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Abstract: This study aimed to assess the impacts of climate change on streamflow characteristics
of five tropical catchments located in Costa Rica. An ensemble of five General Circulation Models
(GCMs), namely HadGEM2-ES, CanESM2, EC-EARTH, MIROC5, MPI-ESM-LR dynamically down-
scaled by two Regional Climate Models (RCMs), specifically HadRM3P and RCA4, was selected
to provide an overview of the impacts of different climate change scenarios under Representative
Concentration Pathways (RCPs) 2.6, 4.5 and 8.5 using the 1961–1990 baseline period. The GR2M
hydrological model was used to reproduce the historical monthly surface runoff patterns of each
catchment. Following calibration and validation of the GRM2 model, the projected impact of cli-
mate change on streamflow was simulated for a near-future (2011–2040), mid-future (2041–2070)
and far-future (2071–2100) for each catchment using the bias-corrected GCM-RCM multimodel
ensemble-mean (MEM). Results anticipate wetter conditions for all catchments in the near-future and
mid-future periods under RCPs 2.6 and 4.5, whereas dryer conditions are expected for the far-future
period under RCP 8.5. Projected temperature trends indicate consistently warmer conditions with
increasing radiative forcing and future periods. Streamflow changes across all catchments however
are dominated by variations in projected precipitation. Wetter conditions for the near-future and
mid-future horizons under RCPs 2.6 and 4.5 would result in higher runoff volumes, particularly
during the late wet season (LWS). Conversely, dryer conditions for the far-future period under
RCP8.5 would result in considerably lower runoff volumes during the early wet season (EWS) and
the Mid-Summer Drought (MSD). In consequence, projected seasonal changes on streamflow across
all catchments may result in more frequent flooding, droughts, and water supply shortage compared
to historical hydrological regimes.

Keywords: bias-correction; climate-change; GCM; GR2M; RCM; RCP; streamflow; precipitation

1. Introduction

Anthropogenic climate change affects the energy and mass balance of fundamental
hydrological processes [1]. The water cycle is expected to be intensified and hydrological
patterns are very likely to be different under different climate scenarios [2].

Climate change represents an additional factor to existing water management chal-
lenges, contributing to an increased vulnerability of water supply systems [3]. A common
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approach to assessing the potential impacts of climate change on hydrological systems is
to drive hydrological models with climate projections derived through forcing General
Circulation Models (GCMs) and Regional Climate Models (RCMs) with various greenhouse
gas emissions scenarios [4,5].

General Circulation Models (GCMs) are one of the most powerful tools for building
future climate change projections [6]. However, information coming from GCMs exhibits a
relatively low spatial resolution (100–300 km), which in many cases is too coarse for impact
assessment studies at local levels, particularly over complex terrain [7]. Consequently,
a subsequent downscaling step, often through the application of higher resolution Re-
gional Climate Models (RCMs) over limited areas becomes necessary [8]. RCMs use large
scale atmospheric conditions as determined by GCMs for the lateral boundary conditions.
Higher resolution topography and land-sea distribution are incorporated to generate more
realistic climate information at a much finer spatial resolution (10–50 km) [9]. Climate
models output are nevertheless stacked with uncertainties that arise due to systematic,
random and parameterization biases relative to long-term historical observed datasets [10].
Large uncertainties in GCM-RCM projections introduce important biases in precipitation
and other climatic variables, making the direct use of such outputs unreliable in impact
assessment studies [11–13]. Moreover, GCM-RCM projections frequently show better
performance in regions with temperate climate conditions when compared to tropical
regions, whose precipitation is largely convective in nature and insufficiently represented
by climate models [14,15]. Therefore, the application of appropriate bias correction (BC)
methods to GCM-RCM simulations becomes necessary to better match observed variances
and distributions [16]. Bias correction involves the adjustment of biased simulated data
to observations [17,18]. There are various BC methods that have been put into practice,
ranging from relatively simple perturbation approaches such as the delta-change method
to more sophisticated distribution mapping [19–22]. Although BC methods in general can
significantly improve performance of simulations, assumptions of stationarity in future
scenarios will still remain a cause for uncertainty in impact assessment studies and their
applications [23].

The spatio-temporal patterns that characterize the hydrological response of a water-
shed may be altered due to climate change. Hydrological models have become standard
tools to address many practical questions in water resources management including flood
prediction and design, drought assessment, water quantity and quality assessment and
hydrological responses under climate change scenarios [24]. Hydrological models are
simplified descriptions of real-world hydrological systems intended to produce plausible
hydrological simulations from input variables regardless of the climatic characteristics of
the simulation period [25]. Thus, hydrological models are expected to be transferable to
periods with climatic conditions that are not encountered during the calibration-validation
phases [26]. Hydrological models can broadly be classified into physically-based and
conceptual approaches. The former, uses a mathematical framework based on mass, mo-
mentum and energy conservation equations in a spatially distributed model domain, where
parameter values are directly related to catchment characteristics at the cell level [27].
Physically-based models suffer from drawbacks due to the complexity of the rainfall-runoff
transformation process, which includes substantial data requirements, large computational
demands, over-parameterization and parameter redundancy [28]. Conceptual models in
contrast, approximate the general physical mechanisms governing hydrological processes
through simplified equations, where input variables and parameters are aggregated into
semi-distributed or lumped homogenous entities. Conceptual hydrological models are
widely used in the assessment of water resources based on the application of water budget
simulations [29]. These models approximate the general physical mechanisms governing
hydrological processes through simplified equations and most commonly consider the
catchment as an undivided entity, using spatially and temporally lumped values of input
variables and parameters [30].
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The conceptual structure of these models is based on the interaction of various stor-
age compartments, approximating the various physical processes through mathematical
functions to describe fluxes between compartments, which make them less demanding
of inputs [31]. Furthermore, conceptual models are generally less time consuming, their
data and definition requirements are significantly lower and frequently exhibit better
performance compared to physically-based models, thus achieving higher efficiencies in
calibration and validation processes [32].

Conceptual hydrological models are intended to be parsimonious, meaning that their
mathematical structures are defined by fewer parameters when compared to physically-
based models [33]. The concept of parsimony is desirable as long as it does not impair the
ability of the model to properly simulate flow dynamics [34]. Nonetheless, as parameters
of conceptual hydrological models commonly have no direct physical meaning, they must
be estimated through inverse calibration using time series of observed historical data [35].
The equifinality dilemma, a situation where different sets of optimum parameters may
yield equivalent model outputs, is considerably less significant in conceptual hydrological
models due to their reduced dimensionality [36]. This ultimately improves parameter
identifiability during the calibration process and therefore makes it solvable by existing
optimization algorithms [37]. In consequence, the selection of the proper optimization
algorithm in the calibration of hydrological models is equally important, mainly due to the
associated computational costs [38].

A wide range of conceptual hydrological models have been used to obtain detailed
assessments of water balance components in river catchments including surface runoff,
groundwater flows and parameter transferability under contrasting climate change scenar-
ios including: AWBM, ABCD, SIMHYD, HBV, Témez and GR2M [39–44].

The GR2M hydrological model [45] has been widely adopted due to its high parsimony.
Its semi-empirical approach has demonstrated to perform adequately when compared to
similar monthly-based hydrological models [46,47]. Sensitivity analyses have determined
that GR2M is sensitive to errors in precipitation data but comparatively robust to random
errors in potential evapotranspiration data demonstrated that the GR2M model parameters
are robust to non-stationary precipitation series and that the optimized parameter values
are highly correlated with land use [48,49]. The GR2M has extensively been used to study
the impact of climate change on water resource availability as well [50–52]. However, the
performance of any conceptual hydrological model under changing climatic conditions
could significantly vary depending on the region they are applied [53,54].

The Central America region, for example, has been identified as the main emerging
tropical “hot-spot” due to expected reductions in total precipitation and an increase in
its variability by the end of the 21st century due to climate change [55–59]. Historical
trends from observations already show a significant increase in temperatures and intensity
of precipitation events [60,61]. Mean annual precipitation and precipitation variability
in Central America are particularly sensitive to global climate change [62]. Precipitation
during the rainy season is projected to decrease throughout most of the region, whereas
precipitation during the dry season is projected to decrease in the areas where orographic
precipitation dominates [63]. Furthermore, intensification of the mid-summer drought,
a relative minimum between two rainfall maxima, shows high agreement across models
under future scenarios [64]. However, future precipitation trends over southern parts of
Central America, including Costa Rica, show less agreement across climate models and
warming levels highlighting the need to assess climate change impacts [65].

