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Abstract: Extracting weak fault features from noisy measured signals is critical for the diagnosis of
wind turbine faults. In this paper, a novel group-sparse feature extraction method via an ensemble
generalized minimax-concave (GMC) penalty is proposed for machinery health monitoring. Specif-
ically, the proposed method tackles the problem of formulating large useful magnitude values as
isolated features in the original GMC-based sparse feature extraction method. To accurately estimate
group-sparse fault features, the proposed method formulates an effective unconstrained optimization
problem wherein the group-sparse structure is incorporated into non-convex regularization. More-
over, the convex condition is proved to maintain the convexity of the whole formulated cost function.
In addition, the setting criteria of the regularization parameter are investigated. A simulated signal
is presented to verify the performance of the proposed method for group-sparse feature extraction.
Finally, the effectiveness of the proposed group-sparse feature extraction method is further validated
by experimental fault diagnosis cases.

Keywords: group-sparse signal; wind-turbine-fault diagnosis; convex optimization; feature extraction

1. Introduction

As one of the most common types of mechanical equipment, the wind turbine has
played an important role in industrial applications. It is of great significance to detect
the various faults of wind turbine as early as possible to prevent economic losses and
casualties [1]. Extracting the periodic impact signal hidden in measured noisy vibration
signals has been a focus in the field of signal processing because of its vital importance
in the vibration-based condition monitoring and fault detection of wind turbines [2]. For
instance, rolling bearings are components that are widely used in rotating machinery.
Inner and outer ring failures caused by the abnormal operation of bearings have become
one of the most common causes of wind turbine failures [3]. However, the observed
vibration signals are often submerged in very serious background noise, which poses
a challenge to the extraction of transient signals [4,5]. Therefore, whether the transient
impulse submerged in the strong background noise can be successfully detected is key to
extracting fault information.

Numerous diagnostic techniques have been proposed, and some of them use different
transforms to extract features, such as short-time Fourier transform (STFT) [6,7] and wavelet
transform [8–10]. Some methods adopt the idea of signal decomposition, such as empirical
mode decomposition (EMD) [11,12], variational mode decomposition (VMD) [13–15], local
mean decomposition [16], the stochastic resonance technique [17,18] and blind deconvolu-
tion algorithms [19]. There are also some methods that combine traditional time-frequency
analysis with other techniques suitable for transient detection, such as the method based
on spectral kurtosis (SK) [20,21] and so on. Machinery fault classification is also a popular
research topic in this area, which is based on machine learning. Most of these methods
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improve diagnostic performance by applying statistical methods to collected vibration
signals. Among these methods, support vector machines and algorithms based on the BP
neural network have achieved remarkable results in mechanical fault diagnoses [22].

In recent years, researchers from the field of signal processing have paid more attention
to sparse representation. The purpose of applying sparse representation is to extract
correlated information in the signal. The well-known basis pursuit method solves the sparse
optimization problem by using the l1 norm [23], which is a typical convex-optimization
problem. It can converge to the global optimal solution of the objective function using
the split-variable-augmented Lagrangian shrinkage algorithm (SALSA) [24]. However,
the application of l1 norm regularization underestimates the magnitude component to
be solved. Therefore, optimization problems based on non-convex regularization terms
have attracted the attention of many scholars. The advantage of adopting non-convex
regularization is that it can estimate the high-amplitude components of the signal more
accurately. However, the application of non-convex regularization inevitably weakens the
strict convexity of the objective function [25]. In response to this problem, some scholars
have turned their attention to convex optimization via non-convex regularization. The
degree of non-convexity of non-convex regularization can be adjusted by changing the
controllable parameters [26]. In this way, the objective function could converge to the global
minimum under the condition that the whole objective function is convex.

