
Citation: Pace, S.; Hood, J.M.;

Raymond, H.; Moneymaker, B.; Lyon,

S.W. High-Frequency Monitoring to

Estimate Loads and Identify Nutrient

Transport Dynamics in the Little

Auglaize River, Ohio. Sustainability

2022, 14, 16848. https://doi.org/

10.3390/su142416848

Academic Editor: Elena Cristina

Rada

Received: 16 November 2022

Accepted: 10 December 2022

Published: 15 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

High-Frequency Monitoring to Estimate Loads and Identify
Nutrient Transport Dynamics in the Little Auglaize River, Ohio
Shannon Pace 1, James M. Hood 2, Heather Raymond 3, Brigitte Moneymaker 4 and Steve W. Lyon 1,*

1 School of Environment and Natural Resources, The Ohio State University, Columbus, OH 43210, USA
2 Department of Evolution, Ecology, and Organismal Biology, The Ohio State University,

Columbus, OH 43210, USA
3 Office for Research and Graduate Education, The Ohio State University, Columbus, OH 43210, USA
4 Ohio State University Extension, The Ohio State University, Columbus, OH 43210, USA
* Correspondence: lyon.248@osu.edu

Abstract: New technologies allow for the in situ monitoring of nutrients, specifically nitrogen and
phosphorus, in water systems at increasingly higher temporal frequencies. These technologies allow
for the near-continuous monitoring of water quality, which can potentially provide new perspectives
on temporal variations in nutrient concentrations and transport dynamics, ultimately supporting
more targeted and sustainable water management. The current study investigated the utility of
monitoring nitrate-N and soluble reactive phosphorus (SRP) in situ using wet analytical chemistry
for one year at 2-h intervals in a small agricultural watershed located in northwestern Ohio. While
we saw large variability in the estimated nutrient loads due to daily variations in the high-temporal
resolution nutrient concentrations, the nutrient loads were fundamentally driven by high-flow events
for this agricultural watershed. Concentration–discharge relations were then developed to help
identify how nutrients are stored and released over time scales ranging from low-flow seasonal
responses to event-driven high-flow storms. The patterns in the concentration–discharge relations
indicated a potential shift in the timing of the mobilization responses for SRP at the event scale over
the course of the year. These results suggest that SRP-targeted management practices would need to
intercept the dominant delivery pathways of phosphorus in the watershed, such as the tile drainage
runoff, to help reduce phosphorus loading. For nitrate-N, patterns in the concentration–discharge
relations revealed an increased mobilization response, which was seen during the growing season
with low-flow conditions, indicating the potential role of biological uptake instreams across the
lowest flows and concentrations of the year. Collectively, high-frequency temporal nutrient data
monitored over individual events and across seasons offer guidance for management decisions while
allowing us to track progress toward water quality goals.

Keywords: water quality monitoring; concentration–discharge relations; high-frequency temporal
nutrient data; nitrate-N; soluble reactive phosphorus

1. Introduction

Water quality in agricultural landscapes, particularly in response to excess nutrient
inputs of nitrogen and phosphorus, has become an increasing focus of concern for water re-
source management. Excess nutrients in runoff from agricultural systems ultimately drain
into waterbodies, such as the surrounding streams and rivers, expediting eutrophication,
harmful algal blooms (HABs), and general impairment in downstream waterbodies [1,2].
Water quality monitoring is typically conducted within freshwater systems with the goals
of better understanding the impact of agricultural and other activities in watersheds and
informing the management of nutrients in agricultural runoffs across scales. Despite the
clear need for monitoring, collecting water samples to characterize nutrient concentrations
can be expensive, time-consuming, and, especially in high-flow events, not always pos-
sible. Watershed managers, thus, need to make decisions as to what sampling methods
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and frequencies will give the most representative information with the least amount of
observational error and ambiguity.

Research has demonstrated that the choices made around sampling methods and
frequencies—whether the choice is about the sampling location, the collection process, the
discharge measurements, the overall sampling frequency throughout time, the calcula-
tions used, or the laboratory analysis selected [2–4]—can have a clear impact on how we
characterize water quality and prescribe subsequent management strategies. For example,
the sampling methods and frequencies have significant impacts on how we characterize
nutrient loads in watersheds. Nutrient loads are calculated as the products of discharge
measurements and nutrient concentrations. Watershed managers continue to look for the
most efficient, cost-effective, and accurate ways to characterize nutrient loads [5]. In the
long term, lower frequency records are often used to characterize nutrient loads [6]. Load
estimations can vary based on the length of a study [7], the underlying geology of a study
site [8], the high-flow or storm response rates [5], the size of a watershed [3], or the focus
nutrient type [2]. With all that said, calculating nutrient loads that are as accurate and pre-
cise as possible remains crucial for understanding and implementing the best management
practices (BMPs) and decisions [9].

To that end, new technologies are constantly being developed to support the contin-
uous and in situ monitoring of nutrient concentrations in freshwater systems [10]. These
technologies often rely on either optical sensors or in-field wet analytical chemistry to
measure nutrient concentrations [11]. For nitrate-N, optical sensors for monitoring high-
frequency concentrations are becoming more common; however, optical sensor technology
does not exist for the high-frequency monitoring of phosphorus concentrations. Monitor-
ing phosphorus conditions currently requires wet-chemistry techniques, whether in the
laboratory or in situ, which can be considered an impediment for monitoring phosphorus
over a range of flow conditions. Regardless of the technology that is being utilized, there
is an inherent need to compare new technologies to traditional monitoring schemes and
laboratory-derived concentrations. Further, as new technologies become available that
make it possible to observe both nitrogen and phosphorus concentrations in situ in near
real-time over extended durations, there is a continued need to assess what high-frequency
data reveal about the transport dynamics of nitrogen and phosphorus.

