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Abstract: DC microgrid systems allow commercial buildings to use locally generated energy and
achieve an optimal economy efficiently. Economical and eco‑friendly energy can be achieved by
employing renewable energy sources. However, additional controllable sources, such as fuel cells,
are required because of their reduced efficiency and fluctuated nature. This microgrid can use en‑
ergy storage systems to supply transient power and enhance stability. The functioning of the micro‑
grid and its efficiency are related to the implemented energy management strategy. In this paper, a
comparison of several reported energy management strategies is fulfilled. The considered EMSs in‑
clude the fuzzy logic control (FLC) strategy, the state machine control (SMC) strategy, the equivalent
consumption minimization strategy (ECMS), and external energy maximization strategy (EEMS).
These strategies are compared in terms of power‑saving, system efficiency, and power quality spec‑
ifications. The overall results confirm the ability of EEMS (high efficiency of 84.91% and economic
power‑saving 6.11%) and SMC (efficiency of 84.18% with high power‑saving 5.07%) for stationary
applications, such as building commercial applications. These strategies provide other advantages,
which are discussed in detail in this paper.

Keywords: energymanagement strategies; DCmicrogrids; energy efficiency; photovoltaic; fuel cells

1. Introduction
In recent years, numerous factors have caused an increase in energy consumption, mo‑

tivatingmany countries to create adaptable, sustainable, affordable energy solutions [1]. In
addition, the transition to clean alternative energy is required to avoid impending environ‑
mental and economic catastrophes [2]. The new energy paradigm is predicated on shifting
the present power system’s dependence on traditional fossil‑based energy resources to an
energy mix, mainly comprised of renewable energy resources (RESs) [3]. However, in‑
corporating new RESs can bring technical and economic challenges, such as stability and
financial profitability [4]. The microgrid concept based on advanced control and manage‑
ment technologies is the most promising solution to these issues [5]. Microgrids are a set
of power sources (also called distributed generators (DGs)), including renewables, storage
systems, and loads connected with control and management systems. These microgrids
can be connected to the utility grid at various power and voltage levels using electronic
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converters [6]. DGs may often deliver reduced generating costs, improved dependabil‑
ity, and increased security that traditional generators cannot. This technology expands
the possibilities for efficient electric power generation, transportation, and distribution [7].
Microgrids based on RESs are located near final users to reduce transportation losses. In
addition, they help reduce greenhouse gas emissions and ensure power supply during the
utility grid outage [8]. Moreover, this type of power system provides an uninterrupted
power supply (UPS) and is appropriate for rural and isolated arias, islands, and military
applications [9]. Optimal EMS, based on the salp swarm algorithm (SSA), has been pro‑
posed in [10]. A techno‑economic multi‑level EMS for commercial buildings has been
suggested in [11]. In this paper, the bald eagle search algorithm (BES) has been used to
address operating cost minimization. An adaptive fuzzy logic controller (AFLC) has been
implemented as an EMS for a DC microgrid [12], where the adaption mechanism is based
on metaheuristic optimization algorithms.

Most of the previouslymentioned EMSs have been designed for electric vehicles (EVs)
and off‑grid applications. Updated versions of these strategies are utilized in this paper.
The novelty is to modify these strategies to respond to the energy requirements of a com‑
mercial building under the grid‑connected mode. The building’s power system, repre‑
sented in Figure 1, is based on a DC microgrid, including two sources: a photovoltaic
generation unit (PV) and a fuel cell system (FC), a battery storage system, and an AC/DC
grid‑connection converter. Then, a comparative study between the pre‑mentioned EMSs is
carried out to evaluate the performance of each one in terms of efficiency, energy consump‑
tion, final storage system SoC and power quality. Themain contributions of this paper can
be presented as follows:
• Design‑updated EMSs based on the pre‑mentioned conventional EMS: FLC, SMC,

ECMS, and EEMS for stationary applications such as commercial building
power systems.

• Evaluate the performance of each one of the proposed EMS.
• Realization of comparative study in terms of the power‑saving, system efficiency, and

power quality specifications.
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Figure 1. The architecture of the proposed DC microgrid, where all the power sources are connected 
to the DC bus using their converters. 
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2. Building Power SystemModeling
2.1. Power System Description

In contrast to the alternating current (AC) building power systems that incorporate
photovoltaics and DC loads, direct current (DC) power systems with modern power elec‑
tronics can reduce much of the power conversion loss. According to the literature, DC
microgrids can save up to 15% of electricity in buildings [13], where 308 V infrastructure
microgrid voltage is the standard value [14]. The structure of the studied building’s power
system is illustrated in Figure 1. A fuel cell system, a photovoltaic array, and a Lithium‑ion
battery storage system mainly electrify the building. The microgrid can be connected to
the utility grid through a bidirectional DC/AC converter. These sources are connected to
the 380 V bus using their static converters.