It is worth nothing that when large-amplitude coefficients form groups (clusters),
the l1 norm and other separable sparsity models do not capture the tendency of the
coefficients to group (group sparsity) [27]. A large number of scholars have made efforts in
the estimation and reconstruction of group-sparse signals. In the case of group overlap,
an algorithm called overlapping group shrinkage (OGS) is presented, which is dedicated
to seeking the minimization of the convex cost function [28]. Four non-convex penalty
functions were proposed to enhance the extraction of sparsity, and the corresponding
algorithm was given in [29]. Huang et al. constructed a multivariate variable-scale non-
convex function as a regularizer in the sparse regular optimization problem [30]. By
comparing with the l1 norm, it can be observed that the non-convex penalty can estimate
the high-amplitude components of the sparse solution more accurately. Fan et al. combined
the tunable Q-factor wavelet transform (TQWT) with the OGS algorithm, and it showed
obvious superiority in the extraction of weak magnetic signals [31]. He et al. proposed
the periodicity-induced overlapping group shrinkage (POGS) technique and applied it to
extract and depart the compound transient features of periodic groups [32]. Since Ivan
proposed to use GMC function for sparse feature extraction, GMC function as a typical
non-convex function has become the concerned of many scholars [33].

In essence, the GMC function is formed by optimizing the l1 norm so it can achieve
a sparse extraction result that is better than the l1 norm. Based on the combination of
the GMC penalty and the TQWT, He et al. proposed a novel sparsity-enhanced method
and verified its reliability [34]. Liu et al. applied the GMC penalty to the recognition of
impact force and showed its superiority in signal amplitude evaluation [35]. However,
these recently developed diagnostic methods formulate large useful magnitude fault values
as isolated features. To address this problem, a novel group-sparse feature extraction
method via an ensemble generalized minimax-concave penalty is proposed in this paper
for machinery health monitoring. The proposed method applies the idea of “packaging
signals in the form of groups” to the GMC-regularized least-squares problem. The OGS
algorithm, based on the principle of majorization–minimization (MM), is a fast iterative
algorithm that can quickly converge to the optimal sparse solution of the group signal.
For the feature extraction of sparse group signals using the GMC penalty, the useful
fault features are modeled as group-sparse signals and are subsequently incorporated
into the non-convex regularization in this paper. Moreover, the convexity condition is
derived to guarantee that the objective function is still a convex-optimization problem.
Finally, the forward–backward group feature extraction (FBGFE) algorithm is given to
solve the formulated optimization problem. The method is applied to the analysis of



Sustainability 2022, 14, 16793 3 of 15

simulation signals and bearing fault signals, and the processing results show that the
proposed method in this paper can successfully extract fault features in strong noise.
In comparison with traditional L1 norm regularization, GMC and OGS methods, the
effectiveness and superiority of the proposed method are verified.

The remainder of this paper is organized as follows. In Section 2, the basic theory of the
GMC penalty and the overlapping group-sparse algorithm are briefly introduced. Section 3
presents the proposed group-sparse feature extraction method via the ensemble GMC
penalty for machinery health monitoring. In Section 4, the effectiveness and superiority
of the proposed method is verified by numerical signals. Section 5 applies the proposed
method to the fault diagnosis of rotating machinery for further validation. Finally, Section 6
summarizes the conclusion.

2. Basic Theory
2.1. GMC Penalty

The GMC penalty function can be regarded as a multivariate generalization of the min-
imax concave (MC) penalty function. The advantages of adopting such a penalty function
are the following: (1) The strict convexity of the objective function can be ensured so that
the advantages of the global minimum of convex optimization can be maintained. (2) It
avoids the disadvantage of underestimating the high vibration component of traditional l1
norm regularization and can greatly enhance the sparsity of the extracted features.