Technological advancements in water monitoring and increased access to high-resoluti-
on chemistry data have also promoted renewed interest in water quality assessment tools,
such as establishing concentration–discharge (C–Q) relations and, subsequently, assess-
ing their value in characterizing catchment storages, time lags, and legacy effects when
comparing between event and seasonal responses [12]. For example, to distinguish be-
tween seasonal C–Q relations and event-based C–Q relations for phosphorus and nitrate-N,
219 French catchments were used to characterize the nutrient dynamics for systems cover-
ing a wide range of soils, climates, and land use characteristics [13]. Often, the differences
between long-term and event-based C–Q responses indicate different controls on solute
transport and storage processes on different temporal scales [6]. At the daily scale, for
example, Welikhe et al. [14] saw that C–Q patterns could be linked to the soil P status
because a chemostatic response was observed for streams that drain soils that serve as
a P source and a dilution behavior was observed for areas that drain primarily P sink
soils. Such linkages can be informative as managers seek to implement practices across a
watershed to support nutrient retention in the landscape and reduce downstream loading.

From a sustainable water management perspective, understanding the processes that
control nutrient losses from agricultural landscapes is essential to better define critical
source areas and inform conservation practice recommendations [14]. Welikhe et al. [14]
further highlighted the need for higher temporal resolution monitoring data to increase the
understanding of nutrient loss patterns (explicitly phosphorus) and to better inform/guide
water resource managers, who are tasked with improving the water quality conditions. The
recent advances in in situ water quality monitoring with optical sensors and wet chemistry
analyzers [1,11,15,16] can help to bridge this gap in high-temporal resolution nutrient data.
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To this end, the objective of this current study is to demonstrate the potential use of high-
frequency (here, sampling every 2 h) in situ wet-chemistry analysis for the determination
of nitrate-N and soluble reactive phosphorus (SRP) concentrations. Specifically, we used
one year of monitoring from the GreenEyes NuLab autonomous nutrient analyzer (NuLab)
to characterize both high-flow storm event and low-flow seasonal nutrient responses for
a small agricultural watershed facing severe water quality problems through the lens
of load estimations and concentration–discharge (C–Q) relations. We hypothesize that
comparing individual storm and seasonal low-flow period nutrient loads and C–Q relations
will allow for the targeting of the best management strategies for reducing nutrient loads.
Our study is novel as we are among the first to explore the value that is added through
high-temporal resolution nitrate-N and SRP observations over seasonal variations with
regards to understanding water quality variations with implications for sustainable water
management. This exploration is important as it can helphi water resource managers decide
if the investment in high-temporal resolution observations is relevant for their needs, while
at the same time familiarizing researchers with what these types of data can offer with
regards to analyses in real-world settings.

2. Materials and Methods
2.1. Site Description

The Little Auglaize River, located in northwestern Ohio, has a watershed covering
197 km2 with land use that consists of 88.5% agriculture (cultivated crops), 4.6% forest,
and 6.9% developed land (Figure 1). The long-term mean annual precipitation is 99 cm for
this watershed, according to the National Land Cover Database from the U.S. Geological
Survey. As with most of the region, agriculture is the primary land use in the watershed
and consists primarily of corn and soy production. Corn and soy are planted early, around
mid-May, and harvested by mid-October. Tile drainage structures are common throughout
the area due to the underlying geology (predominantly glacial tills) and poorly draining
soils [17].

Sustainability 2022, 14, x FOR PEER REVIEW  3  of  18 
 

further highlighted the need for higher temporal resolution monitoring data to increase 

the  understanding  of  nutrient  loss  patterns  (explicitly  phosphorus)  and  to  better  in‐

form/guide water resource managers, who are tasked with improving the water quality 

conditions. The recent advances in in situ water quality monitoring with optical sensors 

and wet chemistry analyzers [1,11,15,16] can help to bridge this gap in high‐temporal res‐

olution nutrient data. To this end, the objective of this current study is to demonstrate the 

potential use of high‐frequency (here, sampling every 2 h) in situ wet‐chemistry analysis 

for the determination of nitrate‐N and soluble reactive phosphorus (SRP) concentrations. 

Specifically, we used one year of monitoring from the GreenEyes NuLab autonomous nu‐

trient analyzer (NuLab) to characterize both high‐flow storm event and low‐flow seasonal 

nutrient responses for a small agricultural watershed facing severe water quality prob‐

lems through the lens of load estimations and concentration–discharge (C–Q) relations. 

We hypothesize that comparing individual storm and seasonal low‐flow period nutrient 

loads and C–Q relations will allow for the targeting of the best management strategies for 

reducing nutrient loads. Our study is novel as we are among the first to explore the value 

that is added through high‐temporal resolution nitrate‐N and SRP observations over sea‐

sonal variations with regards to understanding water quality variations with implications 

for sustainable water management. This exploration is important as it can helphi water 

resource managers decide if the investment in high‐temporal resolution observations is 

relevant for their needs, while at the same time familiarizing researchers with what these 

types of data can offer with regards to analyses in real‐world settings. 