Costa Rica, located in the Central American region is particularly vulnerable to climate
change due to its strong dependence on the availability and distribution of water resources
for crucial issues such as hydropower generation, agriculture, drinking water supply
and biodiversity [66–68]. Moreover, Costa Rica has reported the greatest number of both
intensive and extensive risks in Central America [69]. Thus, predicting future water
resources in Costa Rica under diverse scenarios is essential to accurately evaluate and
rapidly adapt to climate change extremes and its consequences. The objective of this study
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is to assess future changes on the streamflow characteristics of five tropical catchments
located in the Pacific region of Costa Rica, using a GCM-RCM multimodel ensemble to force
a conceptual hydrological model under multiple climate change scenarios. For this study,
the GR2M model was selected based on its low data requirements, simplified structure,
high performance and low computational cost. This will allow local authorities to make
informed and rational decisions to overcome water challenges and plan water resources
management at a catchment scale in the context of climate change.

In the following sections, first, the research methodology; then the study area is
described; later, the datasets and relevant methods are presented; the hydrological model is
introduced and finally, the historical and future results associated with multiple climate
change scenarios are discussed.

2. Materials and Methods
2.1. Research Methodology

In this study, the research methodology (Figure 1) consisted of four main steps:
(1) selection of reference catchments including spatial data processing, observational and
hydrological datasets (2) selection of climate change datasets including bias correction;
(3) parameter optimization and performance assessment of the GR2M hydrological model
and (4) assessment of future hydrological response per catchment. Details on the methodol-
ogy applied are described further below.
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2.2. Research Methodology

Costa Rica is located along the southern Central American isthmus occupying an area
of approximately 51,000 km2. It is bordered by the Caribbean Sea to the east and the Pacific
Ocean to the west (Figure 2a). The country is divided from north-west to south-east by
cordilleras of high complexity which rise above 3820 masl (Figure 2b), promoting oceanic
climatological influences from both oceans [70].

Sustainability 2022, 14, x FOR PEER REVIEW 6 of 34 
 

 

ño-Southern Oscillation (ENSO), the Mid-Summer Drought (MSD) the Caribbean 

Low-Level Jet (CLLJ), northeast trade winds, cold fronts, and tropical cyclones [74–76]. 

To assess the potential effects of climate change on surface runoff in Costa Rica, five ref-

erence catchments across the Pacific watershed namely Tempisque, Morote, Bebedero, 

Barrancas and Chirripó Pacífico were selected based on their different climatic and geo-

graphical characteristics (Figure 2b). The catchments exhibit strong altitudinal gradients 

ranging from slightly above sea level to as high as 3820 masl, with distinct differences in 

topography having roughly similar mean slopes steepness of around 30% and catchment 

areas ranging from 130 to 929 km2 (Table 1). 

Mean temperatures range from 17 °C to 27 °C depending on changes in elevation 

within each catchment, with generally positive gradients towards the Northwest Pacific. 

The catchments were also selected based on their significance to the country in terms of 

water supply, agriculture, power generation and forestry, as well as data availability in 

terms of long-term series of flow measurements. For the reference catchments, the high-

est mean annual precipitation occurs in the Chirripó Pacífico catchment (Southern Pacif-

ic) with 3376 mm/year and the lowest in the Tempisque catchment (Northwest Pacific) 

with 1991 mm/year (Table 1). Mean annual potential evaporation on the other hand, 

varies from 1162 mm/year to 1090 mm/year for these two catchments respectively. Con-

trastingly, the mean annual cycle of temperature in the region is described as a monsoon 

type, with the highest temperatures just before the beginning of the rainy season and a 

minimum in December-January mainly associated to strong trade winds. The 

March-April temperature maximum is mostly associated with a decrease in the magni-

tude of the trade winds and low values in cloud cover and therefore radiation incidence 

[77]. 

 

Figure 2. (a) Position and location of catchments and Digital Elevation Model (DEM) in Costa Rica 

(abbreviations refer to catchments codes) and (b) Position of the Costa Rica within the Central 

American isthmus. 

  

Figure 2. (a) Position and location of catchments and Digital Elevation Model (DEM) in Costa
Rica (abbreviations refer to catchments codes) and (b) Position of the Costa Rica within the Central
American isthmus.

Orientation of the major cordilleras in addition to elevation, are the most important
modifiers of local precipitation patterns, featuring a wide range of local and regional
climates [71]. The country possesses a bimodal distribution of precipitation with two
pronounced peaks, the early wet season (EWS) (May–June) and the late wet season (LWS)
(September–October), which coincides with convergence of seasonal latitudinal migration
of the Intertropical Convergence Zone (ITCZ) and trade winds. This results in extended
low-pressure zones, which coupled with constant solar radiation throughout the year,
causes humid air to rise in the area, triggering thunderstorms and precipitation along
the Caribbean and Pacific coastlines [72]. The relative minimum in July–August during
the Mid-Summer Drought (MSD), considered one of the most important regional climate
variability mechanisms in the region [73]. In addition, the spatial and temporaldistribution
of precipitation in Costa Rica also depends on factors such as El Niño-Southern Oscillation
(ENSO), the Mid-Summer Drought (MSD) the Caribbean Low-Level Jet (CLLJ), northeast
trade winds, cold fronts, and tropical cyclones [74–76]. To assess the potential effects of
climate change on surface runoff in Costa Rica, five reference catchments across the Pacific
watershed namely Tempisque, Morote, Bebedero, Barrancas and Chirripó Pacífico were
selected based on their different climatic and geographical characteristics (Figure 2b). The
catchments exhibit strong altitudinal gradients ranging from slightly above sea level to as
high as 3820 masl, with distinct differences in topography having roughly similar mean
slopes steepness of around 30% and catchment areas ranging from 130 to 929 km2 (Table 1).
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Table 1. Summary of catchments characteristics. Where: A: drainage area; P: perimeter; Min
Alt: minimum altitude; Max Alt: maximum altitude; S: mean slope; P: mean annual precipitation;
T: mean daily temperature PET: mean annual potential evapotranspiration; Cal: calibration period;
Val: validation period.

Catch A P Min Alt Max Alt S P T PET Cal Val

Tempisque 929 232 13 1906 30.47 1991 25.6 1090 1961–1969 1980–1988

Morote 269 106 16 848 28.86 2057 26.9 1098 1970–1975 1976–1981

Bebedero 130 61 192 1543 27.85 2502 23.9 1135 1969–1980 1984–1990

Barrancas 212 120 230 286 30.10 2614 23.2 1123 1977–1983 1984–1990

Chirripó
Pacífico 322 81 790 3800 32.19 3376 18.2 1162 1971–1980 1980–1990

Mean temperatures range from 17 ◦C to 27 ◦C depending on changes in elevation
within each catchment, with generally positive gradients towards the Northwest Pacific.
The catchments were also selected based on their significance to the country in terms of
water supply, agriculture, power generation and forestry, as well as data availability in
terms of long-term series of flow measurements. For the reference catchments, the highest
mean annual precipitation occurs in the Chirripó Pacífico catchment (Southern Pacific)
with 3376 mm/year and the lowest in the Tempisque catchment (Northwest Pacific) with
1991 mm/year (Table 1). Mean annual potential evaporation on the other hand, varies
from 1162 mm/year to 1090 mm/year for these two catchments respectively. Contrastingly,
the mean annual cycle of temperature in the region is described as a monsoon type, with
the highest temperatures just before the beginning of the rainy season and a minimum in
December-January mainly associated to strong trade winds. The March-April temperature
maximum is mostly associated with a decrease in the magnitude of the trade winds and
low values in cloud cover and therefore radiation incidence [77].