The MC function is expressed as the absolute value function subtract the one-dimensional
variable-scale smooth convex Huber function. For a 6= 0, the expression of the Huber
function is

Sa(x) = min
v∈i

{
|v|+ a

2
(x− v)2

}
. (1)

Therefore, the MC function [33] is φa(x) : R→ R, and it can be expressed as

φa(x) = |x| − Sa(x). (2)

By extending the Huber function to the multi-dimensional case as the extended form
of Sa(x) in (1), SB(x) can be expressed as

SB(x) := inf
v∈RN

{
||v||1 +

1
2
||B(x− v)||22

}
. (3)

The multivariate generalization of the MC penalty can be obtained by extending the
MC function, and the GMC function [33] can be denoted as

ψB(x) :=||x||1 − SB(x). (4)

By varying parameter B, the non-convex degree of the GMC function is tuned. As
shown in Figure 1a, with the increasing of parameter a, the non-convex degree of the MC
function also increases. In additional, Figure 1b shows the form of GMC with different

matrix B, where the non-convex controllable parameters were set as B1 =

 0.2
0.2
0

0
0.2
0.2

,

B2 =

 0.6
0.6
0

0
0.6
0.6

, B3 =

 1
1
0

0
1
1

.
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Figure 1. The non−convex degree of two functions varies with the parameter. (a) MC function.
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2.2. Overlapping Group Shrinking Algorithm

The OGS algorithm uses a penalty function R(x) to minimize the cost function, which
can be seen as the mixture of the l1 norm and the l2 norm. The expression of R(x) [28] is
expressed as

R(x) = ∑
i∈I

[
∑
j∈J
|x(i + j)|2

]1/2

. (5)

For a vector x with a signal length of N, and the size of K, I and J are defined as

I = {0, . . . , N − 1}, (6)

J = {0, . . . , K− 1}. (7)
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Based on the above notation, the cost function can be defined as

F(x) =
1
2
||yi,k − xi,k||22 + λR(xi,k), (8)

where the λ is the regularization parameter. Using the MM algorithm to solve (8), the
iterative solution can be obtained as

xk+1(i) =
y(i)

1 + λr(i; x(k))
, (9)

where

r(i; x(k)) := ∑
j∈J

[
∑
k∈J

∣∣∣x(k)(i− j + k)
∣∣∣2]−1/2

. (10)

It should be noted that the OGS algorithm converges to the global optimal solution
by gradually reducing the non-zero values of y to zero rather than directly reduce them to
zero in any iteration. Additionally, the determination of the value of k depends on prior
knowledge of the signal x.

3. The Proposed Group-Sparse Feature Extraction Method Based on Ensemble GMC

In this section, to accurately estimate group-sparse fault features, a novel group-
sparse feature extraction method via the ensemble GMC penalty is proposed for machinery
health monitoring. The proposed method was constructed by adopting the aforementioned
penalty function as the regularization term for the optimization of least squares. Specifically,
the proposed method includes the three following elements: (1) the construction of the
group-sparse-enhanced optimization problem; (2) the condition that constrains the overall
cost function is convex; and (3) the derived fast iterative convergence algorithm.

3.1. Optimization Problem Formulation

In order to accurately estimate group-sparse fault features from noisy signals, the
following unconstrained optimization problem can be formulated.

x∗ = argmin
x∈i

{
F(x) =

1
2
||yi,k − xi,k||22 + λψB(xi,k)

}
. (11)

Notice that in the formulated problem (11), ψB(xi,k) represents the GMC penalty for the
group-sparse signal x, and x∗ is the spare solution obtained after solving the unconstrained
optimization problem.

Taking into account the group sparsity of the signal x, xi,k [28,29] in the above equation
can be expressed as

xi,k = [x(i), . . . , x(i + k− 1)] ∈ ik. (12)

Note that xi,k represents the i-th group signal with size k, and its corresponding l1
norm is defined as ∣∣∣∣xi,k

∣∣∣∣=∣∣x(i)∣∣+ . . .+
∣∣x(i + k− 1)

∣∣. (13)

3.2. Convexity Condition

From the proof in section III part B in reference [29], the cost function in (11) can be
written as

F(x) = ∑
i

Fi(xi,k). (14)
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The expression obtained by expanding Fi(xi,k) is