2.2. Modeling of PV Array
Installing solar PV on commercial roofs would make good economic sense, minimiz‑

ing carbon emissions and allowing unused rooftop space to be used. A single‑diode equiv‑
alent circuit model is presented in Figure 2. According to [15], using the Kirchhoff Law,
the governing equation of this equivalent circuit is:
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where q is the elementary charge (1.602 × 10−13 C); Tc represents the cell temperature in K; 
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Figure 2. PV equivalent circuit. 

The photocurrent is expressed as: 

 ph SC c refI I T T       (3)

(1)

where Iph, Id, and Ir are the photocurrent, the diode, and the shunt resistance currents,
respectively; n represents the ideality factor; I0 is the saturation current; Rs and Rsh are
the series and parallel equivalent resistant; and Vth donates the thermal voltage provided,
as follows:

Vth =
k·Tc

q
(2)

where q is the elementary charge (1.602 × 10−13 C); Tc represents the cell temperature in
K; and k is the Boltzmann constant (1.381 × 10−23 J/K).
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The photocurrent is expressed as:

Iph =
[

ISC − α
(

Tc − Tre f

)]
λ (3)

where ISC is the short circuit current in A; Tref represents the measured and reference tem‑
perature in K; α is the temperature coefficient; and λ is the radiance value in kW/m2. There‑
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fore, the equation of current delivered by the PV array given in function of the number of
cells in series NS and parallel NP can be written as:

I = Iph − I0

[
e

Vout+Iout ·NS ·RS
n·NS ·Vth − 1

]
− Vout + Iout·NS·RS

Rsh·NS
(4)

where Vout and Iout are the output voltage and current, respectively.

2.3. Battery Description and Modeling
Electrochemistry is employed to address the issue of intermittent renewable energy

generation, as well as the sluggish dynamics of the fuel cell. The battery storage device is
deployed to reduce the peak load power of the commercial building. At present, there are
several types of batteries commercialized. Table 1 includes the technical information for
the most popular varieties [16].

Table 1. Batteries’ characteristics.

Unit Lead‑Acid Nickel‑Metal Nickel‑Cadmium Lithium‑Ion

Cell voltage V 2 1.25 1.25 3.6

Energy density Wh/Kg 30–50 60–120 45–80 110–160

Power density W/Kg 180 250–1000 150 1800

Overcharge/deep‑discharge tolerance Not tolerant Good Moderate Excellent

Self‑discharge rate Low High Moderate Neglected

Number of cycles 200–300 300–500 1500 500–1000

The model used in this study is a lithium‑ion based on the Thevenin model [17], illus‑
trated in Figure 3. This model is one of the most common battery models. It is based on
an internal resistance model used in Matlab with a parallel RC network. It consists mainly
of three components: the open‑circuit voltage Uoc, the internal resistances, and equivalent
capacitances. The internal resistances combine the ohmic resistance R0 and the polariza‑
tion resistance RTh. The equivalent capacitance CTh defines the battery dynamics during
charging and discharging. UTh is the voltage across CTh.
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The source of the voltage is defined as:

UB = Uoc − R0·IB − UTh.
UTh = − UTh

RTh ·CTh
+ IB

CTh

(5)
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2.4. SOFC Description and Modeling
As reported in [18], Solid Oxide Fuel Cells (SOFCs) have excellent characteristics,

deeming them the most convenient choice for stationary applications. In a SOFC, the
electrolyte separates the two electrodes, creating two boundary layers. The polarization
effect can charge these layers, identified as the electrochemical double‑layer charging ef‑
fect [19]. According to [20], the SOFC single‑cell model, based on its V‑I and P‑I character‑
istics curves (Figure 4), is given as:

UFC,cell = Uoc − Uact − Ucons − Uohm (6)

where Uoc presents the open‑circuit voltage; Uact is the activation voltage loss; Ucons is the
concentration voltage loss; and Uohm is the ohmic voltage loss.

1 
 

 Figure 4. V‑I and P‑I characteristics curves.