2. Materials and Methods 

2.1. Site Description 

The Little Auglaize River, located in northwestern Ohio, has a watershed covering 

197 km2 with land use that consists of 88.5% agriculture (cultivated crops), 4.6% forest, 

and 6.9% developed land (Figure 1). The long‐term mean annual precipitation is 99 cm for 

this watershed, according to the National Land Cover Database from the U.S. Geological 

Survey. As with most of the region, agriculture is the primary land use in the watershed 

and consists primarily of corn and soy production. Corn and soy are planted early, around 

mid‐May,  and  harvested  by  mid‐October.  Tile  drainage  structures  are  common 

throughout  the  area  due  to  the  underlying  geology  (predominantly  glacial  tills)  and 

poorly draining soils [17]. 

 

Figure 1. Site map of the Little Auglaize River watershed, located in northwestern Ohio, with
the flyout image showing the monitored intake where the Greeneyes NuLab autonomous nutrient
analyzer (NuLab) was sampling water and the streamflow was measured.

The Little Auglaize River provides water to the Delphos Gillmor reservoir, which
serves as the sole source of drinking water passing through traditional water treatment
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facilities for the city of Delphos, Ohio, and more than 7000 people. At the location of the
water intake for the Delphos Gillmor reservoir (40◦52′51.9” N, 84◦22′05.9” W), the Little
Auglaize River is currently classified as impaired by the U.S. Environmental Protection
Agency for nitrate-N, algae, and Escherichia coli. In addition, the Dry Fork tributary of
the Little Auglaize River is the only hydrologic unit code (HUC) 12 watershed, ranging
in size from about 4 to 16 hectares, in Ohio with both nitrate-N and cyanotoxin drinking
water impairments (at Delphos) and was one of the highest ranked Maumee River HUC
12 watersheds on the Ohio EPA’s 305(d) list of impaired watersheds. The source water
nitrate-N concentrations have been as high as 16 mg/L (the drinking water standard is
10 mg/L) and have impacted the Delphos water system’s ability to fill their reservoir
and maintain an adequate supply. Ohio’s 2020 Domestic Action Plan also estimates that a
phosphorus reduction of 28,600 pounds is needed annually in the Little Auglaize watershed
to help meet the current Lake Erie phosphorus targets to achieve a 40% reduction in the
spring total and soluble reactive phosphorus loads to Lake Erie [18].

2.2. In Situ Nutrient Monitoring

The Greeneyes NuLab autonomous nutrient analyzer (NuLab) (Figure 2) was installed
at the reservoir intake to characterize the nutrient loads to the Delphos reservoir and help
determine when the Gillmor reservoir can safely be filled. The Ohio State University
Water Quality Extension was responsible for the operation and maintenance of the NuLab
for the period between February 2021 and January 2022 to complete one full year of
high-frequency nutrient data collection. The NuLab is an automated wet-chemistry, multi-
constituent analyzer that has the capability to analyze water samples for dissolved nutrient
concentrations, including nitrate-N plus nitrite, nitrite, soluble reactive phosphorus (SRP),
ammonia, and silicate. The NuLab is controlled by a Raspberry Pi Linux-based computer
that can be programmed at a sampling frequency as low as one sample every two hours.
The NuLab utilizes a colorimetric detector that shines filtered light through flow cells,
allowing for concentration quantifications by a photodiode aligned with the available
standard methods. The NuLab for our study was set up with remote communication for
real-time data transmission and was powered by a 120 V power supply. For our monitoring,
two nutrient analyzers were installed with detectors for specifically SRP (0.005 mg/L
detection limit) and nitrate-N plus nitrite (0.01 mg/L detection limit).
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Figure 2. Major elements of the Greeneyes NuLab autonomous nutrient analyzer (NuLab), installed at
the water intake for the Delphos Gillmor reservoir along the Little Auglaize River in northwestern Ohio.

The water sampling consisted of water collection from the reservoir intake via an
automated submersible pump that was drawing and filtering water for the subsequent
analyses. Prior to processing each water sample, the NuLab processes a nutrient-specific
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on-board standard, which serves as a system performance indicator. Each NuLab analysis
had a designated protocol to process and run the on-board standard and nutrient-specific
reagents (NEDA/sulfa and imidazole for nitrate-N; molybdic acid and ascorbic acid for
SRP). The inlet channel was flushed prior to running each sample. The values produced
by the onboard standards and reagents were then used to calibrate the subsequent sample
concentrations. For our study, the nitrate-N on-board standard had a mean of 0.167 mg/L
and a standard deviation of 0.130 mg/L. The phosphate on-board standard had a mean of
0.084 mg/L with a standard deviation of 0.037 mg/L.

2.3. Nutrient Data Quality Control

Over the course of our one-year study, the NuLab collected and analyzed a total of
4380 samples each for SRP and nitrate-N. However, equipment malfunctions reduced these
useable results to 3736 (85% of the total possible) and 3624 (83% of the total possible) for
nitrate-N and SRP, respectively. These remaining data were subjected to a relatively simple
data quality assessment and control to identify suspected low and high values. Here, we
opted for a simple approach based on absolute values to avoid potential overprocessing
or over smoothing of the initial raw data that was returned from the NuLab. For the
low values, we used a lower threshold for the data quality control, which was set at
zero to remove any erroneous negative concentrations for nitrate-N and SRP. Based on
this low threshold, 1.7% and 10.0% of the total NuLab reported data were removed for
nitrate-N and SRP, respectively. High thresholds were set for both the nitrate-N and SRP
data at three standard deviations from the mean for each dataset, namely 16.9 mg/l for
nitrate-N and 1.0 mg/L for SRP. Based on these high thresholds, 2.0% and 0.5% of the
total NuLab data were removed for nitrate-N and SRP, respectively. A total of 3.7% and
10.5% of the total possible nitrate-N and SRP data were removed because of equipment
malfunctions or violations of the data quality thresholds and were not made available for
subsequent analyses.