Fi(xi,k) =
1

2k ||yi,k − xi,k||22 +
λ
k (||xi,k|| − SB(xi,k))

= 1
2k ||yi,k − xi,k||22 +

λ
k ||xi,k||1 − 1

k min
v∈RN

{
λ||vi,k||1 + λ

2 ||B(xi,k − vi,k)||22
}

= max
v∈RN

{
1
2k ||yi,k − xi,k||22 +

λ
k ||xi,k||1 − λ

k ||vi,k||1 − λ
2k ||B(xi,k − vi,k)||22

}
= max

v∈RN

{
1
2k xT

i,k(I − λBT B)xi,k +
λ
k ||xi,k||1 + g(xi,k, vi,k)

}
= 1

2k xT
i,k(I − λBT B)xi,k +

λ
k ||xi,k||1 + max

v∈RN
g(xi,k, vi,k) ,

(15)

where g is affine in x. The last term in (15) is convex as it is the pointwise maximum of a set

of convex functions. Thus, if I − λBT B ≥ 0 or, in other words, 0 < B <
√

I
λ , then Fi(xi,k) is

a convex function. As a result, the cost function (14) can be regarded as the sum of a series
of convex functions, which is also a convex function. Given the identity matrix I, matrix B
can be simply specified as B =

√
γ/λI, which satisfies F(x) is convex when γ ≤ 1. The

parameter γ controls the non-convexity of the penalty ψB. If γ = 0, then B = 0 and the
penalty is reduced to the l1 norm. If γ = 1, then (14) is satisfied with equality and the
penalty is maximally non-convex. In practice, γ is usually recommended to be specified
as a range of 0.5 ≤ γ ≤ 0.8. It can be noted that the objective function could maintain
convexity by adjusting B. Therefore, the fast iterative algorithm can converge to the global
optimal solution and avoid entrapment in sub-optimal local minima.

3.3. Algorithm Implementation

To use proximal algorithms to minimize the cost function F, the optimization problem
formulated in (11) can be regarded as a saddle-point problem [33], which can be written as

(xopt, vopt) = arg min
x∈RN

max
v∈RN

F(xi,k, vi,k). (16)

In the above optimization problem, F(xi,k, vi,k) can be written as

F(xi,k, vi,k) =
1
2k
||yi,k − xi,k||+

λ

k
||xi,k||1 −

λ

k
||vi,k||1 +

γ

2k
||xi,k − vi,k||22. (17)

xopt is the obtained optimal solution with group-sparse features.
The saddle-point problem can be solved by the forward–backward (FB) algorithm.

Figure 2 illustrates the procedure of the proposed group-sparse feature extraction method
via the ensemble GMC penalty. Firstly, the vibration sensor is installed to collect the
vibration signals through data-acquisition equipment and record the relevant parameters.
Then, the collected noisy signals are processed by the proposed method to extract the
corresponding fault features. Finally, the feature extraction results are shown in the time-
domain form and the envelope spectrum. The FB algorithm used to extract sparse signals
with group-sparse properties is defined as the forward–backward group feature extraction
(FBGFE) algorithm, which is summarized in Algorithm 1. Notice that the convergence
condition of the iterative algorithm proposed in this paper is that the number of iterations
is reached, and the error is also controlled within the specified range. Generally, the iterated
error specified is very small, e.g., 10−4.

In order to further illustrate the formation of group sparsity, an example is given. If
k = 2, then the first part in the convolution operator can be expressed as

a(i)ik = x(i)ik − µ(x(i)ik + γ(v(i)ik − x(i)ik )− yi
ik)

= x(i)i0 + x(i)i1 − µ(x(i)i0 + x(i)i1 + γ(v(i)i0 + v(i)i1 − x(i)i0 − x(i)i1 )− yi
i0 − yi

i1).
(18)

Note that x(i)i0 + x(i)i1 can be achieved by convolution, where h is an all-in-one vector
with a size of 1 × K.
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Algorithm 1 FBGFE: Forward–backward group feature extraction algorithm

