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Abstract: Identifying the causes of road traffic crashes (RTCs) and contributing factors is of utmost
importance for developing sustainable road network plans and urban transport management. Driver-
related factors are the leading causes of RTCs, and speed is claimed to be a major contributor to
crash occurrences. The results reported in the literature are mixed regarding speed-crash occurrence
causality on rural and urban roads. Even though recent studies shed some light on factors and
the direction of effects, knowledge is still insufficient to allow for specific quantifications. Thus,
this paper aimed to contribute to the analysis of speed-crash occurrence causality by identifying
the road features and traffic flow parameters leading to RTCs associated with driver errors along
an access-controlled major highway (761.6 km of Highway 15 between Taif and Medina) in Saudi
Arabia. Binomial logistic regression (BNLOGREG) was employed to predict the probability of RTCs
associated with driver errors (p < 0.001), and its results were compared with other supervised machine
learning (ML) models, such as random forest (RF) and k-nearest neighbor (kNN) to search for more
accurate predictions. The highest classification accuracy (CA) yielded by RF and BNLOGREG was
0.787, compared to kNN’s 0.750. Moreover, RF resulted in the largest area under the ROC (a receiver
operating characteristic) curve (AUC for RF = 0.712, BLOGREG = 0.608, and kNN = 0.643). As a
result, increases in the number of lanes (NL) and daily average speed of traffic flow (ASF) decreased
the probability of driver error-related crashes. Conversely, an increase in annual average daily traffic
(AADT) and the availability of straight and horizontal curve sections increased the probability of
driver-related RTCs. The findings support previous studies in similar study contexts that looked at
speed dispersion in crash occurrence and severity but disagreed with others that looked at absolute
speed at individual vehicle or road segment levels. Thus, the paper contributes to insufficient
knowledge of the factors in crash occurrences associated with driver errors on major roads within the
context of this case study. Finally, crash prevention and mitigation strategies were recommended
regarding the factors involved in RTCs and should be implemented when and where they are needed.

Keywords: traffic crash; driver error; binomial logistic regression; supervised machine learning;
random forest (RF); k-nearest neighbor (kNN); Saudi Arabia

1. Introduction

As road traffic crashes (RTCs) can have devastating impacts on human life, developing
a sustainable transportation system is not an option but a requirement for achieving high
quality of life and economic prosperity for a nation. Road safety needs a comprehensive
plan and actions towards identifying the causes and effects of RTCs and developing
necessary remedies to lower the risk of traffic-related injuries and deaths under national
and regional plans, which aim to reduce the posed risks using systematic safety audits.
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Understanding the causes and impacts of RTCs is critical for developing sustainable road
network plans in a country. Analyzing how accidents occur and identifying the underlying
factors of certain RTCs may increase the anticipation, prevention, and management of road
safety plans and programs [1]. Road safety is a worldwide recognized public health issue
obscuring the livelihood of citizens, sustainable development, and economic prosperity.
The main findings of the UN Traffic Safety Committee’s report show that there has been a
significant improvement in road safety in Saudi Arabia. Road traffic fatalities fell by 35.4%
between mid–2015 and mid–2019, and the fatality rate per 100,000 population declined
by 40% through multiple initiatives under Saudi Arabia’s 2030 vision strategic objective.
Traffic injury is estimated to cost US$3.2 bn (SAR 12.3 bn) annually—1.7% of GDP. Urban
crashes account for 70% of all injury collisions, with 60% of casualties in the 19–40 age group
and males 5.6 times more likely than females to be killed in a road traffic crash [2]. Driver
and vehicle-related factors, along with nonstandard road geometry, constitute the majority
of the causes of RTCs. Driving behavior is a critical factor to consider when determining the
causes of traffic accidents [1] because unsafe behaviors, such as texting, drinking, eating,
speeding, tailgating or driving while being stressed and exhausted, are among the common
factors of RTCs and road fatalities.

Saudi Arabia is a large and economically important country in its region as well as
globally. As the largest country with a 2,149,690 km2 land area (Figure 1) and a road
network of 221,372 km [3] in the Gulf Cooperation Council (GCC), Saudi Arabia has
reached 34.1 million as of 2021. The country’s economic growth is expected to double to
4.9% in 2022, compared to 2.4% in 2021 [4], and its annual population growth was 1.2%
in mid-2021 compared to the previous year [5]. Crash records show that traffic safety is
an issue of major importance there. The country’s mobility within and between the cities
mainly depends on highways, leading to deaths and severe injuries, as road traffic injuries
(RTIs) are cited as the third leading cause of death in Saudi Arabia [6]. Road traffic crashes
(RTCs) have raised public health concerns due to the involvement of novice drivers and
the fact that long-distance travel largely depends on private automobiles. Many road users
become victims of RTCs and sustain serious injuries or deaths. Fast population growth and
special conditions (including the overrepresentation of novice drivers, aggressive driving
behaviors, environmental conditions, and so on) are expected to add to the problem. Thus,
a need exists to understand the causes of crashes and contributing factors in Saudi Arabia
in order to employ proper countermeasures to reduce them in the future.
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This study aims to analyze and develop models to predict the probability of driver
errors in the occurrence of RTCs using road features and traffic flow parameters based
on historical crash records from 3-year data collected along an access-controlled major
highway (761.6 km of Highway 15 between Taif and Medina) in Saudi Arabia. The rest
of this paper is organized as follows: First, some background and a literature review are
presented. Then, the materials and methods of the study are explained, followed by the
results and a discussion of the findings. Finally, crash prevention and mitigation strategies
are recommended regarding the factors determined in the occurrence of RTCs associated
with driver errors. The paper closes with some concluding remarks and recommendations
for future studies.

