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Abstract: Successive applications of compost obtained from tannery sludge affected the soil microbial
biomass and activity. However, the effect of this practice on the temporal stability of soil microbial
properties is not known. This study evaluated the temporal stability of microbial biomass, respiration,
and enzymes activities in soil with successive applications of compost obtained from tannery sludge.
Soil samples (0–10 cm depth) were collected from sites with successive application of compost at the
lowest (2.5 ton/ha) and highest (20 ton/ha) rates, including the control (0 ton/ha). Soil microbial
biomass carbon (MBC) and nitrogen (MBN), respiration, dehydrogenase, and urease activities were
evaluated at 0, 30-, 60-, 90-, and 150-days post-application. The soil microbial properties varied
as per treatments and sampling time. The principal response curve showed higher variation of
soil microbial properties in the treatment having highest rate of compost. This analysis showed
dehydrogenase, urease, and MBC as the most responsive parameters. The temporal stability of soil
microbial parameters showed highest values at the lowest rate of compost. This study showed that
the successive application of compost contributed to a decrease in variation and increase in temporal
stability of soil microbial properties at the lowest rate.

Keywords: metal contamination; soil microbial biomass; soil enzyme activities; waste management

1. Introduction

Tannery sludge is a solid waste generated by tanning industries that has been recom-
mended to be applied in soils. Its successive application causes modification in the soil
properties, mainly increasing soil pH, organic C, and chromium (Cr) content [1–3]. On the
one hand, the increase in organic C improves soil properties, e.g., promoting better soil
structuration, particle size, aeration, soil fertility and health [4]. On the other hand, high
soil pH decreases the availability of nutrients [5], while Cr accumulation negatively affects
the soil’s microbial properties [6].

Regarding the effect of successive application of tannery sludge on soil microbial
properties, more attention has been placed on soil microbial biomass [1], while no attention
is paid to the effect of tannery sludge on temporal stability of soil microbial properties. The
temporal stability of microbial properties is an important measurement for understanding
context-specific responses of soil microbes to any disturbances [7], and greater temporal

Sustainability 2022, 14, 16736. https://doi.org/10.3390/su142416736 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su142416736
https://doi.org/10.3390/su142416736
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-2797-5022
https://orcid.org/0000-0001-9402-3243
https://orcid.org/0000-0002-0898-0774
https://orcid.org/0000-0002-2643-9623
https://doi.org/10.3390/su142416736
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su142416736?type=check_update&version=1


Sustainability 2022, 14, 16736 2 of 8

stability of microbial properties indicates higher soil functionality and resilience [8]. Ac-
cording to Atlas et al. [9], higher temporal stability can also confer to soils an increased
buffering capacity to support disturbance.

However, studies evaluating the temporal stability of soil microbial properties have
mostly focused on land-use [10]. For example, Araujo et al. [11] assessed the temporal sta-
bility of microbial properties by comparing native and degraded lands, and they observed
more temporally stable microbial properties on native land. Recently, Kostin et al. [10]
assessed the temporal stability of microbial properties by comparing land-use types and
degree of intensification, and they found higher stability in both extensive meadows and
pasture than cropland. There is no study to date comparing the effect of solid wastes, and
particularly tannery sludge, on the temporal stability of soil microbial properties.

In Brazil, a long-term study has evaluated the successive application of compost
obtained from tannery sludge on soil properties, mainly microbial biomass [11]. The results
from ten years of application have shown increased soil pH, organic C, and Cr in soil [1]. It
is known that these soil properties are important drivers of soil microbial properties. Here,
we hypothesized that these changes in soil pH, organic C, and Cr in soils with successive
applications of compost obtained from tannery sludge could affect the temporal stability of
microbial properties. Thus, this study evaluates the temporal stability of microbial biomass,
respiration, and enzyme activities in soil with successive applications of compost obtained
from tannery sludge.

