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Abstract: The adoption and recent development of Unmanned Aerial Vehicles (UAVs) are because of
their widespread applications in the private and public sectors, from logistics to environment moni-
toring. The incorporation of 5G technologies, satellites, and UAVs has provoked telecommunication
networks to advance to provide more stable and high-quality services to remote areas. However,
UAVs are vulnerable to cyberattacks because of the rapidly expanding volume and poor inbuilt
security. Cyber security and the detection of cyber threats might considerably benefit from the devel-
opment of artificial intelligence. A machine learning algorithm can be trained to search for attacks
that may be similar to other types of attacks. This study proposes a new approach: metaheuristics
with machine learning-enabled cybersecurity in unmanned aerial vehicles (MMLCS-UAVs). The
presented MMLCS-UAV technique mainly focuses on the recognition and classification of intrusions
in the UAV network. To obtain this, the presented MMLCS-UAV technique designed a quantum
invasive weed optimization-based feature selection (QIWO-FS) method to select the optimal feature
subsets. For intrusion detection, the MMLCS-UAV technique applied a weighted regularized extreme
learning machine (WRELM) algorithm with swallow swarm optimization (SSO) as a parameter
tuning model. The experimental validation of the MMLCS-UAV method was tested using benchmark
datasets. This widespread comparison study reports the superiority of the MMLCS-UAV technique
over other existing approaches.

Keywords: metaheuristics; machine learning; cybersecurity; intrusion detection system; unmanned
aerial vehicles

1. Introduction

Nowadays, unmanned aerial vehicles (UAVs), also called drones, are gaining in pop-
ularity. They can be used for various purposes with regard to everyday flying objects
interconnected with the internet, and can find themselves connected to other devices by
sharing data through smart gadgets such as tablets and smartphones [1,2]. Put simply,
drones are flying objects that either fly with the help of human pilots or autonomously.
UAVs can be used for rescue operations, aerial photography, agriculture, package deliver-
ies, environmental management, monitoring, and other perilous applications [3–5]. The
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reliability of a UAV and its wireless communications are significant for crucial applica-
tions. Intrusion detection (ID) methods and security schemes have been employed for
ensuring critical safety features. Drones may interact with terrestrial networks [6]. Due to
the high probability of drones using ground-based line of sight (LoS) networks as well as
the mobility, high elevation of the drones, and service quality needs, UAV-based wireless
communication and cellular-connected UAV transmissions may vary from their terrestrial
counterparts [7–9].

It is essential to frame data connection channels among UAVs to form a mobile self-
organizing network if a greater number of drones cooperate to perform a task [10]. The
drones in the network can realize real-time data sharing over this mobile network, which
need not be sent by a ground station, and this could effectively enhance the combat ability
and survivability of the drone group [11–14]. As the drone network is a subdivision of
mobile ad hoc networks (MANETs), frequent attacks on the MANET can threaten the
drone network. Due to the multiplicity of network access techniques and the openness
of networks, drone networks have been covered by many security threats [15–17]. The
defense function of conventional network security systems is generally passive, and it can
be difficult to fight network attacks with changing technologies. An intrusion detection
system (IDS) constitutes the inadequacies of conventional security technologies as an active
defensive network security system. IDSs have acquired much interest from users, but
certain issues exist that must be enhanced in real-time applications [18]. A classical IDS
is inefficient and has an insufficient outcome, particularly in modern computer networks,
including large traffic and a high bandwidth. Conventional IDSs cannot fulfill the demand
of the present network security, which is very complex, distributed, and automated. There-
fore, numerous authors have presented machine learning (ML) methods in the ID field and
have made great achievements to diminish the false alarm rate and enhance the detection
efficiency level of IDSs [19–21].

One of the main aspects of the design of a ML-based detection technique is the selec-
tion of a proper set of features to build the model. Provided with a dataset with a large
number of features, the identification of proper features can considerably improve the
classification performance. Generally, not all features are beneficial to the classification
process and several features can be either treated as noisy, reducing the process perfor-
mance, or highly correlated to one another and eliminated. Feature selection (FS) is a
promising technique used to decrease the feature space and choose the most significant
features. As an important pre-processing step in ML, FS has gained significance in network
management, particularly in network intrusion detection. The inclusion of the FS process
in the ML-based classification model reduces the computation complexity and increases
the classification performance.