2.3. Observational and Hydrological Datasets

Gridded monthly precipitation and temperature time series available for Costa Rica
for the 1961–1990 baseline were used for continuous simulation of climate change and
hydrological modeling. The high resolution 1 × 1 km gridded datasets were developed
using deterministic and geostatistical interpolation methods from more than 416 rain-
gauge stations spread over Costa Rica provided by the Instituto Meteorológico Nacional
(IMN) [78,79]. Potential evapotranspiration (PET) values for each catchment were esti-
mated using the Priestley-Taylor (PT) equation based on the work of Rojas (1985) [80].
All catchments were delineated using topographic information derived from the ALOS
World 3D-30m (AW3D30) Digital Elevation Model (DEM) resampled to a 1 × 1 km spatial
resolution using the bilinear resampling method [81]. Available Streamflow daily data
within the baseline period and used in calibration/validation were collected bythe Instituto
Costarricense de Electricidad (ICE) and Instituto Costarricense de Acueductos y Alcantaril-
lados (AyA) and subsequentially aggregated to a monthly scale. Some missing values in the
observed streamflow time series for the Tempisque and Chirripó Pacífico catchments were
identified and isolated. These data gaps were excluded from the calibration-validation
processes and therefore do not affect the performance of the selected metrics.

2.4. Climate Change Datasets

Gridded Monthly precipitation and temperature gridded series from four General
Circulation Models (EC-EARTH, HadGEM2-ES, MPI-ESM-LR and MIROC5), dynami-
cally downscaled by the RCA4 Regional Climate Model [82] available in the context of
the Coordinated Regional Climate Downscaling Experiment (CORDEX) over the Central
America domain (CA) were used in this study. CORDEX-CA data [83] cover the period
1950–2100 and have a 0.44◦ × 0.44◦ (~50 km) spatial resolution (Table 2). In addition,
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monthly precipitation and temperature totals from the HadGEM2-ES General Circula-
tion Model were dynamically downscaled over the Central America domain using the
Met Office Hadley Centre Regional Climate Model PRECIS (HadRM3P) [84] executed at
a 0.22◦ × 0.22◦ (~25 km) spatial resolution over the Central America domain (CA) covering
the period 1950–2100. Three AR5 emission scenarios, RCPs 2.6, 4.5 and 8.5 were selected to
explore the range of possible climate change impacts over the coming century [85].

Table 2. General Circulation Models (GCMs) and Regional Climate Models (RCMs) configuration.
Where: X: available dataset; O: unavailable dataset.

Driving
GCM-Model Country GCM

Model-Center RCM RCM
Model-Center

RCM
Resolution Source RCP2.6 RCP4.5 RCP8.5

HadGEM2-ES UK Met Office Hadley
Centre HadRM3P Met Office

Hadley Centre 0.22◦ × 0.22◦ ITCR X X X

CanESM2 Canada

Canadian Centre
for Climate
Modelling and
Analysis

RCA4 Swedish
(SHMI) 0.44◦ × 0.44◦ CORDEX O O X

EC-EARTH Ireland
Irish Centre For
High-End
Computing

RCA4 Swedish
(SHMI) 0.44◦ × 0.44◦ CORDEX X X X

HadGEM2-ES UK Met Office Hadley
Centre RCA4 Swedish

(SHMI) 0.44◦ × 0.44◦ CORDEX X X X

MIROC5 Japan

The University of
Tokyo Center for
Climate System
Research

RCA4 Swedish
(SHMI) 0.44◦ × 0.44◦ CORDEX X O X

MPI-ESM-LR Germany
Max Planck
Institute for
Meteorology

RCA4 Swedish
(SHMI) 0.44◦ × 0.44◦ CORDEX X X X

2.5. Bias Correction of Climate Change Datasets

Based on a previous analysis of eight different bias correction-methods over the entire
Costa Rican territory [68], the delta-change method was applied to correct GCM-RCM
outputs and correlate them with the observational datasets on a monthly temporal resolu-
tion. The delta-change method generates climate scenarios by adding the future change
signal (anomalies) from GCM-RCM simulations for a perturbation of the observational
datasets rather than using the GCM-RCM outputs directly [86]. In the delta-change method,
observational time series are used as baseline, which makes it a robust method capable of
correcting the mean values. Nonetheless, standard deviation (variance), wet frequencies
and intensities are not corrected [87]. The delta-change method has been extensively ap-
plied in the evaluation of climate change impacts as it does not rely on any stationarity
hypothesis [88]. For future forecast scenarios, the GCM-RCM-simulated anomalies between
control and scenario runs are superimposed upon the observational time series, which is
done on a monthly basis using a multiplicative correction for precipitation according to:

PBC
contr(t) = Pobs(t) (1)

PBC
frc (t) = Pobs(t) ·

[
µmPfrc(t)

µmPcontr(t)

]
(2)

where P is precipitation, contr is GCM-RCM simulated time series during the control period,
obs is the observational time series during the control period, frc is the future forecast time
series to be corrected, BC is the final bias-corrected time series, t is the time step and µm is
the long-term monthly mean.

In the case of temperature, an additional factor is used according to:

TBC
contr(t) = Tobs(t) (3)

TBC
frc (t) = Tobs(t) + (µmTfrc(t)− µmTcontr(t)) (4)
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where T is temperature.
The delta-change method was applied to correct the biases of precipitation and temper-

ature projections from each GCM-RCM pair. Bias correction parameters were generated and
applied separately for each month of the year for each of the GCM-RCMs using the 30-year
control period 1961–1990. As demonstrated by Mendez et al., (2009) [68], only marginal dif-
ferences were found between the delta-method and more complex bias correction-methods,
including various quintile mapping techniques. Therefore, the delta-method method was
selected based on lower computational cost.

2.6. The GR2M Hydrological Model

The spatially-lumped conceptual rainfall-runoff GR2M model was used in this study
for hydrological modeling purposes of all reference catchments. The GR2M model uses
monthly time-step precipitation P and potential evapotranspiration (PET) as input and
produces actual evapotranspiration E and total runoff Q based on exchanges from a two-
reservoir structure, featuring an upper-production soil moisture store S and a lower-routing
groundwater storage G (Figure 3). Soil moisture storage is calculated based on the soil
moisture accounting principles; where available moisture S1 is initially increased due to
precipitation P from the actual soil water S according to a non-linear function Equation (5).

S1,i = f1(Si−1, Pi, X1) (5)
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Reservoir S has a maximum capacity of soil storage controlled by parameter X1,
which is positive and given in mm. Soil moisture store S is then decreased due to actual
evapotranspiration E using a similar nonlinear function and becoming S2 Equation (6).

S2,i = f2(Si,1, PETi, X1) (6)

Excess precipitation is given by P1 Equation (7).

P1,i = Pi + Si−1 − S1,i (7)
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Release from soil moisture storage is given by percolation P2 Equation (8).

P2,i = S2,i − Si (8)

where Si is the updated value of soil moisture storage by another non-linear function
Equation (9).

Si = f3(S2,i, X1) (9)

The net precipitation entering the lower routing storage P3 is given as the sum of P1
and P2 Equation (10).

P3,1 = P1,i + P2,i (10)

The level in the lower routing storage G then increases to G1 Equation (11).

G1,i = Gi−1 + P3,i (11)

Available water in the routing storage G2 is then calculated using a linear reservoir
approach controlled by water exchange parameter X2, which dictates the proportion of
runoff that is released from groundwater storage Equation (12).

G2,1 = X2 × G1,i (12)

Parameter X2 is positive and has no dimension. The maximum storage of the lower
reservoir is fixed at 60 mm by default [45].

Total runoff Q is then obtained as a rational function of G2 Equation (13).

Qi =
G2

2,i

G2,i + 60
(13)

Groundwater storage for the next month is then updated Equation (14).

Gi = G2,i − Qi (14)

The GR2M hydrological model has been widely adopted due to its high parsimony.
Its semi-empirical approach has demonstrated to perform adequately when compared to
similar monthly-based hydrological models [46,47].