2.4. Rainfall and Discharge Monitoring

Daily precipitation data were collected from the Community Collaborative Rain, Hail
and Snow Network (CoCoRaHS) station OH-AL-8, which is approximately 7 km from
the reservoir intake [19]. A pressure transducer was deployed at the reservoir intake to
record the stream stage (H), which was subsequently converted to discharge (Q) using a
rating curve that was developed for the site (Q = 24.8H2 − 3.9H + 0.2; R2 = 0.99; p < 0.05;
n = 8). The discharge was estimated at the same temporal resolution (e.g., 2 h) as the NuLab
data by averaging 15-min discharge estimates. A double mass curve of the cumulative
daily precipitation and the cumulative daily discharge was used to assess the consistency
between the rainfall–runoff relations for the watershed throughout the study period.

2.5. Nutrient Load Estimations

The nutrient loads were calculated on a two-hour frequency using Equation (1) as follows:

Li = CiQi (1)

where Li is the instantaneous load for the sample interval i, Ci is the instantaneous concen-
tration measured by the NuLab, and Qi is the instantaneous discharge [2]. The cumulative
nutrient loads were calculated by multiplying Li by the designated time interval (two hours
for the high-frequency data) and cumulatively summing the loads throughout the record
period. Of course, some data gaps existed in the high-frequency datasets, where measure-
ments were not collected by the NuLab instrument or where the data points were removed
by the quality control thresholds. The gaps in the estimated nutrient load timeseries were
filled using the applicable monthly averages for nitrate-N and SRP to allow for continu-
ous load estimations over the entire period. While other gap-filling approaches exist, the
monthly averages were selected as a simple method that would have minimal impact on
subsequent results and interpretation.
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The high-frequency nutrient load estimation was then assumed to represent the “true”
annual nutrient load for the Little Auglaize River. To test the impact of the temporal data
frequency, or sampling interval, the maximum and minimum daily and weekly instanta-
neous concentrations were extracted for nitrate-N and SRP and used to represent sampling
occurring once daily or once weekly, respectively. These concentration values were paired
with the two-hour frequency discharge, and the load calculations were completed using
Equation (1). The cumulative loads were calculated for the daily and weekly values by
multiplying the instantaneous load by the necessary period and summing the load values
throughout the record period. As the maximum and minimum concentrations were se-
lected, these cumulative load estimates can be thought of as the highest and lowest possible
values for the Little Auglaize River as a function of the daily or weekly sampling.

2.6. Concentration–Discharge Relations

Concentration–discharge (C–Q) plots were used to assess the potential for chemostatic
versus diluting or mobilizing responses, collectively known as the export pattern, of nitro-
gen and phosphorus across the high-flow events and low-flow periods for the watershed.
C–Q plots were developed in the log–log space for the two-hour interval nitrate-N and SRP
concentrations plotted against the associated discharge. The power law relations, which
are linear in the log–log space and are frequently used to describe the C–Q relations in
smaller watersheds with high-frequency data [20], were determined from the C–Q data
using the following equation:

C = aQb (2)

where C is the concentration, Q is the discharge, and a and b correspond to the intercept
and slope of the linear equation in the log–log space. Following the definitions put forward
by Godsey et al. [21], the C–Q relations with negative slopes (b < −0.1) indicate a dilution
response, with the concentrations decreasing as the discharge increases. The C–Q relations
with positive slopes (b > 0.1) indicate a mobilization response, with the concentrations in-
creasing as the discharge increases. The C–Q relations with slopes near zero (−0.1 < b < 0.1)
indicate a more chemostatic response, such that the concentration tends to remain stable
regardless of the discharge.

The C–Q relations for both nitrate-N and SRP can be highly non-linear over time
(e.g., [13,22]); therefore, various subsets of data were defined to isolate potential differences
in the C–Q relations under different seasons and conditions. For example, high-flow
data subsets were created by selecting periods where the discharge was greater than the
90th percentile for our observation period. These periods corresponded to the largest
precipitation-impacted discharge events for the watershed. The high-flow data were
then split into individual storm events, where (1) the peak discharge at least doubled
from the observed pre-storm discharge and (2) nitrate-N or SRP data were available [6].
The remaining low-flow data (e.g., Q < 90th percentile) were split into two categories:
non-growing season (data collected before mid-May or after mid-October) and growing
season (data collected between mid-May and mid-October). Here, the growing season
was defined based on knowledge of the area and confirmed by the physical pattern in the
double-mass curve.

With regards to the statistical analysis, the power law relations (Equation (2)) were
fit as linear regressions to the various subsets of the C–Q relations in the log–log space
using the lm.r package in R [23]. Standard F-tests were used to assess the significance of the
linear regression models, and a p-value of < 0.05 was assumed to be significant. We used
the slopes of these linear regressions to characterize the C–Q relations considered.

3. Results
3.1. High-Frequency Nutrient Monitoring

Over the year of monitoring, the nitrate-N values ranged from 0.34 to 16.56 mg/L,
with a mean of 4.80 mg/L and a standard deviation of 4.07 mg/L. The nitrate-N values
were at their lowest during the late growing season months of July, August, and September,
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with monthly averages of 2.27, 1.24, and 2.89 mg/L, respectively (Figure 3). The SRP
values ranged from 0.005 to 0.398 mg/L, with a mean of 0.030 mg/L and a standard
deviation of 0.325 mg/L. The SRP values peaked during storm events and were less than
0.1 mg/L during the lowest discharge periods (Figure 3). Diurnal fluctuations were obvious
during lower discharges, especially during the growing season. The diurnal concentration
fluctuations ranged up to 1.00 mg/L for nitrate-N and 0.040 mg/L for SRP.
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Figure 3. Timeseries of nitrate-N and SRP concentrations, discharge (Q), and precipitation for the
study period. The gray bars indicate regions where nutrient data were not available from the 2-h
sampling using the NuLab.