Input: yik ∈ RN , i ∈ I, k ∈ R+, λ > 0,λ,γ,k
Initialization: ρ = max{1, γ/(1− γ)},0 < µ < 2/ρ

For i = 0, 1, 2, . . .
w(i)

ik = 1
k conv(x(i)ik − µ(x(i)ik + γ(v(i)ik − x(i)ik )− yik), h)

v(i)ik = 1
k conv(x(i)ik − µ(x(i)ik + γ(v(i)ik − x(i)ik )− yik), h)

x(i+1)
ik = so f t(w(i)

ik , µλ)

v(i+1)
ik = so f t(u(i)

ik , µλ)
end
where i is the iteration counter.
Return: x
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3.4. Remark of the Proposed Algorithm

As presented in detail in this section, the proposed group-sparse feature extraction
method is closely based on GMC. The main contribution of the proposed method is that the
proposed method formulates an unconstrained optimization problem wherein the group-
sparse structure is incorporated into non-convex regularization, as referred to Equation (11)
in Section 3.1. In other words, the original GMC-based sparse feature extraction method
does not consider the promotion of features with group-sparse features. However, many
prior studies have demonstrated that measured-fault vibration signals of rotating machines
have group-sparse properties. Here, a signal with group-sparse properties means large
magnitude signal values tend not to be isolated; instead, these large magnitude values
tend to form groups [36]. To guarantee that the formulated optimization problem is strictly
convex, another contribution of the proposed method is a focus on deriving the convexity
condition, which is presented in detail in Section 3.2. As a result, the global minimizer can
be obtained via the derived fast iterative algorithm, as described in Section 3.3.
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4. Simulation Study

The objective of the present simulation experiment is to verify the validity of the
proposed method and thus to better extract the sparse signal. In this section, the proposed
method is compared with the OGS method, l1 norm regularization method and GMC
penalty method. The impulsive and oscillatory simulation signal is given by

y(t) = A× exp(−20t)× sin(100t) + ns(t) (19)

where A is defined as the amplitude of the impulse signal, ns(t) is the addictive Gaussian
noise, the sampling frequency is fs = 1000 Hz, the signal length is N = 6000 and the noise
standard deviation is σ = 0.1. To effectively compare the proposed method with the l1
norm regularization, GMC penalty and OGS method, the root-mean-squared error (RMSE)
and signal–noise ratio(SNR)were chosen as measures to facilitate quantitative analyses.

The calculation formula of the SNR and RMSE is defined as

SNR = 10 log10

∣∣∣∣x∣∣|22∣∣∣∣x− x_denoise
∣∣|22 (20)

RMSE =

√
1
N

∣∣∣∣∣∣∣∣x− x_denoise
∣∣∣∣|22 (21)

where x represents the noise-free signal, x_denoise stands for the denoised signal and N
represents the signal length.

4.1. Simulation Validation

The whole simulation signal consists of five impulse signals and Gaussian noise. The
simulation signal is shown in Figure 3, which is composed of the noise-free signal and
the signal with Gaussian noise. The simulation noise-free signal with impulse is shown in
Figure 3a. The noisy signal with Gaussian noise is shown in Figure 3b.
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the SNR and RMSE, the best appropriate parameters λ  and γ  were selected for each 
method. The processed results obtained by the comparison methods and the proposed 
method are shown in Figure 4, respectively. 

  

Figure 3. Noise−free signal and noise signal. (a) Noise-free signal, (b) Noise signal with Gaussian
noise of σ = 0.1.

Previous signal-denoising methods have shown excellent performance in practical
applications. In order to compare the previous methods and the proposed method with the
SNR and RMSE, the best appropriate parameters λ and γ were selected for each method.
The processed results obtained by the comparison methods and the proposed method are
shown in Figure 4, respectively.