2.7. Parameter Optimization and Performance Assessment

The GR2M hydrological model as implemented through the R programming language
package airGR (v 1.4.3.65) developed by IRSTEA (Institut national de recherche en sciences
et technologies pour l’environnement et l’agriculture) [89] was used in the present work.
The Michel optimization algorithm [90] was used to optimize X1 and X2 model parameter
values (Figure 3) based on available monthly streamflow observed data at each catchment
(Table 1). Two different steps are executed during the optimization procedure: (1) a
systematic inspection of the parameter space is performed to determine the most likely
zone of convergence. This is done either by direct grid screening or by constrained sampling
based on empirical parameter databases and (2) a steepest descent local search procedure is
carried out to find an estimate of the optimum parameter set. The split sample test (SST) for
stationary climatic conditions [91] was adopted for calibration and validation by dividing
the observational dataset into two non-overlapping periods of approximately equal length
(Table 1), with a 1-year lag at the beginning of the calibration period for warming-up
purposes [92]. Parameter optimization was executed to maximize the Nash and Sutcliffe
efficiency criteria (NSE). Initial parameter ranges were defined according to Perrin et al.,
(2007) [93]. The GR2M model performance was also assessed in terms of three additional
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metrics namely; the Kling-Gupta efficiency (KGE) criteria [94], the percentage bias (PBIAS)
and the Pearson correlation coefficient (R) according:

NSE = 100 ·
[

1 − ∑n
i=1
(
Qobs

i − Qsim
i
)2

∑n
i=1
(
Qobs

i − Qm
)2

]
(15)

PBIAS = 100 ·
[

∑n
i=1
(
Qobs

i − Qsim
i
)

∑n
i=1
(
Qobs

i
) ]

(16)

R =
∑n

i=1 Qobs
i Qsim

i − 1
n
(
∑n

i=1
(
Qobs

i
))(

∑n
i=1
(
Qsim

i
))[

∑n
i=1
(
Qobs

i
)
− 1

n
(
∑n

i=1
(
Qobs

i
))2
]0.5[

∑n
i=1
(
Qsim

i
)
− 1

n
(
∑n

i=1
(
Qsim

i
))2
]0.5 (17)

where i is the timestep, n is the total number of time-steps, Q is the runoff and subscripts
obs and sim refer to observed and simulated correspondingly.

The KGE is defined as:

KGE = 1 −
[
(r − 1)2 +

(
σsim

σobs
− 1
)2

+

(
µsim

µobs
− 1
)2
]0.5

(18)

where r, σ and µ are the Pearson correlation coefficient, standard deviation and the mean
of the observed and simulated flows.

The NSE is a normalized statistic that determines the relative magnitude of the residual
variance compared to the observed data variance, so it is related to the model capacity to
simulate the general shape of the hydrograph. The NSE assigns more weight to high flows
(simulated runoff and observed runoff expressed as Qsim and Qobs, respectively). Perfect
agreement between the observed and simulated discharge yields a NSE efficiency of 1. The
NSE is the most commonly used metric for reflecting the overall fit of a hydrograph, which
provides extensive information on reported values. The KGE is a weighted combination
of the three components appearing in the NSE formulation that improves flow variability
estimates, given that in watersheds with high discharge variability the bias component
will have a smaller contribution to the optimization of the NSE objective function possibly
leading to model simulations having large volume errors [54]. The PBIAS is defined as
the balance between the accumulated simulated discharge (Qsim) and the accumulated
observed discharge (Qobs) over an evaluation period of n-months. The PBIAS is commonly
used to quantify water balance errors, where a negative value indicates underestimation
whereas a positive value indicates overestimation. In general, PBIAS values tend to vary
more, among different optimization methods, during dry years than during wet years [95].
The Pearson correlation coefficient (R) measures the correlation between simulated and
observed discharges. It could be considered a measure of potential skill and linear de-
pendence between the two variables, with the best value equal to 1 and the worst value
equal to 0 [96]. Based on Moriasi et al., 2007 [96], for the purpose of this study, GR2M
model outputs are considered “very good” when NSE, KGE and R values range from 0.75
to 1.00 and PBIAS ± 10%; “good” when NSE, KGE and R values range from 0.65 to 0.75
and PBIAS range from ±10% to ±15% and “satisfactory” when NSE, KGE and R values
range from 0.50 to 0.65 and PBIAS range from ±15% to ±25% over both calibration and
validation periods.

2.8. Future Climate Change Scenarios

Once calibrated and validated, the GR2M hydrological model was used to assess the
impacts of precipitation and temperature changes on water resources availability for the
five catchments based on future climate change scenarios (Figure 1). As implemented in
similar studies [15,16,97,98], after the application of the delta-change method on GCM-
RCMs outputs, a multimodel ensemble-mean (MEM) was calculated based on the total
number of available members (Table 2). Future projections were assessed in three 30-year
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time periods: near-future (2011–2040), mid-future (2041–2070) and far-future (2071–2100)
using the 30-year control period 1961–1990 [99]. For future projections, the monthly av-
eraged precipitation anomalies between the mean values of the observed control period
(1961–1990) and the bias-corrected multimodel ensemble-mean (MEM) were calculated
and expressed as percentage-change (PC). In the case of temperature, changes were ex-
pressed as absolute anomalies in Celsius (◦C). These future bias corrected scenarios were
used as inputs for the GR2M model to simulate the future runoff. To simulate future
runoff, the precipitation/runoff relationship established from observational time-series
and obtained from calibration/validation was assumed to be stable regardless of land use
changes. As suggested by Ardoin-Bardin (2009) [50], this was done to investigate future
impacts concerning changes in climate variables while keeping all other factors constant.
The R programming language package hyfo (v1.4.3) was used to execute bias correction
independently for each 25 × 25 km grid cell within the selected catchments. Spatial data
processing, which includes interpolation, resampling, re-projecting, raster manipulation,
dating and masking was performed using the R programming language [100] by combining
capabilities of the gstat (v2.0.9), sp (v1.5.0), raster (v3.5.21), ncdf4 (v1.19.0) rgdal (v1.5.32)
and rgeos (v0.5.9) packages. The official Costa-Rica Transverse-Mercator (CRTM05) spatial
reference system (Figure 1) was used to reproject from WGS84 resulting in raster products
with a 25 km cell size.

3. Results and Discussion
3.1. GR2M Performance Evaluation

As suggested by Moriasi et al., 2007 [96] visual inspection of simulated and measured
hydrographs are useful in identifying model bias and can point out differences in timing
and magnitude of peak flows and the general shape of recession curves. In this study,
simulated and observed monthly streamflow hydrographs prove the suitability of the
GR2M model to properly simulate the monthly and seasonal hydrological cycle of all
reference catchments, as simulated values and their temporal variability acceptably match
observations during the calibration and validation (Figure 4).

No considerable mismatches can be found in terms of peak flows, baseflow or timing
for any of the catchments. This is also supported by individual scatter plots (Figure 5),
where deviations are somehow higher for peak flows, an outcome to be expected since
NSE was the optimized objective function. The average magnitude of simulated monthly
streamflow values is within the “very good” range across all metrics considered for all
catchments during the calibration period (Table 3), which are in agreement with graphical
results (Figure 4).

As expected, all metrics suggest that GR2M performance slightly decreases in valida-
tion. This drop in performance has been repeatedly emphasized in literature [47,101,102]
and it is most likely related to model dependence on specific hydroclimatic and seasonality
conditions during the calibration/validation periods, poor parameter identifiability and
changes in land use and data acquisition errors.

Simulated values fall within the “good” range during the validation period for the
Tempisque and Bebedero rivers in terms of NSE and PBIAS only. Even when NSE and
KGE values are not directly comparable, the first is known to be more sensitive to peak
flows, whereas the second was specifically conceived to overcome this shortcoming. It
can be noted that in the case of the Tempisque River (Table 1), the validation period
exhibits considerably more peaks when compared to the calibration period (Figure 4). This
translates into a lower NSE value (0.737) which once again does not dramatically affects its
KGE counterpart, which follows into the “very good” range (0.801). The same reasoning is
extensive to the Bebedero River, as NSE falls within the “good” range but the KGE remains
in the “very good” range.
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Table 3. Range of GR2M model performance in calibration and validation.

Optimization Calibration Validation

Catchment X1 X2 NSE KGE R PBIAS NSE KGE R PBIAS

Tempisque 2980.958 0.963
0.812
(very
good)

0.893
(very
good)

0.907
(very
good)

−4.810
(very
good)

0.737
(good)

0.801
(very
good)

0.881
(very
good)

15.180
(good)

Morote 772.784 0.968
0.931
(very
good)

0.958
(very
good)

0.965
(very
good)

−1.230
(very
good)

0.792
(very
good)

0.864
(very
good)

0.897
(very
good)

8.880
(very
good)

Bebedero 2298.472 0.888
0.811
(very
good)

0.825
(very
good)

0.902
(very
good)

1.680
(very
good)

0.710
(good)

0.806
(very
good)

0.845
(very
good)

3.720
(very
good)

Barrancas 2951.297 0.993
0.894
(very
good)

0.913
(very
good)

0.946
(very
good)

0.630
(very
good)

0.882
(very
good)

0.842
(very
good)

0.944
(very
good)

1.790
(very
good)

Chirripó
Pacífico 2368.471 0.968

0.899
(very
good)

0.876
(very
good)

0.951
(very
good)

2.480
(very
good)

0.816
(very
good)

0.885
(very
good)

0.912

Conversely, PBIAS values in validation are proportionally higher than their calibration
counterparts for all reference catchments but still the “very good” to “good” range, particu-
larly for the Tempisque and Chirripo catchments where an overestimation of +15.18% and
an underestimation of −6.76% can be observed (Table 3).