3.2. Rainfall–Runoff Variations

The discharge was largely influenced by the precipitation events during the non-
growing season, namely the period before mid-May and after mid-October, as evidenced
by the shift in slope seen in the double mass curve (Figure 4). During the non-growing
season, the precipitation totaled 58.1 cm, with 23.8 cm of runoff (runoff is defined as the
discharge volume divided by the watershed area), for a ratio of 41%. Contrary to that
period, the precipitation events during the growing season from mid-May to mid-October
minimally influenced the discharge, with the precipitation totaling 36.2 cm while the runoff
totaled 2.3 cm for a ratio of 6%. The high-flow storm-separated data resulted in 12 storm
events throughout the record period (Table 1). Finally, because the discharge was minimally
impacted by the precipitation events during the growing season (Figure 4), it should be
noted that there were no major discharge events during the growing season.

3.3. Nutrient Load Estimation

The cumulative loads were plotted for nitrate-N (Figure 5) and SRP (Figure 6). The
cumulative load plots for both target nutrients had the largest increases during high-
flow events. During the growing season, where the discharge remained low despite
precipitation events occurring, the load minimally increased for both nutrients, regardless
of the precipitation amount. Using the daily maximum and minimum concentrations to
represent the range of impact under a daily sampling regime, there was an increased spread
in the possible realizations of the nutrient loads across the entire sample period. The range
increased the most during the high-flow events and remained rather constant for the other
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periods. There was an even wider spread in the realized range of the cumulative loads
when considering the weekly maximum and minimum concentrations as representative
samples for a given week.
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Figure 4. Double mass curve of cumulative daily precipitation against cumulative daily stream-
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Table 1. Percentage difference for the cumulative load estimations from the high-frequency “true”
cumulative load for nitrate-N.

Cumulative Load (kg)
Percent Difference

Using Daily
Concentrations

Percent Difference
Using Weekly

Concentrations

Month High-
Frequency

Min
Daily

Max
Daily

Min
Weekly

Max
Weekly Min Max Min Max

February 31,345 25,591 34,852 7531 41,331 −18% 11% −76% 32%

March 90,230 76,980 104,636 42,821 131,122 −15% 16% −53% 45%

April 126,893 106,065 149,787 63,023 188,851 −16% 18% −50% 49%

May 183,203 150,437 217,420 99,203 265,578 −18% 19% −46% 45%

June 199,377 164,965 235,143 109,094 286,114 −17% 18% −45% 44%

July 202,664 167,050 239,746 110,152 292,771 −18% 18% −46% 44%

August 202,768 167,126 239,890 110,215 293,037 −18% 18% −46% 45%

September 205,531 168,773 243,228 110,471 297,212 −18% 18% −46% 45%

October 267,894 214,799 315,208 135,296 373,771 −20% 18% −49% 40%

November 271,450 217,640 319,429 137,974 379,100 −20% 18% −49% 40%

December 321,202 259,566 379,250 173,440 454,041 −19% 18% −46% 41%

January 331,640 268,889 390,484 179,521 468,188 −19% 18% −46% 41%
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loads were calculated with a two-hour discharge.
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Figure 6. Cumulative load plot for SRP of the high-frequency “true” load (gray), the daily maximum
and minimum cumulative load estimations (red and blue solid lines), and the weekly maximum and
minimum cumulative load estimations (red and blue dotted lines); all of the nutrient loads were
calculated with a two-hour discharge.

Nutrient load estimations for both the daily and weekly sampling regimes and the
associated percentage differences from the high-frequency “true” cumulative loads are
included for nitrate-N (Table 1) and SRP (Table 2). During the growing season, the nitrate-N
load percent difference from the “true” load remained around −18% for the minimum
daily, +18% for the maximum daily, −46% for the minimum weekly, and +44% for the
maximum weekly. During the growing season, the SRP load percent difference from the
“true” load remained around −55% for the minimum daily, +47% for the maximum daily,
−91% for the minimum weekly, and +94% for the maximum weekly. The annual nitrate-N
load estimations from the “true” load varied by −19%, +18%, −46%, and +41% for the
minimum daily, maximum daily, minimum weekly, and maximum weekly, respectively
(Table 1). The annual SRP load estimations from the “true” load varied by −36%, +29%,
−73%, and +65% for the minimum daily, maximum daily, minimum weekly, and maximum
weekly, respectively (Table 2).
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Table 2. Percentage difference for the cumulative load estimations from the high-frequency “true”
cumulative load for SRP.