According to [21], the open‑circuit voltage and the losses voltage are given as:

Uoc = U0 +
RT
2F

ln

[
PH2 ·P0.5

O2

PH2O

]
(7)

where R and F express the universal gas constant (8:314 KJ (mol·K)−1) and Faraday con‑
stant (96,486 $C·mol−1), respectively. PH2, PO2, and PH2O are the partial pressures of hy‑
drogen, oxygen, andwater. T is the cell’s temperature. E0 represents the standardpotential
can be calculated as follows [22]:

U0 = Estd +
∆s
nF

(T − 298) (8)

where Estd is the voltage value under the standard conditions; n represents the number
of electrons transported for each fuel molecule involved in the reaction; and ∆s denotes
entropy change.
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The partial pressures of hydrogen, oxygen, and water formulas are reported
as follows:

PH2 =
kH2

−1

1 + s·τH2

(qin
H2

− 2·kr·I) (9)

PO2 =
kO2

−1

1 + s·τO2

(qin
O2

− kr·I) (10)

PH2O =
kH2O

−1

1 + s·τH2O
(2·kr·I) (11)

where τH2, τO2, and τH2O are the hydrogen, oxygen, and water dynamic constants; kr is a
constant that represents the reaction molar flow rate at the anode.

The activation losses can be represented using the Butler‑Volmer equation [23],
as follows:

Uact = 2·R·T
z·F sinh−1

(
I

2·I0

)
= A·sinh−1

(
I

2·I0

) (12)

where z presents the number of moles of electrons and I0 denotes the density of the ex‑
change current, which can be expressed as:

I0 = k1·T·e
−k2

T (13)

where k1 and k2 are empirical constants that express the apparent exchange current.
The concentration voltage loss can be expressed as follows:

Ucons = R·T
z·F ln

(
1 − I

Imax

)
= B· ln

(
1 − I

Imax

) (14)

Imax = k3
ln(1 − Cre)

T
(15)

where Cre expresses the reactant concentration and k3 is a constant indicating the limiting
current density factor.

The ohmic voltage formula is a function of its internal resistance (Rint), which can be
presented as follows:

Uohm = Rint·I = γeδ(298−1−T−1) (16)

where γ and δ are constants.
For a fuel cell stackwithmultiple cells, the output voltage can be expressed as follows:

UFC = Ncells·UFC,cell = Ncells(Uoc − Uact − Ucons − Uohm) (17)

where Ncells express the number of cells; the operating diagram of the SOFC can be pre‑
sented in Figure 5.
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3. Energy Management Strategy
Electricity efficiency is critical for environmental, economic, and for technological ap‑

plications. As a result, developing MG energy management is critical, according to [24].
Over the last two decades, the design of energy management systems (EMSs) has piqued
the interest of the energy research community. This interest arises from the ongoing and
improved development of renewable energy systems and the optimization of EMS tech‑
nology employing sophisticated energy storage systems, according to [25].

Commercial buildings consume a large quantity of energy; thus, a robust energyman‑
agement system (EMS) is essential. The EMS has a considerable impact on the system’s
overall performance. For the investigated system, the net power (∆P) is the demanded
power by the load that is not provided by solar power. The fuel cell and batteries will be
operated under the EMS command to provide net power. The EMS must run the battery
within the authorized SoC range to prevent overcharge and deep discharge.

∆P = PLoad − PPV (18)
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On the other hand, the FC dynamics must be restricted to prevent reactant starvation.
Figure 6 depicts the global EMS systemwhere the EMS receives system state data from the
acquisition system. The control signals are generated based on these data.

Sustainability 2022, 14, 16656 8 of 22 
 

tem’s overall performance. For the investigated system, the net power (ΔP) is the de-
manded power by the load that is not provided by solar power. The fuel cell and batteries 
will be operated under the EMS command to provide net power. The EMS must run the 
battery within the authorized SoC range to prevent overcharge and deep discharge. 

Load PVP P PΔ = −  (18)

On the other hand, the FC dynamics must be restricted to prevent reactant starvation. 
Figure 6 depicts the global EMS system where the EMS receives system state data from 
the acquisition system. The control signals are generated based on these data. 

 
Figure 6. An illustration of the global EMS scheme. 

3.1. Fuzzy-Based EMS 
The first investigated EMS relies on the fuzzy logic approach to obtain the desired 

results. The PV generator operates in MPPT mode in this study, and the FC system and 
battery power are regulated by the generated references, using the fuzzy inference system 
(FIS)-based EMS. The load power, PV power, and battery SoC are the control inputs, while 
the outputs are the FC power reference, battery power reference, and utility grid power 
reference. 