In terms of R, all reference catchments fall within the “very good” category, as values
range from 0.825 to 0.965 during both calibration and validation, meaning that in all cases,
the GR2M model is capable of describing over 80% of the variance. Some discontinuities
in the observed streamflow time series can be observed during the validation period for
the Tempisque and Chirripó Pacífico catchments. However, these data gaps were excluded
from the validation process and therefore do not affect metrics performance. The relatively
high performance of the GR2M model led to determining representative parameters for
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the five reference catchments and simulating robust streamflows for future projections
under stationary and changing conditions. The X2 parameter, which is in control of the
baseflow/slow runoff from the lower-routing groundwater storage G (Figure 3), shows a
fairly stable behavior around 1 (from 0.888 to 0.993), which is within the theoretical value
range (0.2 to 1.3) identified by Perrin et al., (2007) [93]. On the other hand, the X1 parameter
which is in control of the upper-production soil moisture store S shows somewhat high
values (above 2000 mm) corresponding to tropical humid characteristics over the five
catchments, except for the Morote catchment which exhibits a particularly low value of
around 773 mm. Since the Morote catchment has the shortest calibration/validation period,
the results could indicate that GR2M model components related to soil moisture and
percolation are likely sensitive to the length of the calibration period. Additionally, it
should be noted that the capacity of the groundwater storage in GR2M is set by default to
60 mm, so its sensitivity to the calibration period is not analyzed here. The limited number
of parameters of the GR2M model could be of great advantage for ungauged catchments
with comparable characteristics within the study area, since optimal parameter values (X1
and X2) exhibit moderately low variability across the calibration periods, indicating that
they could be transferable to other catchments. One of the major obstacles in estimating
water resources availability is data scarcity associated with a lack of gauging stations [53].

Applying the GR2M model over sufficiently large catchment samples would allow the
repeated use of its optimum global parameters to ungauged catchments within a particular
region [103]. Hence, it is advisable to evaluate the modeling robustness and transposability
of GR2M calibrated parameters to contrasted climate or anthropogenic conditions. Even
when all catchments exhibit steep slopes and high elevation gradients (Table 1, Figure 1),
streamflows are measured at the lowest elevation areas in unstable river beds, which
cross sections are most likely sensitive to geometric changes, as strong precipitation events
occur during the rainy season. This reality should imply frequent updating of streamflow
rating curves, which could not always be achievable and therefore propagates uncertainty
into historical observed records. Changes in hydraulic sections over time are just one of
several sources of uncertainties affecting any hydrological model, which also includes data
acquisition errors, changes in land use and land cover among others [96].

While the selected metrics are satisfactory in both calibration and validation (Table 3),
these results are derived from only one sets of optimal parameters found by the Michel
algorithm, which should not suggest that they are unique. Nonetheless, the GR2M is highly
a parsimonious model with only 2 sensitive parameters, where the equifinality problem
is less relevant as compared to more complex models [33]. Increasing the complexity of
the model by adding more parameters could only result in more variance be added to
the model itself [37]. Significant trade-offs in the ability of any hydrological model to
simulate all aspects of a catchment dynamics will always exist, since no single unique set
of parameter can be identified.

Biases both systematic and random in nature, are expected to propagate to further
model simulations. However, model parameters are also expected to be transferable to
periods with climatic conditions that are not encountered during the calibration-validation
phases if satisfactory metric values are reached during the optimization process [25,26].

3.2. Historical Simulation of Precipitation and Temperature

To assess the performance of each GCM-RCM configuration relative to the baseline
(1961–1990), the spatially-averaged mean cycles of precipitation and temperature were
obtained for all reference catchments on a monthly scale. In terms of precipitation, spatially-
averaged monthly observations show the expected bimodal annual precipitation cycle
including the early wet season (EWS) peak (May-June), the late wet season (LWS) peak
(September–October) a relative minimum in July-August associated with the Mid-Summer
Drought (MSD) and the general minimum during boreal winter (December–February)
(Figures 6 and 7).
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The ability of each GCM-RCM member to reproduce these climate features substantially
depends on catchment domain and seasonality since biases of various magnitudes between
uncorrected GCM-RCM outputs and historical observations are clearly distinguishable.

PRECIS and MPI correctly locate the EWS peak in June but heavily overestimate
precipitation across all catchments. The opposite behavior is shown by MIROC5, which
exhibits a systematic dry bias across all catchments even when it can properly locate the
EWS peak in most cases. The remaining members, HadGEM2 and EC-EARTH performed
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better as simulations get closer to observations from January to June. The Chirripó Pacífico
river catchment is an exception, as a considerable wet bias can be observed for all GCM-
RCM members. PRECIS however, fails to properly reproduce the bimodal precipitation
cycle for this catchment, locating the EWS peak in July rather than in June and completely
missing the LWS peak in October.

The summer precipitation peak in the Pacific region, intensively convective in nature,
is mostly associated with an intensification and westward shift of the North Atlantic Sub-
tropical high (NASH) along with higher SSTs within the ITCZ. [75,104,105]. The majority of
RCMs have evidenced significant difficulties in modeling convective processes in complex
terrain, showing a diminished accuracy in representing summer precipitation, which in
most cases reflects unrealistic monthly precipitation accumulation, particularly during
the summer peak across all reference catchments [22,106]. These biases are most likely
related to factors such as space-time variability in mean precipitation averaging, model
structure and non-inclusion of local features. The Mid-Summer Drought (MSD), associated
with fluctuations in intensity and location of the Intertropical Convergence Zone (ITCZ)
and the Caribbean Low-Level Jet (CLLJ) is well represented by all GCM-RCM members
exception for EARTH, which fails to capture the observed July-August minimum across all
catchments [73,107].

Systematic wet biases however, can be observed for MPI and EARTH indistinctly of
catchment domain. Wet biases prevail for EARTH, MPI and HadGEM2 for most catchments
during the LWS peak, which coincides with the period of increased activity in terms of trop-
ical cyclones in the Atlantic Ocean (September-November) [76]. At the same time, MIROC5
adequately captures the LWS peak even when it shows predominantly dry biases from
May to October across all reference catchments. GCM members dynamically downscaled
by RCA4 exhibit substantial variations in terms of wet-dry biases across all catchment
domains, indicating that local processes and initial model parameterizations are important
in determining the model response to boundary forcing. Moreover, this also suggests
that the performance of individual configurations depends mostly on GCMs simulations
themselves, rather than the conceptualization or parameterization of the regional climate
model (RCA4) [15,97,108]. Precipitation along the Pacific coast sharply decreases during
boreal winter, reaching a minimum between December and February, when surrounding
SSTs are lowest and trade winds are stronger. This feature is properly reproduced by most
GCM-RCM configurations across all reference catchments even when a slight wet bias can
be observed. MIROC5 and HadGEM2 nonetheless, exhibit a systematic dry bias throughout
most of the year regardless of the catchment, with MIROC5 barely reproducing the EWS
peak. The uncorrected multimodel ensemble-mean (MEM), accounting for all GCM-RCM
configurations (Table 2), in most cases, performed better than individual members. This is
most likely because the different configurations are characterized by different biases, which
partially counterbalance the ensemble average. The magnitude of seasonal variation in
terms of dry-wet suggests that a multimodel ensemble approach encompassing all available
GCM-RCM members may result in a better evaluation of climate change across all refer-
ence catchments. Once again, the only exception is the Chirripó Pacífico river catchment,
where the uncorrected model ensemble-mean greatly overestimates precipitation during
the rainy season and underestimates precipitation during the dry season, indicating that all
GCM-RCM configurations are incapable of properly capturing the true nature of spatial
precipitation patterns over this catchment.