Cumulative Load (kg)
Percent Difference

Using Daily
Concentrations

Percent Difference
Using Weekly

Concentrations

Month High-
Frequency

Min
Daily

Max
Daily

Min
Weekly

Max
Weekly Min Max Min Max

February 285 217 432 56 819 −24% 51% −80% 187%

March 965 516 1512 90 2205 −46% 57% −91% 129%

April 1042 556 1599 96 2524 −47% 54% −91% 142%

May 2428 1065 3558 193 4632 −56% 47% −92% 91%

June 2492 1112 3666 209 4822 −55% 47% −92% 93%

July 2542 1152 3732 230 4948 −55% 47% −91% 95%

August 2544 1153 3736 230 4955 −55% 47% −91% 95%

September 2588 1187 3791 251 5031 −54% 46% −90% 94%

October 4153 2378 5582 759 7151 −43% 34% −82% 72%

November 4202 2418 5659 790 7275 −42% 35% −81% 73%

December 6074 3857 7836 1600 9935 −36% 29% −74% 64%

January 6271 4018 8073 1703 10,349 −36% 29% −73% 65%

3.4. Concentration–Discharge Relations

The slopes of the nitrate-N C–Q relations during the individual storm event responses
were all negative, with 7 out of the 12 events having significant negative slopes (Figure 7;
Table 3). The average slope for the C–Q relations from these significant regressions, ranging
from −0.07 to −0.26, was −0.16 across these seven storm events. These negative slopes
indicate a dilution response of nitrate-N during storm events. Looking at the low-flow
relations, we found that the nitrate-N data from the non-growing and growing seasons
had significant and positive C–Q relations, indicating a mobilization response (Table 4);
however, the slope for the relation was much lower for the non-growing season data (0.05)
relative to the growing season data (0.27). These lower slopes indicate more chemostatic
responses and an apparent shift in how nitrate-N is being loaded into downstream receiving
waters. We also saw a similar shift when comparing the slopes for the lower flow conditions
to those for the higher flow conditions (i.e., the individual storm events).

The slopes in the SRP C–Q relation (Figure 8) for the individual storm events exhibited
greater variability than the C–Q relations from low-flow conditions (Table 3). Greater
occurrences of negative C–Q slopes were observed earlier in the year (before the growing
season), while more positive C–Q slopes were observed later in the year (after the growing
season). The average storm event SRP C–Q slope before mid-May and at the beginning of
the growing season was −0.13, while after mid-October and the end of the growing season,
it was 0.04. However, only three of the linear regressions had significant slopes, and these
were all positive and all occurred after the growing season during the storms between
October and January. The low-flow growing and non-growing season data exhibited
significant linear slopes for the regression fit to the C–Q plots, where the growing season
exhibited a positive slope (0.04) and the non-growing season exhibited a negative slope
(−0.06). These shifts towards apparently more chemostatic responses imply a shift in how
phosphorus is being loaded into the water under lower flow conditions relative to higher
flow conditions.
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Figure 7. Concentration–discharge (C–Q) relations for the high-frequency nitrate-N data, showing
a linear regression fit for the low-flow conditions over the growing and non-growing seasons (left
panel) and the individual event-based responses (right panel). The event numbers correspond to
those listed in Table 1.

Table 3. Individual events used to characterize the event-based concentration–discharge (C–Q)
relations for both nitrate-N and SRP. The bold indicates significance, with a p-value of <0.01.

Event Date Precip.
(mm)

Runoff
(mm)

Nitrate-N SRP

Intercept Slope Std.
Err. R2 n p-Value Intercept Slope Std.

Err. R2 n p-Value

1 Feb 24–Mar 03 9.1 20.6 2.28 −0.10 0.34 0.02 44 0.3461 −1.90 −0.30 0.74 0.04 49 0.1594
2 Mar 18–Mar 22 67.1 27.4 2.29 −0.14 0.08 0.73 41 <0.0001 −1.87 −0.22 0.69 0.09 38 0.0635
3 Apr 29–May 01 45.7 23.6 2.22 −0.10 0.08 0.61 31 <0.0001 n/a n/a n/a n/a n/a n/a
4 May 09–May 12 58.4 40.5 2.18 −0.17 0.11 0.77 35 <0.0001 −2.19 0.14 0.45 0.11 36 0.0490
5 Oct 15–Oct 17 26.4 7.9 2.38 −0.09 0.24 0.05 25 0.2988 −1.91 −0.03 0.22 0.00 25 0.7563
6 Oct 25–Oct 28 53.1 22.4 2.12 −0.07 0.15 0.19 36 0.0083 −1.86 0.11 0.20 0.20 38 0.0048
7 Oct 29–Nov 01 26.4 8.9 2.08 −0.03 0.05 0.07 33 0.1257 −2.07 0.08 0.05 0.33 33 0.0005
8 Dec 18–Dec 20 20.1 5.6 2.35 −0.12 0.10 0.27 20 0.0180 −1.34 −0.10 0.14 0.10 21 0.1521
9 Dec 25–Dec 27 37.6 5.4 2.36 −0.20 0.07 0.61 19 <0.0001 −1.45 −0.01 0.32 0.00 19 0.9388
10 Dec 27–Dec 28 13.7 8.0 2.39 −0.26 0.18 0.44 18 0.0026 −1.60 0.11 0.14 0.20 17 0.0700
11 Dec 28–Jan 01 21.6 15.5 2.13 −0.18 0.07 0.81 39 <0.0001 −1.72 0.17 0.15 0.45 42 <0.0001
12 Jan 02–Jan 03 9.4 3.0 1.94 −0.01 0.06 0.00 15 0.9031 −1.84 −0.06 0.10 0.05 15 0.4306

Table 4. Linear regressions characterizing the low-flow growing and non-growing season
concentration–discharge (C–Q) relations for both nitrate-N and SRP. The bold indicates significance,
with a p-value of <0.01.

Nitrate-N SRP

Intercept Slope Std.
Err. R2 n p-Value Intercept Slope Std.