Sugeno-type FIS is utilized. The membership functions are shown in Figure 7 and 
Figure 8, the output surface for the fuzzy inference system is shown in Figure 9, and the 
fuzzy roles are shown in Table 2. 

Figure 6. An illustration of the global EMS scheme.

3.1. Fuzzy‑Based EMS
The first investigated EMS relies on the fuzzy logic approach to obtain the desired

results. The PV generator operates in MPPT mode in this study, and the FC system and
battery power are regulated by the generated references, using the fuzzy inference sys‑
tem (FIS)‑based EMS. The load power, PV power, and battery SoC are the control inputs,
while the outputs are the FC power reference, battery power reference, and utility grid
power reference.

Sugeno‑type FIS is utilized. The membership functions are shown in Figures 7 and 8,
the output surface for the fuzzy inference system is shown in Figure 9, and the fuzzy roles
are shown in Table 2.
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Table 2. Fuzzy engine roles.

SoC

∆P

Very low (VL) Low (L) Nature (N) High (H) Very high (VH) Off = 0

Small (V) Max High Medium Low Off Low = 0.25

Medium (M) Max High Medium Low Off Medium = 0.5

Big (B) Max High Medium Medium Low High = 0.75

Very big (VB) Max Max High High Medium Max = 1
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The current dynamics are limited by using a first‑order filter as:

Ire f
FC =

1
τFC·s + 1

Pre f
FC

VFC
where Ire f

FC ∈ [0, Imax
FC ] (19)

where τFC has to be equivalent to or greater than the FC response constant time.
The battery power is generated using a PI controller to stabilize the DC bus voltage,

whereas the grid power is generated based on Equation (28).

3.2. Equivalent Consumption Minimization Strategy
The ECMS seeks to reduce fuel use while keeping the battery SOC within allowable

limits. The performance of the ECMS is dependent on the accuracy of the empirical com‑
putation of the related fuel consumption, as reported in [26]. The associated goal function
is to reduce:

Popt
Batt = min(CFC + β·CBatt) (20)

β = 1 − 2·µ SoC − 0.5(SoCmin + SoCmax)

SoCmin + SoCmax
(21)

where CBat expresses the battery fuel consumption according to the provided energy; µ is
a constant (0.6). This equation is subjected to:

SoCmin ≤ SoC ≤ SoCmax
Vmin

bus ≤ Vbus ≤ Vmax
bus

Pmin
FC ≤ PFC ≤ Pmax

FC

(22)

The FC output power can be calculated as follows:

Pre f
FC = ∆P − Pre f

Grid − Popt
Batt (23)

The ECMS scheme is illustrated in Figure 10.
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3.3. External Energy Maximization Strategy
The primary goal of this strategy is to supply the least amount of fuel possible while

respecting the battery and DC bus capacitor power limits [27]. Its objective function is to
maximize the energy provided by the battery and the bus capacitor, as follows:

Popt
Batt = min(∆T·PBatt + 0.5·Cbus·(∆v)2) (24)

where ∆T represents the sampling time, and ∆v represents the charge/discharge voltage.
This equation is subjected to:

PBatt ≤ (SoC − SoCmin)VBatt·QBatt

Vmin
bus − Vbus ≤ ∆v ≤ Vmax

bus − Vbus

Pcharge
Batt ≤ PBatt ≤ Pdischarge

Batt

(25)

where Vbatt and Qbatt are the battery nominal voltage and capacity; the operating scheme
of the EEMS is given in Figure 11. In contrast to Figure 10, the inputs in Figure 11 are the
net power and the bus voltage, where the used algorithm is EEMS.
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3.5. Grid Power Reference Generation
The microgrid will turn into (on‑grid) mode if the battery SoC exceeds its allowable

limits by injecting or absorbing the power from the common line. Its power reference is
given as:

Pre f
Grid = ∆P − Preq

Batt − PFC (26)

where Preq
Batt is the requiredpower by the battery tomaintain its SoC,which can be calculated

as follows:
Preq

Batt = kgrid·VBatt·QBatt (27)

where kgrid is again generated by a state machine controller. Its value depends on the bat‑
ter’s SoC, and its base roles are given as Algorithm 1:
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Algorithm 1 Utility grid connection roles

1 if SoC < SoCmin do
2 if ∆P − Pmax

FC do
3 Pre f

Grid = ∆P − PFC + (SoCmin − SoC)QBatt·VBatt
4 else
5 Pre f

Grid = (SoCmin − SoC)QBatt·VBatt
6 end
7 elseif SoC > SoCmax and ∆P < 0 do
8 Pre f