Sustainability 2022, 14, 16793 9 of 15

Sustainability 2022, 14, 16793 10 of 17 
 

 

(a)

 

(b)

 
(c)

 
(d)
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noising using 1 norm regularization with 0.14λ = . (b) Denoising using OGS method with 

0.07λ = . (c) Denoising using GMC penalty with 0.26λ =  and 0.8γ = . (d) Denoising using the 
proposed method with 0.15λ = , 0.8γ =  and 3K = . 

As shown in Figures 3 and 4, compared with the 1  norm regularization method, 
the OGS method and the original GMC penalty method, the performance of the proposed 
method is greatly improved. In particular, the 1  norm regularization and GMC penalty 
method have a less satisfactory performance, and the proposed method has the best per-
formance. From the perspective of the SNR and RMSE, the growth in performance using 
the proposed method is about twenty percent. The proposed method preserves large am-
plitudes of useful features and enhances the sparsity of the signal. 

Figure 4. Denoising results obtained using the comparison methods and proposed method. (a) De-
noising using l1 norm regularization with λ = 0.14. (b) Denoising using OGS method with λ = 0.07.
(c) Denoising using GMC penalty with λ = 0.26 and γ = 0.8. (d) Denoising using the proposed
method with λ = 0.15, γ = 0.8 and K = 3.

As shown in Figures 3 and 4, compared with the l1 norm regularization method, the
OGS method and the original GMC penalty method, the performance of the proposed
method is greatly improved. In particular, the l1 norm regularization and GMC penalty
method have a less satisfactory performance, and the proposed method has the best
performance. From the perspective of the SNR and RMSE, the growth in performance
using the proposed method is about twenty percent. The proposed method preserves large
amplitudes of useful features and enhances the sparsity of the signal.

4.2. Selection of Regularization Parameter

In this subsection, the criterion of selecting the regularization parameter is studied. In
practice, the regularization parameter λ is suggested to be specified in proportion to the
noise level, which is generally represented by the standard deviation σ of the noise in the
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signal [23]. The optimal regularization parameter λ as a function of the standard deviation
σ using different group size K is displayed in Figure 4. Notice that the optimal value of the
regularization parameter λ is obtained by minimizing the SNR of each fixed group size.
Therefore, the regularization parameter λ can be specified by the straight line, which is
fitted by numerical validation as illustrated in Figure 5.
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5. Experimental Validation

In this section, the proposed group-sparse feature extraction method is applied to
two experimental fault diagnosis cases to further demonstrate its performance. These two
experimental cases correspond to a high-speed bearing and a pinion gear with faults, which
are two key transmission components of wind turbines. The first diagnostic case is an
outer-race fault induced in a high-speed bearing, while the other diagnostic case is a pinion
gear with faults. The proposed method is applied to analyze measured noisy vibration
signals, wherein the acceleration sensor was mounted radially to the high-speed shaft on
the gearbox bearing support.

5.1. Case 1: High-Speed Bearing Outer-Race Fault

In this case, the proposed method is applied to analyze the vibration signals measured
from a high-speed shaft bearing with a processed outer-race defect. Specifically, the
vibration signal is radially measured on the bearing housing of a machinery-fault-simulator
test rig. The sampling frequency is specified as 51.2 KHz and the rotating frequency is
approximately fr = 29 Hz. For the tested bearing, the bearing type is MB ER-16K and the
number of balls is nine. Meanwhile, the ball diameter is 7.9375 mm, and the pitch diameter
is 38.50 mm. Based on the geometric parameters and rotational speed, the characteristic
frequency of the outer-race defect is calculated to be approximately fo = 103.59 Hz [37].