This study proposes a new metaheuristics with machine learning-enabled cybersecu-
rity in unmanned aerial vehicles (MMLCS-UAVs) method. The presented MMLCS-UAV
technique initially designed a quantum invasive weed optimization-based feature selec-
tion (QIWO-FS) method to improve the ID results. Next, a weighted regularized extreme
learning machine (WRELM) model was applied to detect and categorize the intrusions.
Finally, swallow swarm optimization (SSO) was used as a parameter tuning model for the
WRELM model. The analysis of the results of the MMLCS-UAV technique was tested using
benchmark datasets. Briefly, the contributions of this paper are given below.

• An intelligent MMLCS-UAV technique encompassing QIWO-FS, a WRELM clas-
sification, and SSO-based parameter tuning is introduced to detect intrusions in
a UAV network.

• A QIWO-FS technique is developed using a standard IWO algorithm and quantum
computing, which helps to select the useful features from the dataset.

• SSO-based parameter tuning for the WRELM model is designed to eliminate the
tedious trial and error parameter tuning process. This also helps to enhance the
predictive outcomes of the proposed model for unseen data.
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The remaining sections of the paper are as follows. Section 2 elaborates on a detailed
survey of existing works and Section 3 provides the proposed MMLCS-UAV technique.
Section 4 provides the experimental validation of the proposed approach and Section 5
provides the concluding remarks.

2. Literature Review

Shrestha et al. [21] developed a drone- and satellite-oriented 5G network security
system that could harness ML to efficiently discover cyberattacks and vulnerabilities. The
solution could be classified into two parts: one was the application of a ML-oriented
algorithm into satellite or terrestrial gateways and the other was the creation of a model for
ID with the help of numerous ML techniques. Using a real-time CSE-CIC IDS-2018 network
database, the system could identify different forms of attacks. To categorize the malicious
or benign packets and enhance the security in drone networks, this study illustrated that
ML techniques were employed. In [22], an effective technique of an IDS was formulated
to identify anomalies in a vehicular system. An in-vehicle network (IVN) transmission
system that was a control area network (CAN) was used in this work. The method could
classify various attacks, including fuzzing attacks, on vehicles into reconnaissance and
denial-of-service (DoS).

Zhang et al. [23] introduced an advanced technology termed an unmanned aerial
system multifractal analysis IDS (AMDES) to recognize spoofing attacks. In an earlier study,
an IDS related to a multifractal (MF) spectral analysis was employed to render precise MF
spectrum predictions of network traffic. Tan et al. [24] modelled an ID technique related to
deep belief networks (DBNs), boosted by a particle swarm optimization (PSO) algorithm.
First, to gain an optimum DBN structure, a classifier method that relied upon the DBN was
framed, the PSO method was employed to augment the hidden layer nodes of the DBN.
Praveena et al. [25] introduced a deep reinforcement learning (DRL) method, optimized
by the Black Widow Optimization technique for a drone network (DRL-BWO). Moreover,
the DRL included an enhanced reinforcement learning-oriented DBN for ID. The BWO
method was enforced for the parameter optimization of the DRL methodology. It aids the
optimization of the ID performance of drone networks.

Masadeh et al. [26] applied a reinforcement learning (RL)-oriented method to solve
the issue by allowing a drone to independently study the dynamics of a target or in-
truder. To be specific, numerous design variants of the RL-oriented method were applied
that varied in the employed temporal difference approaches (state-action-reward-state-
action or Q-learning) and in the exploration approaches (greedy or convergence-related
ε-). Kumar et al. [27] introduced a new secure data sharing structure for software drone
environments that combined deep learning and a blockchain (BC).

3. The Proposed Model

In this article, a new MMLCS-UAV technique was developed to accomplish cyber-
security in UAV networks. The presented MMLCS-UAV technique mainly focused on
the recognition and classification of intrusions in the UAV network. In the presented
MMLCS-UAV technique, a series of processes were carried out; namely, a feature subset
selection using the QIWO-FS technique, a WRELM-based classification, and SSO-based
parameter tuning. Figure 1 shows the workflow of MMLCS-UAV approach.