Grid = ∆P
9 elseif SoC < SoCmax and SoC > SoCmin do
10 Pre f

Grid = 0
11 end

The inverter dynamics have to be limited to protect the battery from the overcurrent
charge and to restrict the voltage from the high overshoot as follows:

Ire f
Gid =

1
τgrid·s + 1

Pre f
Grid

VBus
(28)

where τgrid is the constant time of the inverter, the operation of the grid inverter is illus‑
trated in Figure 13.
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3.6. DC Bus Stabilization
The principal role of the battery is to stabilize the DC bus voltage by regulating the

power in the commune line. In this study, a PI controller is employed to generate the
reference DC bus power, which ensures a stable voltage and satisfies the load power. The
dc bus energy Ebus can be expressed as [29]:

.
EBus = −∆P + PFC + PBatt + PGrid (29)

Therefore, the battery power reference can be obtained as a function of the dc bus
energy, as:

Pre f
Batt =

.
EBus + ∆P − PFC − PGrid (30)

The bus energy is zero at the steady state. However, its value will typically charge
depending on the difference between the reference and the measured voltage. Its value
will be generated using a PI controller, which regulates the bus energy as follow:

.
EBus = (Ere f

Bus − EBus)

(
kp +

ki
s

)
(31)

Ere f
Bus = 0.5·Vre f

Bus·CBus
EBus = 0.5·VBus·CBus

(32)

where Vre f
Bus is the bus voltage reference and CBus is the bus capacitance.
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The exchanged power must be limited to protect the battery. The maximum amount
of the delivered electrical energy should be between 10 and 20% of its total capacity. There‑
fore, the reference power can be written as:∣∣∣Pre f

Batt

∣∣∣ < VBatt·QBatt·(0.1 ∼ 0.2) (33)

The reference current can be written as:

Ire f
Batt =

Pre f
Batt

VBatt
(34)

The maximum discharge current must be lighter than 10% of the capacity, and the
maximum charge current must be smaller than 2%.

− 0.02·QBatt < Ire f
Batt < 0.1·QBatt (35)

The bus stabilization control low is illustrated in Figure 14.
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4. Results and Discussion
The power system parameters are based on those reported in [11]. In the considered

building, theDCbus voltage is set at 380 V; the fuel cellmaximumpowerwas set at 250 kW.
The used battery of 220 V 1500 Ah. Table 3 presents the power system parameters. In this
study, the min SoC is supposed to be 30%, whereas the remaining 30% is reserved for the
crucial loads in case of a blackout.

Table 3. Power System Parameters.

Parameters Value Unit

Bus voltage reference 380 V

Battery capacity 1500 Ah

Battery voltage 220 V

SoC max 90 %

SoC min 30 %

FC max output power 250 kW

To verify the performance of each EMS, a simulation was carried out in the MAT‑
LAB/Simulink framework for five days (120 h). In many papers dealing with RTO strate‑
gies, the studied load and solar power profiles are 24 h profiles, such as [30,31]. A five day
profile is chosen to validate the system performance in real time, where the chosen pro‑
file proposes different solar and load behaviors and scenarios to emulate the behavior of
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the physical system. The solar irradiance is provided in Figure 15, and the power profiles
are provided in Figure 16. In this study, two profiles for the load and the solar power are
provided by the House Load toolbox [32]. Generally, these papers take different power
profiles to demonstrate the performance of the proposed EMS under different operating
conditions. In this paper, a single profile of 120 h has different operating conditions, such
as cloudy, partially cloudy, and sunny days; the load behavior also changes to emulate the
working and the weekends.

A cloudy profile is operated, so the solar power is very fluctuating. This will affect
the battery output power responsible for stabilizing the DC bus voltage. The EMS has to
supply the net power, represented in Figure 17.

The delivered power from each source with EEMS‑, ECMS‑, SMC‑, and FLC‑based
EMS are illustrated in Figures 18–21. The recorded SoC for each strategy is illustrated
in Figure 22.

The SoC decreases much faster using ECMS and Fuzzy strategies, meaning the bat‑
tery shares more power when employing these strategies. The grid power will prevent
the battery from overcharging or deep‑discharge; however, charging/discharging cycles
will reduce the battery lifespan. Furthermore, it raises grid dependency by increasing the
demand for utility grid power. It is observed that the EEMS and SMC strategies utilize the
FC power more than the battery. The charging/discharging cycles are limited in utilizing
the strategies.