2. Materials and Methods

In this long-term study [1], a compost obtained from tannery sludge was successively
applied in a soil (Fluvisol) for twelve years at five rates (0, 2.5, 5, 10, and 20 ton/ha). The
compost was produced by mixing tannery sludge with sugarcane straw and cattle manure
(ratio 1:3:1; v:v:v), and the composting was performed using the aerated-pile method for
90 days. The compost presents the following chemical composition: pH ≈ 8.5, organic
C ≈ 187 g/kg, N ≈ 1.7 g/kg, P ≈ 4.0 g/kg, K ≈ 3.3 g/kg, Ca ≈ 95.3 g/kg, Mg ≈ 6.8 g/kg,
S ≈ 9.4 g/kg, and Cr ≈ 1815 mg/kg. This compost was amended into a field soil (0–10 cm)
in all years, and its composition was assured regularly by laboratory analysis. In the twelfth
year (2021), soil samples were collected monthly (0–10 cm depth) for 150 days (0, 30, 60, 90,
and 150 days). In this study, we collected soil samples from the lowest (2.5 ton/ha) and
highest (20 ton/ha) rates of compost, including the control (0 ton/ha). At each sampling
time, temperature and moisture were estimated using a soil thermometer and moisture
meter, respectively (Figure 1).
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Figure 1. Variation of soil temperature and moisture for 150 days.

In addition, soil pH, organic C [12], and Cr concentration [13] were analyzed in all
soil samples (Table 1). Soil microbial biomass C (MBC) and N (MBN) were determined
according to Brookes et al. [14] with extraction of C and N from fumigated and unfumi-
gated soils by K2SO4. An extraction efficiency coefficient of 0.38 and 0.45 were used to
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convert the difference in C and N between fumigated and unfumigated soil in MBC and
MBN, respectively. Soil respiration (SR) was determined according to Alef and Nannip-
ieri [15]. The respiratory quotient (qR) was estimated as the ratio between SR and MBC.
Dehydrogenase (DHA) activity was determined according to Casida et al. [16] based on
the spectrophotometric analysis of triphenyl tetrazolium formazan released by 5 g of soil
after 24 h of incubation at 35 ◦C. Urease (URE) was measured using urea with the method
developed by Kandeler and Gerber [17] using urea as substrate under incubation (1 h;
37 ◦C). The amount of ammonium produced was measured spectrophotometrically at
660 nm.

Table 1. Soil pH, organic C, and Cr content after twelve years of compost amendment.

Treatment Soil pH
(H2O)

Organic C
(g kg−1)

Cr Content
(mg kg−1)

0 Mg ha−1 6.3 8.7 2.5
2.5 Mg ha−1 7.8 21.5 24.9
20 Mg ha−1 8.9 41.8 158.1

Two-way split-plot ANOVA was used to test the effects of treatments, evaluation time,
and their interaction on the soil’s microbial properties. Treatments were considered as plots
and the evaluation time as subplots. Data for MBN, qR, and urease were transformed into
square root when normality of errors was not indicated by the Shapiro–Wilk test and ho-
mogeneous variance by the Bartlett test (Bartlett’s K-squared). Tukey’s tests (p < 0.05) were
used for comparisons following ANOVAs, where appropriate. Analyses were conducted
using R v 4.1.3 (R Core Team).

The principal response curve (PRC) [18,19] was used to show the temporal changes
in microbial properties influenced by treatments as compared to the control (0 ton/ha) in
one diagram and to quantify the contribution of each microbial property to the indicated
differences between the treatments and the control. To make all parameters mathemat-
ically equally important in the analysis, they were standardized to zero mean and unit
variance before analysis. Monte Carlo permutation tests were used to verify if the variation
explained by the PRC diagrams, and the differences between treatments shown in the PRC
diagram are significant [18]. The PRC was performed using CANOCO (version 5.3) [20].
The temporal stability of soil microbial properties was calculated as log10 coefficient of
variance−1 (coefficient of variance = standard deviation/mean × 100) [21] and tested
treatment effects using one-factorial ANOVA.