Err. R2 n p-Value

Non-growing season 1.82 0.05 0.36 0.08 1924 <0.0001 −3.05 0.18 1.06 0.11 1741 <0.0001

Growing season 1.53 0.28 0.67 0.39 1677 <0.0001 −3.43 0.04 0.84 0.01 1453 0.0008
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4. Discussion
4.1. Comparing Event-Scale and Seasonal Nutrient Responses

Considering the nutrient loads, Fink and Misch [24] found the nitrogen and phospho-
rus peak loading periods to occur at the beginning of the growing season (May), shortly
following fertilizer applications in an agricultural, western Ohio watershed. Our cumula-
tive load plots express a similar pattern, with a large increase in May, prior to the growing
season. The annual cumulative load did not drastically increase during the growing season
of the region (from mid-May to mid-October). The discharge was minimally impacted by
the precipitation events during that time (Figure 4), and the cumulative load plots reflect
that minimal impact. This is further evidenced by the stable percentage differences of the
daily and weekly values from the “true” load during the growing season (Figures 5 and 6),
despite the wide load range based on the sampling frequency.

High-flow events that drive nutrient loading are not uncommon. For example, in a
primarily agricultural watershed using one-hour frequency data, Liu et al. [25] calculated
that 50% of the nitrate-N load was generated during only 10% of the time during high-flow
events. For our site, the cumulative load plots for nitrate-N and SRP depict that the nutrient
load is strongly correlated to the discharge in this watershed, confirming the studies by
Basu et al. [20] and Royer et al. [26], which found that 50% and 80% of the nitrogen and
phosphorus loads, respectively, occur during high-flow events.

Furthermore, for the event-scale nitrate-N responses, despite the load increases being
driven by high-flow events, consistent dilution responses were identified in the high-
frequency data (Figure 7). This type of event-based nitrate-N dilution response can be
common in agricultural watersheds (e.g., [27]), especially after the first runoff following
nutrient applications at planting. Such response differs, however, from the typical chemo-
static response seen in more permeable watersheds with deep unsaturated zones and low
“flashiness”. In such dampened systems, the chemostatic response has been attributed to
nitrate-N accumulation in the subsurface [28–30]. Thus, our event-scale dilution poten-
tially aligns more with the responses exhibited by watersheds where nitrate-N is flushed
on a storm-to-storm basis [12]. As the ubiquitous tile drainage in our watershed causes
“flashier” stream responses (e.g., [31]), we would anticipate shorter water residence times
in the subsurface, potentially promoting event-scale dilution [32].

However, the water residence time is not the only aspect controlling the nitrate-N
concentrations in the stream, as source concentrations, positions in the landscape, and
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soil retention are other factors to be considered. For example, looking at the low-flow
responses, clear mobilization patterns were exhibited in the growing season nitrate-N C–Q
relation results, and there was considerable variability in the concentrations (Figure 3).
Previous efforts have attributed such mobilization of nitrate-N to water table rises and
antecedent soil moisture [33,34], as nitrate-N is typically well-distributed in the soil matrix
and is found in high concentrations in shallow groundwater. Other studies also suggest
that the steeper positive C–Q slopes under low-flow conditions (rather than under high-
flow conditions) are linked to biological nitrate-N uptake, which is often manifested as
a bent rather than a linear C–Q relation [35]. This interpretation from Dehaspe et al. [35]
is consistent with this current study’s C–Q relation patterns and warrants additional
study, especially given the variability in the nitrate-N concentrations at low flows in this
system. Further, Heathwaite and Bieroza [36] saw mobilizing responses for nitrate-N
across watersheds when the concentrations considered were relatively lower than in other
watersheds exhibiting chemotactic responses. As such, our observed mobilization response
that emerges during the growing season conditions could be a result of relatively lower
nitrate-N concentrations as water tables fall below the existing tile drainage networks in the
watershed, such that deeper groundwater dominates the stream response in combination
with the instream biological uptake.

Our results for SRP at the event scale (Figure 8) showed a more variable response
in the C–Q relation slopes observed for the storm events and a shift from predominantly
negative to predominantly positive slopes over the year. Based on our data, the SRP
C–Q relations also appear to have considerable hysteresis, such that the rising limb of
the hydrograph and the falling limb have different nutrient concentration responses to
the changing flow (Figure 3). For the agriculturally heavy northwest Ohio region, this is
somewhat expected, as sustained elevated nutrient concentrations after high-flow storm
events often occur attributed to the dense tile drain network (e.g., [37]). As we transition
from wetter pre-growing season conditions to dry growing season conditions, we can see
the corresponding shift in the C–Q relations and the closer alignment between the peak
flows and the peak concentrations (Figure 3). This represents a potential SRP transport
pathway shift during the non-growing season that would be consistent with the research
from the region. For example, a negative C–Q relation indicating a dilution response was
seen for dissolved reactive phosphorus in combined surface and subsurface agricultural
runoff in Pennsylvania [38]. Contrary to this, Osterholz et al. [39] saw in Ohio that tile
drainage dissolved reactive phosphorus concentrations increased as the discharge increased,
which indicates a mobilizing response. At the event scale, the C–Q patterns may, thus,
ultimately be linked to soil P status, with a potential contributing influence of the flow path
connectivity and the mixing of event water with the matrix and shallow groundwater as
more surficial flow pathways activate under larger discharge events.