3.1. Algorithmic Design of the QIWO-FS Technique

The presented MMLCS-UAV technique introduced a new QIWO-FS technique to select
the optimal feature subsets. As a population-based optimization technique, invasive weed
optimization (IWO) can fulfill the remarkable outcome of the mathematical formula of
randomization and adaptation of the weed colonies. The IWO technique is a powerful
and new optimization algorithm that finds the global optimal solution of a mathematical
function by mimicking the randomness and compatibility of a weed colony. This algorithm
is utilized as an underlying structure for optimization approaches. It is a simple process
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with a significant convergence speed, a lower computational encumbrance, independence
to the problem, and near-global solutions; its gradient-free nature makes it useful for the
resolution of FS problems.
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The significant rise of weeds (strong herbs) is presumed to be a serious risk to plant
products. Weeds have a high resistance level against environmental and climate changes.
Thus, a strong optimization technique is obtained based on its features. In the presented
method, the weed community and its resistance, compatibility, and randomness attempted
to overcome the challenges. IWO was developed according to the phenomenon of agricul-
ture; viz., motivated by an invasive weed colony. As previously mentioned, weeds (as a
plant) are able to grow accidentally. There are various benefits to the existence of weeds
in urban spaces. However, the accidental growth of these plants can encompass severe
harm to human or planet activities; thus, it is regarded as a “weed”. Although IWO is the
simplest technique based on the concept, implementation, and structure, it is an efficient
optimization technique to solve optimization problems [28]. The subsequent stages are
essential to better understand the habitat behaviors and their weeds:
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(1) Initializing Population: several seeds are partially spread in the searching space.
(2) Reproduction is initiated by pouring every individual plant into the flowering plant;

then, the procedure can generate seeds that are worth their proportion. Later, the
quantity of the plant seeds linearly decreases from Smax to Smin:

n(wi) =
Smax(max f it− f it(wi)) + Smin( f it(wi)−min f it)

max f it−min f it
(1)

(3) This stage is related to determining a novel location of the seed in the search space.
Here, the child seed is positioned near to the parents.

(4) Competitive removal is related to generating the optimum seeds. This happens whilst
the amount of seeds obtains a certain range (pmax).

(5) Finally, once the criteria are fulfilled, to finish the process, the second phase is repeated;
otherwise, the procedure stops.

As a consequence of the IWO feature as well as the local and global potency for
exploration and exploitation, and in addition to the prosperous results in vast quantities
of applications, several effective ideas of the quantum concept have been applied to de-
velop the performance of IWO. The fundamental method for QIWO is similar to IWO;
certain advantageous variations are implemented to increase the exploration stage in a
quantum searching space [29]. To optimize the stochastic module for initializing the seed
(population), every seed can be determined by the one Q-bit, which is termed the Q-seed.

The state of the Q-bit (Ψ) is defined by:

Ψ =
n
∪

j=1
|ψj(t)} = [αj β j]

T

j = 1, 2, · · · , n
(2)

In Equation (2), α and β characterize the arbitrary integers that characterize the state
possibility. |α|2 and |β|2 correspondingly show the possibility that the Q-bit |ψ} depends
on “0” and “1” states. Afterward, they fulfil the relationship |α|2 + |β|2 = 1. Initially, the
mediocrity of range [0, 1] is selected as the first population.

ψ1 =
1√
2

[
1 1

]
(3)

After initialization, the arbitrarily generated seed is normalized within zero and one:

|ψ〉[0,1] =
|ψ〉−min(|ψ〉)

Max(|ψ〉 )−min(|ψ〉) (4)

The max (|ψ〉) and min (|ψ} correspondingly signify the maximal and minimal limits.
In the presented technique, to produce the Q-seed, every individual was accomplished:{

αj(t) = rand∣∣αj(t)
∣∣2+∣∣β j(t)

∣∣2 = 1

}
⇒

∣∣β j(t)
∣∣ = √1−

∣∣αj(t)
∣∣2 ⇒

β j(t) > 0&αj(t) > 0

∴ β j(t) =
√

1− αj(t)2

(5)

In the FS mechanism, once the size of the feature vector refers to N, the sum of the
combination of dissimilar features is likely to become 2N , which is an enormous space for
a comprehensive search. The presented hybrid technique was employed to dynamically
search the feature space and produce an accurate combination of features. The FS fell
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within the multi-objective problems because it fulfilled more than one objective to obtain a
better solution, which decreased the group of selected features and concurrently decreased
the performance of the output for the given classifier.