With respect to temperature, all GCM-RCMs configurations adequately reproduce the
general shape of the observed annual temperature pattern on a monthly scale, where the
warmest month is either March or April and the coolest month is January. Nevertheless,
relatively large biases can be observed depending on catchment domain and model config-
uration. MIROC5 exhibits mostly warm biases (1 to 2 ◦C) for all catchments from January
to October, but a cold bias during boreal winter (November–February). The opposite can be
seen for PRECIS and EARTH, with cold biases year-round regardless of catchment domain
(1 to 2 ◦C). MPI and HADGEM2 better define temperature patterns including the April
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maximum and the December minimum across all catchments as simulated values are closer
to observations. The opposite behavior is shown by the Chirripó Pacífico catchment, where
a considerably warm bias is produced by most models. The magnitudes of these cold-warm
biases however, remain relatively stable throughout most of the year. These biases are most
likely dependent on grid elevation-averaging applied by RCMs at their particular spatial
resolutions (either 50 or 25 km), as no distinction can be made between climates in the
Pacific and Caribbean slopes or their respective sources of moisture, which highlights the
difficulty of most GCM-RCMs members to accurately describe temperature variations in
narrow mountainous regions such as Costa Rica. [56,66,109].

Similar to precipitation, the multimodel ensemble-mean (MEM) reproduces more
accurately the seasonal mean temperature pattern across all catchments except for the
Morote River, where almost all models produce a substantial cold bias. Furthermore,
none of the GCM-RCMs is capable of properly capture the March peak for the Morote
catchment, exhibiting a cold bias of nearly 2 ◦C. Clearly, the magnitudes of precipita-
tion and temperature biases introduce large uncertainties in climate change projections
across all reference catchments, which could limit their applicability in climate impact
studies [110,111]. As GCM-RCM outputs are not considered sufficiently accurate to directly
drive hydrological models, a priori bias correction method was be applied. Furthermore,
since the multimodel ensemble-mean (MEM) generally outperforms individual GCM-RCM
configurations regardless of catchment domain, the delta-change method was applied to
correct the MEM precipitation and temperature biases for three 30-year future periods;
near-future (2011–2040), mid-future (2041–2070) and far-future (2071–2100) under IPCC
Representative Concentration Pathways (RCPs) 2.6, 4.5 and 8.5 using the 30-year control pe-
riod 1961–1990. Consequently, only the bias-corrected multimodel ensemble-mean (MEM)
was further used for evaluating future changes in precipitation and temperature across
all catchments.

3.3. Future Changes in Precipitation and Temperature

On a monthly scale, even when the bimodal precipitation distribution pattern of all
reference catchments remains essentially the same, precipitation volumes are expected to
increase in the near (2011–2040) and mid-future (2041–2070) periods (Figure 8).

However, there are significant differences in the magnitude of such changes depending
on catchment domain and RCPs. These differences reflect the uncertainty associated with
the application of different GCM-RCMs configurations and emissions scenarios [112].
Consistently, wetter conditions during the EWS peak, Mid-Summer Drought (MSD) and
LWS peak are expected across all catchments in the near-future period (2011–2040) under
RCP 4.5 when compared to RCP 2.6, displaying interannual percentage-change (PC) values
between +8% and +12% for RCP 4.5 and between +4% and +9% for RCP 2.6 respectively
(Figure 9).

Slight decreases in precipitation (PC around −5%) can be observed for all catchments
during the EWS peak under RCP 8.5, which are ultimately compensated by marginally wet-
ter conditions during the LWS peak and the transition towards the dry season (November
to December). For the mid-future (2041–2070) period, RCPs 4.5 and 8.5 show evidence of
a consistently decreasing trend in summer precipitation (varying from −10% to −20% in
July) and an increase in autumn precipitation (varying from +10% to +20% in October),
which also extends to a wetter boreal winter. Likewise, interannual PC values for RCPs 4.5
and 8.5 remain mostly positive for all catchments (below +5%), with the Chirripó Pacífico
river reaching approximately +9%.
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Figure 8. Comparison of monthly spatially-averaged precipitation between baseline period
(1961–1990) and near-future (2011–2040), mid-future (2041–2070) and far-future (2071–2100) pe-
riods under RCPs 2.6, 4.5 and 8.5 for the GCM-RCM multimodel ensemble-mean (MEM) for the
five reference catchments.

RCP 2.6 nonetheless, shows persistent year-round wetter conditions for the mid-future
period regardless of catchment domain, with PC values around from 7% to nearly 12% for
the Morote river. For the far-future (2071–2100) period however, considerably dryer con-
ditions with increasing radiative forcing are expected for all reference catchments during
the EWS peak and the Mid-Summer Drought (MSD), with considerably more pronounced
reductions for RCP 8.5 (varying from −40% to −55% in July), making this the worst-case
scenario when compared to the 1961–1990 baseline. On the other hand, a marked increase
in precipitation is expected for the LWS peak, exerting influence on the commonly drier
months of November and December particularly under RCP 8.5 (varying from +10% to
+30% in October). It is worth noting that even when future changes in interannual pre-
cipitation are relevant for water balance purposes, the monthly and seasonal distribution
changes are expected to be more drastic, which could lead to an increasing frequency of
floods and droughts and therefore, should be individually considered for each catchment.
Furthermore, flood risk has been identified to be higher in regions located along the ex-
tensive flatlands, medium to large areas in both the Pacific and Caribbean catchments,
as well as borderlands and coastal regions of Costa Rica [113,114]. These results also
indicate a possible seasonal shift in precipitation, with increases from October to April
resulting in a shorter dry season and less seasonality. These projected changes in precipita-
tion are consistent with similar results in separate studies over Central America and the
Caribbean using various combinations of GCM-RCM configurations and radiative forc-
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ings [65,66,68,105,109,112,115–118]. These studies show a general consensus that reductions
in precipitation along the Central American region are expected during the rainy season,
with values ranging from −15% to −30%. These changes are most likely associated to the
following mechanisms: (a) an intensification and early onset of the Mid-Summer Drought
(MSD) over the region driven by regional variations in SST over the surrounding equatorial
ocean areas, (b) a southward shift of the Intertropical Convergence Zone (ITCZ) that alters
trade winds magnitudes and directions, which prevents moisture from the Pacific Ocean
to enter the continent and (c) greater warming of the of the Tropical North-eastern Pacific
(TNP) compared to the Tropical North Atlantic (TNA), which causes stronger wind fluxes
from the TNA to the TNP through the Caribbean Low Level Jet. Additionally, an increase
of the LWS peak is also expected, largely associated to more frequent and intense tropical
cyclones in the Caribbean, which favors heavy rainfall along the Pacific and Atlantic coasts
and precipitation increases between +10% and +30%.
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Figure 9. Interannual spatially-averaged percentage-change (PC) in precipitation between baseline
period (1961–1990) and near-future (2011–2040), mid-future (2041–2070) and far-future (2071–2100)
periods under RCPs 2.6, 4.5 and 8.5 for the GCM-RCM multimodel ensemble-mean (MEM) for the
five reference catchments.
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Projected temperature trends show that the monsoonal mean annual cycle of tempera-
ture will likely experience warmer conditions with increasing radiative forcing and future
period across all catchments located in the Pacific region of Costa Rica (Figure 10). For
the near-future (2011–2040) period, all catchments are expected to experience a consistent
temperature rise between +1.1 ◦C and +1.2 ◦C under RCPs 2.6/4.5 throughout the year,
with a slightly larger increase of around +1.3 ◦C under RCP 8.5 (Figure 11).
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Figure 10. Comparison of monthly spatially-averaged temperature between baseline period
(1961–1990) and near-future (2011–2040), mid-future (2041–2070) and far-future (2071–2100) pe-
riods under RCPs 2.6, 4.5 and 8.5 for the GCM-RCM multimodel ensemble-mean (MEM) for the
five reference catchments.

In comparison to precipitation, temperature changes are relatively uniform throughout
the year, with a larger increase in the March-April peak. A more pronounced increase in
temperature is expected in all catchments for the mid-future (2041–2070), with a tempera-
ture rise of about +1.6 ◦C under RCP 2.6 and +1.8 ◦C under RCP 4.5, both surpassing the
IPCC goal of +1.5 ◦C. RCP 8.5 on the other hand, would considerably exceed the +2.0 ◦C
IPCC threshold by reaching temperature values above +2.6 ◦C.

An unprecedented increase is expected for the far-future (2071–2100) period under
RPC 8.5, as temperature rises will be higher than +4.0 ◦C across all reference catchments.
These results are supported by a consensus among several regional studies regarding strong
temperature increases from +1.0 ◦C to +6.0 ◦C for different emissions scenarios by the end
of the century across the Central America region [57,63,65,116].
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Figure 11. Interannual spatially-averaged absolute change in temperature between baseline pe-
riod (1961–1990) and near-future (2011–2040), mid-future (2041–2070) and far-future (2071–2100)
periods under RCPs 2.6, 4.5 and 8.5 for the GCM-RCM multimodel ensemble-mean (MEM) for the
five reference catchments.