A record of the collected signal is shown in Figure 6, and it can be observed that the
useful fault features are buried in strong background noise and irrelevant interference. In
order to extract fault transients, the proposed method is applied to analyze the noisy signal.
In this case, the processing result and its Hilbert envelop spectrum are shown in Figure 7.
It can be observed from Figure 7a that the proposed method can reduce the background
noise and extract the transients from the measured vibration data effectively. The Hilbert
envelope spectrum of the extracted signal is illustrated in Figure 7b. It can be observed that
the outer-race defect frequency fo = 103.59 Hz and its harmonic components are clearly
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revealed. Therefore, the fault features are effectively extracted in this case, which indicates
that a localized outer-race fault occurred on the bearing.
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Similarly, for further comparison, the noisy vibration signal is also processed by the
original GMC method and the OGS method. Figures 8 and 9 demonstrate the denoising
results used by the GMC method and OGS method, respectively. It can be observed from
the denoised results using the comparative methods that the weakest fault features have
been extracted. However, these useful fault features are still surrounded by irrelevant noise.

5.2. Case 2: Fault Diagnosis of a Wind Turbine Pinion Gear

In this case, the proposed method is applied to analyze a noisy vibration signal to
extract sparse fault features of a wind turbine pinion gear. The radial vibration of a 3 MW
wind turbine pinion was measured. The vibration signals were measured at a sampling
frequency of 97.656 KHz. The rotating frequency (shaft frequency) was approximately
fr = 30 Hz and the speed of the pinion gear shaft was approximately 1800 rpm. The
number of teeth on the pinion was 32.
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A record of the vibration signal is displayed in Figure 10. It can be seen that the fault
features with group-sparse properties are masked by strong background noise and irrele-
vant interference. In order to estimate the fault transients more accurately, the proposed
method is applied to analyze the measured noisy vibration signal. In this case, the optimal
regularization parameter is specified as λ = 2.3 and the algorithm is run for 1000 iterations.
The estimated result of the group-sparse transients and their Hilbert envelope spectrum are
shown in Figure 11. It can be observed from Figure 11a that the repetitive transients with
group-sparse properties are extracted from the measured vibration data. Specifically, the
frequency of the group-sparse transients is approximately 30 Hz, which is in accordance
with the rotating frequency fr of the pinion gear shaft. The Hilbert envelope spectrum of
the extracted group-sparse signal is illustrated in Figure 11b. It can be observed that the
rotating frequency of the pinion gear shaft is fr = 30 Hz. Therefore, in this case, the fault
features with group-sparse properties have been effectively extracted, indicating that there
is a local fault in the wind turbine pinion.
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For comparison, the noisy vibration signal is processed by the GMC method. The
estimated periodic group-sparse signal using the original GMC method is displayed in
Figure 12. The useful transients are not estimated in a sparse way, wherein the interference
noise still exists. For further comparison, the noisy vibration signal is also processed
by the OGS method. In this experimental case, the extracted result obtained via OGS is
illustrated in Figure 13. Similarly, although a few transients with large magnitudes can be
revealed, the decomposed results are still noisy and the high-amplitude components are
severely underestimated.
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6. Conclusions

This paper proposes a data-driven sparse fault feature extraction method for wind
turbine condition monitoring and fault diagnosis. Specifically, the proposed diagnostic
method is based on the ensemble generalized minimax-concave penalty to maximally
enhance the sparsity of useful weak fault features. The proposed method formulates weak
fault features as group-sparse features, i.e., large useful magnitude values are not isolated.
Therefore, the proposed method addresses the problem existing in the original GMC-based
sparse feature extraction method. An effective unconstrained optimization problem is
formulated, wherein the group-sparse structure is incorporated into non-convex regular-
ization. Furthermore, the convex condition is derived to guarantee the convexity of the
whole cost function of the optimization problem. The setting criteria of the regularization
parameter of the proposed method is thoroughly investigated. The diagnostic performance
of the proposed method is verified via numerical signals and experimental data collected
from wind turbines. The extracted useful fault features demonstrate that the proposed
method can effectively detect group-sparse weak fault features from noisy signals. Based
on the sparse fault features extracted by the proposed method in this paper, future work
will focus on formulating a quantitative index to precisely reveal the damage site and size
of defective components.
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