As a consequence, an extended battery lifespan is achieved. Although the EEMS are
based on the DC bus capacitance, it offers extraordinary efficiency (84.91%). The appro‑
priate choice of the SMC rules will increase its efficiency (84.18%) compared with ECMS
(76.27%) and FLC (76.30%).

1 
 

 
Figure 15. Solar irradiance profile for five days (W/m2) [32].
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The simulation result statistics are given in Table 4 and Figure 23.

Table 4. Simulation results.

Efficiency
(%)

Final SoC
(%)

FC Energy
(KWh)

Grid Energy
(KWh)

Paid Energy
(KWh)

Power
Saving (%)

EEMS 84.91 38.46 83,712 −1826 81,886 6.11

ECMS 76.27 44.15 62,070 24,199 86,270 1.83

SMC 80.18 50.20 87,175 −4380 82,794 5.07

Fuzzy 76.30 38.55 62,865 24,349 87,215 NA

The results illustrated above prove the superiority of the EEMS as a suitable strategy
for commercial buildings in terms of electrical efficiency (84.91%), power saving (6.11%),
and paid energy (81,886).

Asmentioned before, each strategy controls the battery power. Accordingly, the strat‑
egy performance will directly affect the DC bus voltage. Figure 24 shows the obtained DC
bus voltage of each strategy. Themeasurement statistics are given in Table 5 and Figure 25.
Although these results show a relatively small static error (2 V), the EEMS ensures excel‑
lent power quality. As a result of the low standard deviation (std) provided by the EEMS,
the latter will prevent the FC system and the battery from premature aging.
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Table 5. Bus voltage statistics.

Min Max Mean Median Range StD

EEMS 357 398.9 378 378.2 41.95 2.07

ECMS 346.9 405 380 380.3 58.12 4.59

SMC 320 413 380 380.2 93.16 2.54

Fuzzy 293.3 401 380 380.3 108.1 4.88
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5. Conclusions 
A comprehensive comparison of four energy management strategies is accom-

plished. These strategies include fuzzy logic control (FLC), equivalent consumption min-
imization strategy (ECMS), external energy maximization strategy (EEMS), and state ma-
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severe load and solar power fluctuations. The fundamental comparison indicators are 
overall system efficiency, power-saving, and the final SoC. The obtained results prove that 
EEMS provides optimal performance. It operates the system with an efficiency of 84.91% 
and a power-saving of 6.11%. This strategy can also ensure the power quality for the build-
ing and improve the lifespan of the power sources. The system can utilize battery safety 
with the most extended possible lifespan using the EEMS and SMC (low charging/dis-
charging cycles). In addition, the limited voltage provided by EEMS (41.95 V) gives the 
battery more safety. The reduced bus voltage (StD 2.068) ensures safe operation for the 
FC. Eventually, and from the previous analysis, the EEMS provides the most satisfactory 
performance compared to the other strategies. The results obtained showed that the EEMS 
performed better than the other studied strategies. However, optimized versions of these 
strategies may provide a superior performance, such as adaptive optimal fuzzy or salp 
swarm algorithm (SSA)-based EEMS, and so on. The performance of these strategies will 
be investigated in future works. 
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5. Conclusions
A comprehensive comparison of four energy management strategies is accomplished.

These strategies include fuzzy logic control (FLC), equivalent consumption minimization
strategy (ECMS), external energy maximization strategy (EEMS), and state machine con‑
trol (SMC). These strategies are adopted to achieve optimal performance against severe
load and solar power fluctuations. The fundamental comparison indicators are overall
system efficiency, power‑saving, and the final SoC. The obtained results prove that EEMS
provides optimal performance. It operates the system with an efficiency of 84.91% and a
power‑saving of 6.11%. This strategy can also ensure the power quality for the building
and improve the lifespan of the power sources. The system can utilize battery safety with
the most extended possible lifespan using the EEMS and SMC (low charging/discharging
cycles). In addition, the limited voltage provided by EEMS (41.95 V) gives the batterymore
safety. The reduced bus voltage (StD 2.068) ensures safe operation for the FC. Eventually,
and from the previous analysis, the EEMSprovides themost satisfactory performance com‑
pared to the other strategies. The results obtained showed that the EEMS performed bet‑
ter than the other studied strategies. However, optimized versions of these strategies may
provide a superior performance, such as adaptive optimal fuzzy or salp swarm algorithm
(SSA)‑based EEMS, and so on. The performance of these strategies will be investigated in
future works.
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