3.4. Future Hydrological Response

Once the future GCM-RCM multimodel ensemble-mean (MEM) precipitation and
temperature projections were bias-corrected using the delta-change method, the resulting
perturbed time series were used as inputs in the previously optimized GR2M hydrological
model in order to assess future impacts of climate change on surface streamflow across
all reference catchments. A comparison of projected future monthly hydrographs against
those of the control period 1961–1990 shows that the general annual hydrological pat-
tern of all catchments remains essentially unchanged, regardless of radiative forcing or
future horizon (Figure 12). In essence, both historical and projected streamflows follow
the mean annual cycle of precipitation on all reference catchments, as runoff gradually
increases from a minimum in March-April to a maximum in October, with a sharp de-
crease at the beginning of the dry season in November-December, coinciding with the LWS
precipitation pattern.
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Figure 12. Projected changes in runoff GCM-RCM multimodel ensemble-mean (MEM) between
baseline period (1961–1990) and near-future (2011–2040), mid-future (2041–2070) and far-future
(2071–2100) periods under RCPs 2.6, 4.5 and 8.5 for the GCM-RCM multimodel ensemble-mean
(MEM) for the five reference catchments.

Future changes in precipitation (Figure 9) and temperature (Figure 11) however, do
affect runoff volumes across all catchments, which trends significantly vary in terms of
future period and radiate forcing. A relative streamflow minimum during July can be
observed in most catchments, which is closely related to the MSD. Increases in temperature
and solar radiation would consequently result in increases in actual evapotranspiration.
When combined with a consistent decrease in precipitation during the MSD, an overall effect
would be a consistent decrease in runoff volumes. On an interannual basis, streamflow
is expected to increase in all catchments for the near-future (2011–2040) and mid-future
(2041–2070) periods under RCPs 2.6 and 4.5 (Table 4). Interannual streamflow increases
for the near-future horizon are generally higher under RCP 4.5 (varying from +15.6% to
+24.6%) than under RCP 2.6 (varying from +7.8% to +17.7%), but considerably lower under
RCP8.5 (varying from +0.6% to 9.0%).. In contrast, increases for the mid-future period
under RCP 4.5 (varying from +2.3% to +14.2%) are commonly lower than those of RCP 2.6
(varying from 8.6% to 18.8%).
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Table 4. Interannual and monthly (July and October) projected changes in runoff GCM-RCM mul-
timodel ensemble-mean (MEM) between baseline period (1961–1990) and near-future (2011–2040),
mid-future (2041–2070) and far-future (2071–2100) periods under RCPs 2.6, 4.5 and 8.5 for the GCM-
RCM multimodel ensemble-mean (MEM) for the five reference catchments.

July Mass-Balance-Change [%]

RCP 2011-2040 2041-2070 2071-2100 Catchment

RCP26 8.4 2.2 −5.6 Tempisque

RCP45 15.6 −10.8 −23.7 Tempisque

RCP85 −9.1 −23.2 −59.8 Tempisque

RCP26 25.1 19.2 4.3 Morote

RCP45 38.0 5.9 −10.3 Morote

RCP85 5.9 −12.9 −56.4 Morote

RCP26 7.5 9.6 −2.5 Bebedero

RCP45 21.1 −2.8 −8.2 Bebedero

RCP85 −0.9 −13.5 −44.6 Bebedero

RCP26 10.4 15.4 1.0 Barrancas

RCP45 29.2 −4.1 −10.7 Barrancas

RCP85 1.5 −8.7 −46.6 Barrancas

RCP26 17.5 27.6 19.9 Chirripó Pacífico

RCP45 41.6 −9.8 −10.7 Chirripó Pacífico

RCP85 4.8 15.1 −45.2 Chirripó Pacífico

October Mass-Balance-Change [%]

RCP 2011-2040 2041-2070 2071-2100 Catchment

RCP26 10.9 9.5 4.7 Tempisque

RCP45 21.9 13.5 8.3 Tempisque

RCP85 3.2 3.8 −21.1 Tempisque

RCP26 15.9 14.1 13.3 Morote

RCP45 19.8 27.4 27.0 Morote

RCP85 12.0 18.4 21.8 Morote

RCP26 9.6 8.6 5.0 Bebedero

RCP45 18.7 16.6 17.8 Bebedero

RCP85 5.9 11.3 −0.2 Bebedero

RCP26 10.1 8.1 5.1 Barrancas

RCP45 20.5 14.8 13.6 Barrancas

RCP85 5.1 11.4 −3.8 Barrancas

RCP26 15.6 9.0 13.3 Chirripó Pacífico

RCP45 20.4 19.9 21.6 Chirripó Pacífico

RCP85 10.9 23.9 23.1 Chirripó Pacífico

Future Annual Mass-Balance-Change [%]

RCP 2011_2040 2041_2070 2071_2100 Catchment

RCP26 10.2 8.6 1.1 Tempisque

RCP45 17.8 2.3 −6.3 Tempisque
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Table 4. Cont.

Future Annual Mass-Balance-Change [%]

RCP 2011_2040 2041_2070 2071_2100 Catchment

RCP85 0.6 −2.5 −32.6 Tempisque

RCP26 17.7 18.8 8.8 Morote

RCP45 24.6 14.2 7.4 Morote

RCP85 9.0 8.7 −12.0 Morote

RCP26 7.8 9.6 2.2 Bebedero

RCP45 15.6 7.1 5.0 Bebedero

RCP85 3.5 3.8 −13.3 Bebedero

RCP26 9.3 12.2 3.9 Barrancas

RCP45 18.5 6.5 3.0 Barrancas

RCP85 4.2 5.8 −16.7 Barrancas

RCP26 14.4 15.7 13.1 Chirripó Pacífico

RCP45 21.0 10.9 9.5 Chirripó Pacífico

RCP85 8.2 19.2 −3.2 Chirripó Pacífico

Interannual streamflow increases for the near-future horizon are generally higher
under RCP 4.5 (varying from +15.6% to +24.6%) than under RCP 2.6 (varying from +7.8%
to +17.7%), but considerably lower under RCP8.5 (varying from +0.6% to 9.0%). In contrast,
increases for the mid-future period under RCP 4.5 (varying from +2.3% to +14.2%) are
commonly lower than those of RCP 2.6 (varying from 8.6% to 18.8%). Overall, streamflow
increases are considerably lower under RCP 8.5, except for the Chirripó Pacífico River
which exhibits an increase of +19.2%. The Tempisque River on the other hand, shows a
slight decrease of −2.5%.

Positive interannual streamflow increases are noticeably less significant during the
far-future period under RCP2.6 and 4.5 for all catchments except for the Chirripó Pacífico
river, where RCP2.6 and 4.5 reach values of +13.1% and +9.5% respectively. Substantial
annual runoff decreases are expected for the far-future period (2071–2100) under RCP 8.5.
In the case of the Tempisque River, such decrease reaches in average −32.65% (−6.3%
under RCP4.5). The Morote, Bebedero and Barrancas rivers show runoff decreases varying
from −12.0% to −16.7%. The less significant runoff decrease nevertheless, is related to
the Chirripó Pacífico River (−3.2%), which coincides with finding by Veas-Ayala et al.,
(2018), where only marginal changes were observed in terms of precipitation under RCPs
4.5 and 8.5 [119] Furthermore, significant seasonal changes in monthly runoff volumes
are expected during the EWS and LWS peaks, exhibiting a wider range of impacts across
all catchments (Figure 12). The MSD streamflow minimum will likely experience marked
decreases for all reference catchments during the mid-future period under RCP 8.5, varying
from −8.7% to −23.2% with the exception of the Chirripó Pacífico river, that shows an
increase of +15.1% (Table 4). Higher differences on the MSD streamflow minimum are
expected for the far-future period (2071–2100) as radiative forcing increases, with RPC 8.5
showing runoff decreases between −44.6% and −59.8% for the Bebedero and Tempisque
rivers respectively. In contrast, the LWS streamflow peak will likely experience considerable
runoff increases in the near-future horizon, with values ranging from +9.6% to +15.9%
under RCP 2.6 and from +18.7% to +21.9% under RCP 4.5 depending on the catchment.
As expected, October runoff peaks are considerably lower under RCP 8.5, with values
ranging from +3.2% to 12.0%. For the mid-future period on the other hand, positive
increases on the October peak are also expected across all reference catchments under RCPs
2.6 and 4.5, with increasing importance under RCP 8.5 (varying from +3.8% to +23.9%).
Slightly less significant, but still positive streamflow increases are expected under RCP 8.5
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during the far-future period (2071–2100) except for the Tempisque, Barrancas and Bebedero
rivers where decreases of −21.1%, −3.8% and −0.2% are anticipated. Overall, streamflow
projections are consistent with future changes in precipitation. Wetter conditions due to
increasing precipitation for the near-future and mid-future horizons under RCPs 2.6 and
4.5 would result in higher interannual runoff volumes across all reference catchments. On
the contrary, dryer conditions during the far-future period under RCP8.5 would result in
considerably lower runoff volumes. Consistently, a significant decline in EWS runoff and a
considerable increase in LWS runoff are expected in all reference catchments under RCP 8.5
towards the end of the century. Surprisingly, both extreme negative and positive runoff
changes are predicted under RCP 8.5. This phenomenon is due to the strong precipitation-
runoff relationship on all catchments. Indeed, an increase in precipitation would lead to an
increase in runoff and vice versa. Furthermore, responses in runoff volumes highlight that
precipitation is the main process influencing upward/downward runoff shifts across all
reference catchments.

