is most commonly applied to recognize and classify LULC
types. This way, various features, such as shape, texture, relationship, and layers, for each
object, in terms of object attributes, were computed and properly labeled using eCognition
after accurate object delineation.

2.4. LSA and LST Calculation Using the SEBAL Algorithm

The SEBAL algorithm was developed to estimate evapotranspiration, in which the
LSA and LST are also calculated. The algorithm works based on the energy balance on the
Earth’s surface and estimates evapotranspiration using satellite images. In this method,
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LSA is defined as the ratio of reflected radiation to shortwave radiation, which is calculated
as follows [33].

K — o
X — < toa D‘pazth radiance ) (3)
TSW

where o, a1 radiance is the part of incoming solar radiation across all bands that is scattered
to the satellite before arriving at the Earth’s surface, and T, is the transitivity of the
atmosphere. The &path _radiance Values usually vary from 0.025 to 0.04, where f 0.03 is
recommended for SEBAL according to Bastiaanssen [34]. The s, is the ability of direct and
diffused (scattered) radiation to transmit to the surface. This parameter value, assuming
a clear sky and relatively dry conditions, was calculated based on FAO-56, as follows:

Tow =0754+2x107° x z (4)

where z is the average altitude above sea level in meters. It should be precisely determined
in a way that is representative of the whole area’s altitude. To that end, z was the average
altitude of the stations in this study. Finally, LST was estimated as follows:

K>

ILST=——F———
In(“RL +1)

Q)

where R. is the corrected thermal band radius, engp is the surface emission of the thermal
band, and K; and K, are the constants coefficients of the equation. The coefficient values
for band 10 are 774.89 and 1321.08, and 480.89 and 14201 for band 11, respectively [35].
To apply image classification results in practice, their accuracy should be evaluated
to ensure classification precision [36]. The error matrix is the method widely used for
evaluating the accuracy of image classification [37,38]. The matrix includes the overall
accuracy evaluation criteria, producer accuracy, user accuracy, and kappa coefficient, which
are the most common parameters used for assessing image classification precision. Hence,
one-third of the collected field samples were employed to calculate the error matrix.

3. Results
3.1. LULC Map of the Study Area

Figure 2 shows the LULC map of the study area in 2019. The results of the accuracy
assessment revealed a kappa coefficient of 0.91 and overall accuracy of 0.93, which indicated
the strong ability of the object-oriented algorithm to capture the LULC patterns of the region
based on the field samples. In Figure 2, fallow (64,247.4 ha) and afforestation (127.7 ha)
were the largest and smallest LULCs of the study area, respectively (Table 2).

3.2. LSA and LST across the Study Area

Figure 3 shows the LSA maps of the study area for the summer and winter seasons. It
is evident that LSA values were high during winter compared with during the summer.
Hence, the values of 0.04-0.90 and 0.03-0.70 were estimated during winter and summer,
respectively. According to the LSA map (Figure 3a), the low values (0.03-0.28) in sum-
mer mostly came from the LULCs that covered the majority of the region. In winter
(Figure 3b), the high values (0.62-0.90) were from the LULCs that covered a substantial
area in the region.

Figure 4 depicts the developed maps for LSA in summer and winter. According to
this figure, the maximum and minimum temperatures of 47.65 °C and —26.93 °C were
estimated for the region in summer and winter, respectively. Table 3 presents the values for
LSA and LSA, individually, across the different LULCs in two study periods. According to
this table, the maximum and minimum values of LSA were associated with farmland (0.84)
and water bodies (0.11), respectively.
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Figure 2. LULC map of study area produced using the objected-oriented algorithm applied to

Sentinel 2 images.

Table 2. LULC types and their covered area across the study area.

Area
LULC Description
ha %
Fallow Agricultural land that was not planted during imaging. 153,809  45.57
Rangeland Uncultivat'ed shrub land.s, grasslanfds, aI:ld woodlands 69,9404 2072
suitable for grazing and wild animals.
Farmland Lands with crops at the time of imaging. 64,2474  19.03
Forest Naturally dominated by different trees species. 28,9819  8.59
Humanmade infrastructure, such as houses, factories,
Urban and asphalt roads, that have caused the impenetrability ~ 11,832.6 ~ 3.5
of the land surface.
Land devoted to the cultivation of fruit and nut trees or
Orchard shrubs that is maintained for food production. 435225 129
Land where no traces of human manipulation can be
Barren land found, and its vegetation/pasture is very weak, so the 2156 0.64
land is not in a productive or active state.

Snow cover A layer of snow that covers ground surface. 989.875  0.29
Water body Areas complgtely .covered by water, such as lakes, 563875 0.17
reservoirs, rivers, streams, and ponds.

Urban forests include trees and shrubs in yards, along
streets and utility corridors, in protected areas, and in

Urban forest watersheds. These include individual trees, street trees, 535.688 0.16
and green spaces with trees, along with the vegetation
and soil beneath them.
Afforestation lands Areas with newly establishec'l forests through planting 127688 0.04
or seedlings.
Total All land uses/covers across the study area. 337,536.7 100
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Table 3. LULC contribution in LST (°C) and LSA.