As aforesaid, the fitness function determines solutions in these scenarios to accomplish
a balance amongst those objectives.

itness = α∆R(D) + β
|Y|
|T| (6)

In Equation (6), ∆R(D) characterizes the classification error rate. |Y| represents the
size of the subset that the process chooses and |T| is the total quantity of the features
encompassed in the current dataset. α correspondingly shows the parameter ∈ [0, 1]
regarding the weight of the classification error rate and β = 1− α indicates the significance
of the reduction.

3.2. Intrusion Detection Process

For the intrusion detection, the MMLCS-UAV technique applied SSO to the WRELM
model. The WRELM was introduced to enhance the standard extreme learning machine
(ELM) and determine the optimum weight for all the instances [30]. We assumed that
N was a hidden node from the ELM and sample pairs {Xi, Pi}; the resulting ELM was
formulated by Equation (7):

f (Xi) =
N

∑
n=1

αnH(ϕn, Xi, bn), i = 1, 2, . . . , N, (7)

where H(·) symbolizes the activation functions, ϕn indicates the input weight vector,
αn implies the nth resulting in weight, and bn denotes the equivalent bias.

P̃ = Hα =


H(ϕ1, X1, b1) H(ϕ2, X1, b2) · · · H(ϕN , X1, bN)
H(ϕ1, X2, b1) H(ϕ2, X2, b2) · · · H(ϕN , X2, bN)

...
...

...
...

H(ϕ1, XN , b1) H(ϕ2, XN , b2) · · · H(ϕN , XN , bN)

·α, (8)

Here, P̃ refers to the resulting vector.
To obtain the assessment of the α parameter, the major function was exploited by:

argmin ‖P̃− P‖2
2 = argmin ‖Hα− P‖2

2, (9)

In Equation (9), P denotes the observation data. The weight-regularized ELM is
formulated by [31,32]:

arg min C‖σε‖2
2 + ‖α‖

2
2 (10)

Dependent on the state:

P = Hα + ε (11)

In Equation (10), σ refers to the diagonal matrix, ε signifies the vector of regression
error, and C epitomizes the regularized term. The Lagrange multiplier was introduced to
resolve the abovementioned problem, and the corresponding solution to α is shown below:

α = (H′σ2H +
I
C
)−1H′σ2P (12)

The SSO approach was utilized to adjust the parameters related to the WRELM model.
A major role of the SSO approach was energized by swallow swarm optimization [21].
There exists three diversities of particles; namely:

• An aimless particle (oi);
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• A leader particle (li);
• An explorer particle (ei).

Every particle from the colony (each colony had a subcolony) was accountable for the
whole performance; they guided the colony nearer to the optimal condition. The explorer
particles included the population of the colony. First, it was responsible to explore the
search space [33]. By properly achieving an extreme point, a varying sound guided the
group near the location; when the location was led one from problem space, then these
particles played as the head leader (HLi). When the particles were at a favorable location
similar to the adjacent particles, it was selected as the local leader (LLi); otherwise, every
particle ei with respect to VLLi (velocity vector of the particles near to the LL), VHLi (velocity
vector of the particle near to the HL), and the ability of backlash of these two bearings
produced indiscriminative changes.

An aimless particle then started from the search condition, which did not have an
optimal location, and the count of f (oi) was poor; they had arbitrary and exploratory
searches. It began to arbitrarily move and did not have anything implemented with the
location of HLi and LLi. In addition, there existed a particle from the SSO approach that
was named the leader. The optimal leader, termed LH, was realized as a common leader in
the colony. There also existed another particle, termed the LL [34,35].