3. Results and Discussion

The soil’s microbial properties varied according to treatments and the evaluation time
(Figure 2). In the control and at the lowest rate of compost, MBC increased during the first
30 days and decreased at 60 days (Figure 2A). However, MBC increased again after 60 days.
In contrast, at the highest rate of compost, MBC did not vary along 90 days and decreased
at 150 days. In treatments with compost (lowest and highest rates), soil MBN showed
highest values at the beginning (0 day) and decreased significantly at 30 days, maintaining
low values over time (Figure 2B).

Soil respiration varied over time in treatments containing compost, while it maintained
similar in the control (Figure 2C). However, in all treatments, the soil respiration increased
at 150 days of evaluation. The respiratory quotient showed high variation over time in all
treatments (Figure 2D). Comparing the lowest and highest rate of compost, the respiratory
quotient presented lower values at the lowest rate and decreased over time. In contrast,
the respiratory quotient increased over time at the highest rate of compost. Comparing
treatments with compost, the activity of dehydrogenase showed lowest variation at the
lowest rate of compost (Figure 2E). The activity of urease enzyme increased from 0 to
30 and 60 days, respectively, in all treatments, and decreased at 150 days, with the decrease
being larger for the treatments with compost (Figure 2F).
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We used a PRC analysis to show the variation of soil microbial properties according to
treatments over time. As shown in Figure 3, the soil’s microbial properties significantly
varied over time in the treatment with the highest rate of compost, while the treatment
with the lowest rate presented a lower variation. This PRC showed dehydrogenase, urease,
and MBC as the most responsive parameters.
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The temporal stability of soil microbial parameters showed distinct responses compar-
ing treatments, mainly those with compost (Figure 4). Thus, the highest temporal stability
of soil microbial parameters was found at the control and lowest rate of compost.
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This study assessed the impact of successive application of compost obtained from
tannery sludge on temporal stability of soil microbial properties. Previous studies have
shown that a decade of successive and permanent application of this compost changed
the soil’s chemical and microbial properties [1,22]. Positively, the application of compost
significantly increased the soil organic C; while negatively, it promoted high soil pH
and accumulation of Cr in soil (Table 1). Thus, this study addressed the hypothesis that
these distinct chemical properties, i.e., soil organic C, pH, and Cr content, which found in
soils under application of compost could influence the temporal stability of soil microbial
properties. It is known that soil organic C conditions increase the stability of soil properties,
mainly physical properties [23]. Particularly, soil organic C supports microbial biomass
and the production of soil enzyme activity [24]. Thus, increased content of organic C after
application of compost is very important for improving soil microbial properties, i.e., MBC,
MBN, and soil enzyme activities. In contrast, high soil pH and accumulation of Cr can
decrease the stability of soil microbial properties [25,26]. Based on these assumptions, our
results have shown that although soil organic C increased at the highest rate of compost,
it was not enough to promote the stability of soil microbial properties due to higher soil
pH and Cr. On the other hand, the application of the lowest rate of compost increased soil
organic C but promoted lower soil pH and accumulated less Cr content, which promotes
higher stability of soil microbial properties. It could be possible to suggest that the lowest
rate of compost promotes a buffering of microclimatic variations, for instance of soil
temperature and moisture. Therefore, the soil’s microbial properties, under application of
the lowest rate of compost, seem to be less affected by environmental conditions.