Summer Winter

LULC
LST LSA LST LSA
Farmland 33 0.2 —4.14 0.84
Fallow 37 0.25 —3.09 0.78
Barren land 36 0.33 —0.69 0.75
Forest 26 0.16 4.14 0.21
Orchard 35 0.19 —4.45 0.72
Rangeland 37 0.2 —5.74 0.70
Urban 32 0.32 —44 0.56
Urban forest 30 0.24 —1.86 0.59
Water body 24 0.11 —3.55 0.46
Afforestation 28 0.16 —-0.22 0.69
Snow cover 33 0.18 —21.36 0.84

Additionally, the maximum value of LSA was simultaneously attributed to fallow and
rangeland, while its minimum value was attained from snow-covered land. The graphs
were established to better understand and compare the two climate-affecting factors in the
studied period (Figure 5).
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Figure 3. Supervised classification results for 30 m LSA in (a) summer and (b) winter produced using

the SEBAL algorithm.
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Figure 5. Contribution of different LULC classes to (a) LSA and (b) LST in the study period.

4. Discussion and Conclusions

To assessing the effect of different LULCs on LSA and LST changes, we tested
a hypothesis that forests are always as effective at mitigating global warming as we expect.
Remote sensing measurements were applied to detect LSA and LST because different sur-
face substances naturally have their own specific albedo across different scales. We applied
Landsat 8 images with a spatial resolution of 30 m to estimate LSA and LST. Additionally,
Sentinel 2 images with a resolution of 10 m were employed to develop the LULC map.
LSA and LST were estimated using the SEBAL algorithm and Landsat images. Our results
regarding image classification indicated the high accuracy of the object-oriented algorithm
in capturing LULC changes, in accordance with the findings of Whiteside et al. [39]. Based
on the results, the maximum and minimum LAS were attributed to farmland and wa-
ter bodies, respectively, in line with the results reported by Asadi et al. [33] and Miinch
et al. [40], who revealed the contribution of residential areas to LAS changes across the
different LULCs. This difference might occur due to the type of materials used on ceilings,
walls, and facades, which may be constructed with high-reflectivity materials [41]. On the
contrary, farmland and forests showed the maximum and minimum contributions to LSA
in winter, respectively. Azizah et al. [42] investigated the effect of LULC change on NDVI,
LAS, and heat fluxes, and concluded that the distribution of LSA for each LULC class
from the lowest to the highest was forest, plantation, cropland, shrubs, and settlements.
The distribution of NDVI was the opposite to that of LSA. According to the results of
image classification, it is expected that the impact of residential areas and forests, with the
maximum contribution to LAS, on regional warming will be higher than that of barren
land because of their widespread area.

Trees seem to be one of the most popular options when it comes to tackling global
warming in countries that have made little progress in controlling carbon dioxide emissions.
Hence, many governments have developed cutting-edge plans in order to plant a large
number of trees to absorb carbon dioxide from the atmosphere to help reduce the effects
climate change. However, a newly emerged view suggests that trees may not always be as
helpful to fighting global warming as the general public thinks, because the dark leaves of
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trees can increase the temperature by absorbing sunlight, which results in the elimination
of the forests’ cooling effects [43]. Our findings imply the low contribution of forests to LSA
(summer: 0.16 and winter: 0.21), which is in agreement with the findings of Asadi et al. [33],
who assessed the contribution of different LULCs on LSA using SEBAL and metric methods
in Ardabil, and concluded that forests followed by water bodies contributed the least to
the LSA. Additionally, our results are in line with those of Yan et al. [44], who examined
LSA variations between 2002 to 2019 during a period of forest area growth in China, and
concluded that the albedo was increased by increased forest greening (increased bright
canopy) and decreased dark crevices. They also found that range greening reduced the
LSA during the same growing period. Therefore, the contribution of different LULC classes
to LSA can vary based on topographic and geographical features.

Our results demonstrated the capability of the SEBAL algorithm to capture LST
because this algorithm estimates the evapotranspiration using a minimum amount of in
situ data at instantaneous, daily, and seasonally scales using an energy balance process
at the pixel level. Our results support the previous finding that SEBAL is efficient in
measuring evapotranspiration and other LST fluxes [45].

According to the results, the maximum and minimum LST values in summer were
obtained from fallow land associated with rangeland and water bodies, respectively. In
winter, forests and snow cover showed the highest and lowest LST, respectively. This
finding is in accordance with that of Nadizadeh Shourabeh et al. [46], who indicated a high
average temperature of fallow land during 1992-2015. Additionally, we obtained the
minimum LST from water bodies, which is in line with the findings of Feizizadeh et al. [47].
These results can be attributed to the nonuniformity of fallow land, which is a combination
of grass, plants, and soil surface that causes the largest temperature variation on the
ground [46]. Merga et al. [48] investigated the LST changes in response to LULC dynamics
in the Didsa River sub-basin in western Ethiopia, and showed that the highest LST values
were on bare land, settlement areas, and farmland, whereas forests and water bodies had
the lowest LST. It should be kept in mind that all these results should be interpreted in
light of biophysical factors (e.g., solar radiation intensity, surface moisture, wind speed,
and humidity), which may not have been stable or stationary during the timeframes when
the data were collected [49].

Opverall, our findings demonstrated that forests do not always have a climate-modifying
role and may not serve as a driver of regional or global warming. However, this finding
might be due to the geographical location or limited forest area in this study. Because
forests, in almost all previous studies, have played a decisive role in global climate, our
findings provide insight into the role of forest areas in global warming and climate change,
which can be considered as a new insight in this field. However, further research concerning
the role of forest areas in global warming is required to draw a general conclusion about
the local, regional, and global cooling or warming effects of forests.
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