VHLi+1 = VHLi + αHL rand()(ebest − ei) + βHLrand()(HLi − ei) (13)

VLLi+1 = VLLi + αLLrand()(ebest − ei) + βLLrand()(LLi − ei) (14)

where VHL = Velocity of the HL, VLL = velocity of the LL, ebest = better location of the
explorer particle, and ei → presents the location of the explorer particle:

Vi+1 = VHLi+1 + VLLi+1 (15)

The particle values were upgraded by:

ei+1 = ei + Vi+1 (16)

In order to attain improvised classifier results, the SSO algorithm derived a fitness
function as given below.

f itness(xi) = Classi f ierErrorRate(xi) =
number o f misclassi f ied samples

Total number o f samples
∗ 100 (17)

4. Performance Validation

In this section, the performance validation of the MMLCS-UAV technique is briefly
investigated. Figure 2 depicts the confusion matrices of the MMLCS-UAV method. The
results indicated that the MMLCS-UAV approach properly recognized all the attacks that
existed in the dataset.

Table 1 offers the overall cybersecurity performance of the MMLCS-UAV technique on
80% of the training (TR) data and 20% of the testing (TS) data. Figure 3 reports an average
classification outcome of the MMLCS-UAV methodology on 80% of the TR data. The results
exhibited that the MMLCS-UAV method showed the maximum performance in each class.
It was noticed that the MMLCS-UAV system attained an average accuy of 99.37%, precn
of 98.11%, recal of 98.11%, Fscore of 98.11%, and a Matthew’s correlation coefficient (MCC)
of 97.73%.
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Table 1. Overall results of MMLCS-UAV model on 80:20 of TR/TS data.

Class Accuy Precn Recal Fscore MCC

Training Phase (80%)

Botnet 99.24 97.01 98.40 97.70 97.25
Dos 99.69 99.25 98.92 99.09 98.90
Web 99.42 98.09 98.42 98.26 97.91

Infilteration 99.25 97.41 98.07 97.74 97.29
BruteForce 99.22 97.79 97.46 97.62 97.16

DDos 99.40 99.09 97.41 98.24 97.89
Average 99.37 98.11 98.11 98.11 97.73

Testing Phase (20%)

Botnet 99.50 98.10 99.04 98.56 98.26
Dos 99.72 98.98 99.32 99.15 98.98
Web 99.44 98.00 98.66 98.33 98.00

Infilteration 99.50 98.71 98.39 98.55 98.24
BruteForce 99.50 99.06 98.13 98.59 98.29

DDos 99.78 99.62 98.87 99.25 99.12
Average 99.57 98.74 98.73 98.74 98.48
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Figure 4 portrays the average classification outcomes of the MMLCS-UAV technique
on 20% of the TS data. The results exhibited that the MMLCS-UAV method displayed the
maximum performance in each class. Note that the MMLCS-UAV methodology gained
an average accuy of 99.57%, precn of 98.74%, recal of 98.73%, Fscore of 98.74%, and MCC
of 98.48%.
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Table 2 presents the overall cybersecurity performance of the MMLCS-UAV technique
on 70% of the TR data and 30% of the TS data. Figure 5 shows the average classification
outcomes of the MMLCS-UAV approach on 70% of the TR data. The outcomes displayed
that the MMLCS-UAV approach exposed the maximum performance for each class. It was
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noted that the MMLCS-UAV method achieved an average accuy of 99.43%, precn of 98.30%,
recal of 98.30%, Fscore of 98.30%, and MCC of 97.96%.

Table 2. Overall results of MMLCS-UAV model on 70:30 of TR/TS data.

Class Accuy Precn Recal Fscore MCC

Training Phase (70%)

Botnet 99.37 97.98 98.17 98.07 97.69
Dos 99.32 98.08 97.79 97.94 97.53
Web 99.38 98.36 97.89 98.12 97.75

Infilteration 99.44 97.97 98.79 98.38 98.05
BruteForce 99.44 98.17 98.45 98.31 97.98

DDos 99.65 99.25 98.69 98.97 98.76
Average 99.43 98.30 98.30 98.30 97.96

Testing Phase (30%)

Botnet 99.70 99.14 99.14 99.14 98.96
Dos 99.52 98.90 98.25 98.57 98.28
Web 99.78 98.92 99.78 99.35 99.22

Infilteration 99.48 98.12 98.58 98.35 98.04
BruteForce 99.59 99.35 98.29 98.82 98.57