Streamflow increases as those projected under RCP 2.6 and 4.5 might be beneficial for
the agricultural but could potentially have adverse consequences in downstream catch-
ment infrastructure including bridges, roads, drainage systems and agriculture assets [120].
It may also cause increases in the frequency of overflows, which would likely result in
potential flooding and higher sediment volumes being transported towards the down-
stream parts of each catchment, especially for the near-future (2011–2040) and mid-future
(2041–2070) horizons, which potential impacts should be further analyzed by means of
fully-distributed two-dimensional (2D) hydrodynamic models [38,121]. On the other hand,
extreme low flows during the Mid-Summer Drought towards the end of the century under
RCP 8.5, could lead to earlier and more extended droughts. Under this scenario, stream-
flow in the dry season could be too low to fulfill requirements for drinking water supply,
crops irrigation and livestock activities. Lastly, it must be acknowledged that variances in
projected streamflows do exist and are the combinations of the uncertainties associated
to the GCM-RCM ensemble itself, the various RCPs considered and the inherent biases
derived from the historical optimization of the GR2M model.

4. Conclusions

In the present study, the impacts of climate change on the streamflow characteristics
of five tropical catchments located in the Pacific region of Costa Rica namely Tempisque,
Morote, Bebedero, Barrancas and Chirripó Pacífico were analyzed. These catchments were
selected based on their significance to the country in terms of water supply, agriculture,
power generation and forestry, as well as data availability in terms of long-term series of
discharge measurements.

Historical and futures projections from an ensemble of four General Circulation Models
(EC-EARTH, HadGEM2-ES, MPI-ESM-LR and MIROC5) dynamically downscaled by two
Regional Climate Models (RCA4 and PRECIS) for a total of five different GCM-RCM
configurations, were considered to evaluate future changes in precipitation and temperature
for a near-future (2011–2040), mid-future (2041–2070) and far-future (2071–2100) period
under emission scenarios RCPs 2.6, 4.5 and 8.5 using the control period 1961–1990.

The conceptual spatially-lumped GR2M hydrological model was used to reproduce
the historical monthly surface runoff patterns of each catchment. Based on the results
from five performance metrics, namely the Nash and Sutcliffe efficiency criteria (NSE), the
Kling-Gupta efficiency (KGE), the percentage bias (PBIAS) and the Pearson correlation
coefficient (R), it can be concluded that the GR2M hydrological model is suitable in properly
reproducing monthly and seasonal streamflow dynamics of the five reference catchments, as
satisfactory values for all metrics were achieved in both calibration and validation periods.
Accordingly, the GR2M model was confidently used for the evaluation of future climate
change scenarios across all reference catchments. It is worth noting that all catchments
considered have positive gradients towards the Northwest Pacific region of Costa Rica,
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which suggests that the performance of the GR2M model might significantly vary for
catchments located along the Southeast Pacific of the Caribbean regions of the country.

Concerning historical results from the GCM-RCM model ensemble, most configura-
tions were able to correctly simulate the dynamics of precipitation and temperature annual
cycles across all catchments during the baseline period 1961–1990. However, considerable
biases do exist between uncorrected GCM-RCM outputs and observations. The uncorrected
multimodel ensemble-mean (MEM) on the other hand, generally exhibits better perfor-
mance when compared to individual members for both precipitation and temperature. In
consequence, the delta-change method was applied to correct the biases of future precipita-
tion and temperature projections of GCM-RCM members before forcing climatic data into
the GR2M hydrological model.

Results from the bias-corrected multimodel ensemble-mean (MEM) anticipate signifi-
cant changes in the seasonal distribution of precipitation and temperature for all reference
catchments. In terms of precipitation, even when the bimodal distribution pattern remains
essentially the same, precipitation volumes are expected to increase in the near future
period (2011–2040) for all reference catchments under RCP 2.6 and 4.5, with slightly wetter
conditions under RCP 4.5.

For the mid-future (2041–2070) period, RCPs 4.5 and 8.5 show evidence of a consis-
tently decreasing trend in summer precipitation during the early wet season (EWS), but an
increase in autumn precipitation during the late wet season (LWS), with RCP 2.6 showing
persistently wetter conditions throughout the year regardless of catchment domain.

In contrast, markedly dryer conditions with increasing radiative forcing are expected
across all reference catchments during the far-future (2041–2070) period, especially during
the Mid-Summer Drought (MSD), with more pronounced reductions for RCP 8.5. At the
same time, a significant increase in precipitation for the autumn peak (SON) is also expected
regardless of RCP. In comparison, projected temperature trends show that the monsoonal
mean annual cycle of temperature will experience consistently warmer conditions with
increasing radiative forcing and future period, with unprecedented increases for the far-
future (2071–2100) period under RPC 8.5 as temperature rises will be higher than +4.0 ◦C
in all reference catchments.

Using the future bias-corrected multimodel ensemble-mean (MEM) simulations to
force the GR2M hydrological model revealed that future surface streamflow responses
would significantly vary in terms of future period, radiative forcing and catchment domain.
These responses however, are mainly dominated by variations in projected precipitation.
On the whole, runoff projections are consistent with future changes in precipitation. Wetter
conditions due to increasing precipitation for the near-future and mid-future horizons
under RCPs 2.6 and 4.5 would result in higher interannual runoff volumes for all refer-
ence catchments. On the contrary, dryer conditions during the far-future period under
RCP 8.5 would result in considerably lower runoff volumes. More importantly, a significant
decline in summer runoff and a considerable increase in autumn runoff is expected across
all reference catchments under RCP 8.5 towards the end of the century.

Streamflow increases as those projected under RCP 2.6 and 4.5 could have adverse
consequences in downstream catchment infrastructure including bridges, roads, drainage
systems and agriculture assets. Conversely, extreme low flows during the Mid-Summer
Drought towards the end of the century under RCP 8.5, could lead to earlier and more
extended droughts. Under this scenario, streamflow in the dry season could be too low
to fulfill requirements for drinking water supply, power generation, crop irrigation and
livestock activities. Altogether, these results suggest that surface runoff responses for
all reference catchments could be significantly impacted in the future, particularly at the
end of the 21st century and therefore, policies should be developed to properly adapt to
climate change.

Accordingly, these findings will provide local water management authorities useful
information to support decision-making about the potential impacts of climate change on
surface runoff to ensure environmental and economic sustainability. Even when the findings
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of this study are specific to the studied catchments, the methodology followed could be
applied in other climatic regions with similar characteristics. Nevertheless, these results
need to be complemented by additional studies comparing: (a) different hydrological
models of higher temporal resolution depending on forecasting needs (lumped, semi-
distributed and fully-distributed two-dimensional (2D)), (b) contrasting local and global
parameter optimization techniques for better parameter identifiability, (c) inclusion of
more specific performance metrics, (d) regionalization and transferability of optimum
parameters, (e) incorporation of improved higher resolution GCM-RCM configurations,
and (f) implementation of water conservation measures.
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