Consistent with Stamm et al. [40], such patterns of variability across events highlight
that subsurface discharge water is composed of both shallow groundwater and precipitation
water that has infiltrated through the soil and moved downward either by a matrix or
preferential flow. Thus, the mixing of dissolved phosphorus-rich water from P-rich surface
soils with P-poor groundwater could explain the variable response observed in the event-
scale phosphorus C–Q responses across the year. Phosphorus-rich surface soils have been
identified as the primary source of P in tile drains. Welikhe et al. [41] showed an 8-fold
greater risk of dissolved reactive phosphorus loss to tile discharge for phosphorus-rich soils.
In the Western Lake Erie Basin, recent work has demonstrated how the tile drainage, which
is ubiquitous for the region, leads to a more direct connection between the precipitation and
stream discharge, manifested as flashier stream responses [31] and a subsequent shift in
the downstream phosphorus loading as a function of the system’s wetness conditions [32].
Similarly in Indiana, Williams et al. [32] saw elevated dissolved phosphorus concentrations
in tile discharge coinciding with peak event water contribution from preferential flow
pathways before the waters, i.e., preferential and matrix flows, mixed along the flow
pathway. Taken together, the variability in the SRP C–Q relations emphasizes that nutrient
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losses from agricultural landscapes are driven by hydrology [42], as it intersects with the
loading sources.

4.2. Implications for Management That Consider Region-Specific Conditions

Looking at the Western Lake Erie Basin, where our study watershed is located, the
flat topography and extensive tile drainage networks are at greater risk for phosphorus
loss as they promote the presence of dense networks of preferential flow pathways or
macropores [43,44], which can allow runoff to bypass potential buffering by subsoils.
Furthermore, the limited variation in topography in the region combined with clay soils
has been seen as allowing for a greater potential for dissolved phosphorus losses, including
colloidal forms [45]. Given these unique conditions, the application of specific conservation
practices in certain environments (e.g., no-till with surface application, cover crops, etc.)
may not be as effective as expected and can even lead to unintended consequences [46].

In this regard, high-temporal resolution nutrient data could help to tailor management
practice recommendations to region-specific conditions. Further, high-temporal resolution
monitoring over longer durations, such as the year explored in this current study, allows
for variations in the dominance of hydrological and biochemical processes to be seen
through shifts in the C–Q relations between relative storm events and seasons. For example,
during periods of nutrient mobilization, such as the low-flow growing season nitrate-N
response and the early-season storm event SRP response seen in this study, mitigation
measures would need to intercept the dominant delivery pathways and target critical
source areas to reduce nutrient loading [47]. These management practices could include
options such as drainage water management to hold phosphorus-rich early-season runoff
back in farm fields or phosphorus bioreactors that collect and process tile drainage runoff.
In the case of periods with chemostatic responses, where short-term solutions can be rather
ineffective, large-scale mitigation approaches will be needed [30,48], such as whole-farm
management plans targeting, for example, soil health, which require a good cooperation
between decision makers, farmers, and scientists [36]. Of course, it should be noted that the
cost of such high-temporal resolution data (and the associated in situ wet-chemistry setup
and infrastructure) often makes it cost prohibitive to have these data across many locations
or spatial scales. Despite such potential limitations, pairing high-temporal resolution
monitoring with more traditional synoptic or spatially distributed grab sampling could help
improve the information content available, allowing for guidance on water management
decisions across a watershed or a region.

Macrae et al. [46] believe that it is possible to provide a “toolkit” of general principles
that can guide decision makers about conservation practice choices that may be appro-
priate for a given region. According to them, this would not negate the importance of
individual fields, farms, and fertility management approaches in optimizing conservation
practice selections, but rather guide choices with the greatest likelihood of success. Given
the advances in the high-temporal frequency monitoring of nutrients, it seems that the
accompanying resurgent interest in C–Q analyses could help in this optimization of the
practice selection. Bieroza et al. [12] have demonstrated that the C–Q slope is a robust
descriptor of the catchment’s tendency to store and transport chemicals. Furthermore,
they suggest that C–Q relations can be useful to detect and characterize potential future
changes (e.g., lower nitrogen or phosphorous concentrations or shifts to higher rainfall
and flashiness), as these changes will manifest shifts in the C–Q responses in agricultural
watersheds from chemostatic to chemodynamic (specifically mobilizing) responses.

Heathwaite and Beiroza [36] suggested that C–Q relations in combination with hy-
drochemical indices can be used to fingerprint the effects of hydrological disturbance on
freshwater quality and can be useful in determining the impacts of global changes on
stream ecology. Despite the large storm-to-storm variability in hydrochemical responses,
storm event magnitude and timing have a critical role in controlling the type of mobiliza-
tion, flushing, and cycling behaviors of water quality constituents. We can couple this
with the recent notion that biogeochemical cycling is switched off or severely dampened
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depending on the magnitude of the storm event, such that higher magnitude storm events
are thought to have greater damping effects [49,50] compared to lower magnitude storm
events that can preserve diel cycles [51]. By combining these two concepts, we gain a basis
by which we can not only characterize synergies between biogeochemical and hydrological
processes, but also align sustainable management practices with mechanisms that lead to
nutrient transport.

5. Concluding Remarks

The increasing availability of long-term and high-frequency datasets improves our
ability to observe patterns in C–Q relations and, subsequently, advances our coupled hydro-
logic and biogeochemical mechanistic understanding. These high-frequency water quality
data are empowering water resource managers and scientists to better understand and man-
age stream hydrochemistry and ecology. This monitoring technology is being incorporated
into studies to better identify the mechanisms behind how and why watersheds store and
release under varying conditions. New technologies that allow for similar (or even better)
high-temporal frequency monitoring of nutrients, namely nitrogen and phosphorus, have
the potential to be game changers, not only with regards to mechanistic understanding
but also in terms of how we can better address the specific water quality problems that are
being faced in watersheds. Ultimately, high-frequency temporal nutrient data monitored
over long durations can guide the decisions of water resource managers and help track
progress toward water quality goals.
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