DDos 99.48 98.15 98.61 98.38 98.07
Average 99.59 98.76 98.77 98.77 98.52
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Figure 6 exhibits the average classification outcome of the MMLCS-UAV model on
30% of the TS data. The outcome exhibited that the MMLCS-UAV technique showed
the maximum performance in each class. It was noticed that the MMLCS-UAV method
achieved an average accuy of 99.59%, precn of 98.76%, recal of 98.77%, Fscore of 98.77%, and
MCC of 98.52%.
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In Table 3, a comparison study of the MMLCS-UAV technique with existing ap-
proaches [21,24] such as a genetic algorithm with DBN (GA-DBN), a butterfly optimization
algorithm with DBN (BOA-DBN), k-nearest neighbor (KNN), logistic regression (LR), a
linear discriminant analysis (LDA), Gaussian Naive Bayes (GNB), and decision tree (DT)
is provided. Figure 7 examines the comparative accuy examination of the MMLCS-UAV
model with other existing models. The results signified that the GA-DBN, BOA-DBN, LR,
and LDA models reached a minimal accuy of 91.76%, 91.13%, 91.65%, and 92%, respectively.

Table 3. Comparison study of MMLCS-UAV model with recent models [21,24].

Methods Accuy Precn Recal Fscore

MMLCS-UAV 99.59 98.76 98.77 98.77
GA-DBN 91.76 90.28 98.14 98.02

BOA-DBN 91.13 89.70 98.47 97.86
LR Model 91.65 90.51 98.63 96.33

LDA Model 92.00 90.89 98.41 97.19
KNN Model 97.80 97.85 95.34 95.39

DT Model 95.70 95.60 97.34 96.77
GNB Model 96.50 96.56 98.15 96.40

Meanwhile, the DT and GNB models gained closer accuy values of 95.70% and 96.50%,
respectively. Although the KNN model attained a reasonable accuy of 97.80%, the MMLCS-
UAV model ensured a maximum accuy of 99.59%.

Figure 8 inspects the comparative accuy examination of the MMLCS-UAV model
with the other existing techniques. The results signified that the KNN, DT, GA-DBN,
and GNB models reached a minimal accuy of 89.7, 90.28, 90.51, and 90.89%, respectively.
Meanwhile, the LDA and BOA-DBN methods obtained closer accuy values of 95.6 and
96.56%, respectively. Although the LR approach attained a reasonable accuy of 97.85%, the
MMLCS-UAV method ensured a maximum accuy of 98.76%.
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Figure 9 portrays the comparative accuy examination of the MMLCS-UAV approach
with the other existing techniques. The results signified that the KNN, DT, GA-DBN,
and GNB models reached a minimal accuy of 95.34, 97.34, 98.14, and 98.15%, respectively.
Simultaneously, the LDA and BOA-DBN methods achieved closer accuy values of 98.41
and 98.47%, respectively. Although the LR method attained a reasonable accuy of 98.63%,
the MMLCS-UAV algorithm ensured a maximum accuy of 98.77%.
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Figure 10 displays the comparative accuy inspection of the MMLCS-UAV method with
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In the meantime, the LDA and BOA-DBN techniques reached closer accuy values of
97.19 and 97.86%, respectively. Although the LR technique reached a reasonable accuy of
98.02%, the MMLCS-UAV method ensured a maximum accuy of 98.77%. These results
highlighted the supreme performance of the MMLCS-UAV model.
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5. Conclusions

In this article, a new MMLCS-UAV technique was developed to accomplish cyberse-
curity in UAV networks. The presented MMLCS-UAV technique mainly focused on the
recognition and classification of intrusions in a UAV network. To obtain this, the presented
MMLCS-UAV technique introduced a new QIWO-FS technique to select the optimal feature
subsets. For intrusion detection, the MMLCS-UAV technique applied SSO to the WRELM
model. The design of the QIWO algorithm and SSO algorithm helped to accomplish an
enhanced classification performance. A widespread comparison study reported the su-
periority of the MMLCS-UAV technique over other existing approaches, with a highest
accuracy of 99.59%, precision of 98.76%, recall of 98.77%, and F-score of 98.77%. Thus,
the presented MMLCS-UAV technique could be employed for maximum cybersecurity in
UAV networks. In the future, deep learning-based classifiers can be introduced to improve
secure UAV communications. Moreover, the proposed algorithm could be tested on a
large-scale real-time dataset. Additionally, data clustering techniques could be involved to
improve the classification performance and security of UAV networks.
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