Microbial C shows distinct responses with treatments and time as compared to micro-
bial N (Figure 2A,B). In general, the microbial C increases over time in the treatment of the
lowest rate of compost (Figure 2A). It differed from the responses of microbial C observed in
the treatment with the highest rate of compost, in which there was a decreasing in microbial
C over time. Microbial biomass C is the most active pool of soil organic matter [27], and
the efficient use of C by microbes for increasing their biomass C, which is influenced by
high soil pH and metals [28]. Thus, the higher pH and accumulation of Cr in soil under
the highest rate of compost can contribute to decrease incorporation of C by microbes.
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Indeed, Cr presents an inhibitory effect on C incorporation by microbes and this effect
is concentration-dependent [29]. On the other hand, soil pH is an important driver that
affects the efficiency of accumulating C into microbial biomass [25]. Therefore, increased
soil pH and accumulation of Cr, after application of compost, contributed to lower MBC.
On the other hand, microbial N showed similar responses in all treatments over time, which
suggests no effect of chemical properties on this microbial pool (Figure 2B).

In general, the soil respiration increased at the end of the evaluation (Figure 2C),
and it can be attributed to changes in microclimatic conditions, such as temperature
and moisture observed in soils at 0 to 150 days of evaluation. As shown in Table 1,
the soil temperature decreased, while moisture increased from 0 to 150 days of evaluation.
However, we observed a variation in the soil respiration comparing the lowest and highest
rates of compost. This can be explained by differences between soil organic C content
found in these treatments. Several soil properties influence the soil respiration, being
moisture, temperature, and organic C content, which are the most important soil factors [23].
In particular, soil temperature and moisture are important factors influencing microbial
activity acting on organic C [29,30]. The respiratory quotient also varied according to
treatments over time (Figure 2D). However, the comparing treatments with compost, the
respiratory quotient decreases at the lowest rate of compost, while it increases at the highest
rate of compost. These results confirm the effect of treatments on the efficiency in using
C by microbes as observed in soil microbial biomass C. The use of C can be partitioned
between incorporation (biomass) or losses (respiration) of C by microbes [31]. Thus, higher
respiratory quotient, which represents losses of C from microbial biomass [32], means a
decreased efficiency in using C by microbes. Thus, the highest rate of compost applied
successively for years contributed to decreasing the efficiency of microbes to incorporate C
into biomass.

The activity of dehydrogenase presented low variation in treatment with the lowest
rate of compost (Figure 2E). In contrast, urease activity showed the same responses to both
treatments with compost (Figure 2F). Comparing both enzymes, dehydrogenase is more
sensitive to soil disturbance, mainly by metals [33]. Dehydrogenase is well-known as a
sensitive indicator of microbial activity and is linked with microbial metabolisms [34]. Thus,
the accumulation of Cr in the soil contributed to decrease soil microbial activity as also
reported by Stêpniewska and Woliñska [35], who observed a reduction of dehydrogenase
activity in soil with high content of Cr and a decrease in the oxidative capacity of the soil.
In particular, Lukowski and Dec [36] found dehydrogenase more sensitive than urease to
Cr contamination. Therefore, our results agree with these previous studies, which observed
dehydrogenase more affected in treatment with high accumulation of Cr.

4. Conclusions

The present study represents the temporal stability of soil microbial biomass C and
N, soil respiration, and soil enzyme activities (e.g., dehydrogenase and urease) in soil
with continuous applications of compost from tannery sludge. The increased content
of organic C after application of compost showed increased soil microbial properties,
i.e., MBC, MBN, and soil enzyme activities. The increasing compost treatments as per
time duration promotes soil pH and accumulation of chromium in soils, which affect soil
microbial activities. Therefore, the compost application should be decreased in such way
that the microbial stability for increasing soil fertility and health is maintained. As per the
present study, the soil’s microclimate variations such as moisture, temperature, pH, and
Cr contamination showed more impact on soil microbial properties, i.e., MBC, MBN, and
soil enzyme activities. The temporal stability of soil microbial parameters showed highest
values at the lowest rate of compost. This study showed that the successive application of
compost at the lowest rate contributed for decreasing variation and increasing temporal
stability of soil microbial properties. In addition, this study suggests the evaluation and
monitoring of Cr content in soils with amendment of tannery sludge since this metal could
impact the soil’s quality and human health.
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