2. Background and Literature Review

RTCs are responsible for millions of deaths and injuries every year all over the world.
Globally, an estimated 3400 people, including more than 500 children, are killed daily in
RTCs. Approximately 1.3 million people die annually, and 20–50 million are injured in road
crashes. Notably, only 54% of the world’s vehicles are in developing countries, but 90% of
the world’s RTC deaths occur in them [7]. In the U.S., RTCs are a leading cause of death
for people aged up to 54 years [8], and they are the leading cause of unnatural death for
people [7]. In Saudi Arabia, 5771 persons died, and over 31,745 were injured in car crashes
annually in 2018 and 2019 on average, as reported by the Ministry of Health (MOH) [9].

2.1. Causes of RTCs

Generally, driver-related factors (including weary, sleepy, and distracted drivers) and
inadequately maintained vehicles are the major causes of RTCs. Among driver-related
factors, not using seat belts, drink-driving, speeding, fatigue, and distracted driving are
some leading causes of traffic crashes [10–12]. The study [12] identified the distracting
activities of young drivers. Many reported frequent use of cell phones while driving and
other activities, including adjusting audio devices, chatting with passengers, smoking,
eating, and drinking. Their analysis showed that in-vehicle distractions greatly affected
the crash likelihood and such dangerous driving behaviors directly increased the crash
risk probability.

In the 1970s and 80s in Saudi Arabia, over 60% of RTCs occurred because of drivers
traveling at excess speed and disobeying traffic signals. In the 1990s, it was reduced
to a little above 40%. In addition, improper overtaking was found to be the highest
contributing factor (65%) of all crashes in the 1970s. A comparison of the causes of RTCs
between Saudi Arabia and the USA showed that an estimated 80% of crashes occurred
due to the human factor. Road geometry or vehicle conditions contributed to only 20%
of crashes [13]. Inadequate stopping distance, exceeding the critical speed on a curve,
reduction in friction between tires and the road, and a diminished ability of a driver to see
and respond to hazards due to being distracted are all factors that increase the likelihood
of crash occurrence with increased driving speed [14]. Research shows that straight roads
are of concern as they often make drivers fall asleep in front of the wheel [15].

Moreover, most crashes are the result of speeding [6,16–20], which is defined as driving
significantly above the speed limit or driving too fast for the prevailing weather, light,
traffic, and road conditions but within the speed limit [21–23]. Speed increases crash rates
and severity [24], yielding about one-third of the accidents with fatalities [25]. Every km/h
increase in speed is associated with an average increase of 3% in crash rate. And driving
beyond the speed limit may increase the possibility of a traffic crash leading to injury or
death. In the case of roads with a speed limit of 120 km/h, exceeding the speed limit by
1 km/h will increase injury and fatal crashes by about 1.7% and 3.3%, respectively [25,26].

Additionally, the literature findings confirm that geometric design consistency signifi-
cantly affects the safety of rural motorways. An alignment that requires drivers to handle
high-speed gradients and does not meet drivers’ expectancy is considered inconsistent
and produces higher crash frequency for multi-lane rural highways [16,17,22]. Curved
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sections of roadways are more hazardous due to additional centripetal forces acting on a
vehicle from the road curvature [27], driver expectations, and other variables. The safety
of a horizontal curve is mainly determined by its geometric features [28,29]. Thus, on
rural two-lane highways, horizontal curves pose a considerable safety problem, and such
locations show higher crash rates than tangent sections. Statistical modeling indicates that
more crashes are likely to occur on sharper, narrower curves that do not provide proper
spiral transitions and have a higher superelevation deficiency. Higher traffic volumes
and longer curves are also linked to more crashes occurring on curves, with all else being
equal [30]. Some research quantified the safety effects of horizontal and vertical alignment
combinations by developing crash modification factors representing safety performance rel-
ative to level tangents, and such modification factors were incorporated into the Highway
Safety Manual [31].

In that regard, findings reported in the literature are mixed with respect to speed-crash
occurrence causality on rural and urban roads. For example, contrary to the results of most
other studies reviewed by Aarts and van Schagen [26], Garber and Gadiraju [32] reported a
negative relationship between average speed and crash rate on the interstate, arterial, and
major rural collector roads (with ≈90 km/h speed limit) in the USA over a 3-year study.
Roads with a larger speed variance of observed vehicles had a higher crash rate than those
with a smaller speed variance, and large speed variances in the traffic flow were associated
with relatively low average traffic speeds. In conclusion, studies examining speed variance
at a road section level found that a larger speed variance was related to a higher crash
rate and that high average speeds were related to a low-speed variance. Finally, the exact
relationship between speed and crash rate depends on many factors. Even though recent
studies shed some light on these factors and the direction of the effects, knowledge is still
insufficient to allow for specific quantifications. Researchers must be aware of the influence
of external factors on the relationship between speed and crash rate and be explicit and
precise about the external circumstances to which their results apply [26]. Thus, analyzing
RTCs and their causes can provide valuable insights into identifying major contributors
and the level at which they contribute to the probability of the occurrences of some types
of crashes. The evaluation and analysis of important contributing factors affecting the
number of vehicles involved in crashes play a key role in increasing the efficiency of road
safety [33]. In conclusion, the literature review indicated a further need to examine the
effect of crash parameters leading to severe crashes associated with driver errors under
different environmental and cultural settings.

2.2. Machine Learning (ML) Models in RTC Analyses

Several studies recently explored the influence of risk factors on traffic crashes using
machine learning methods [1,33–37]. Rahman et al. [1] established a Bayesian belief network
(BBN) model by incorporating an expectation-maximization algorithm to examine the
relationships between crash factors with driving behavior in Saudi Arabia in a northern
city (Al-Ahsa). The model measured the uncertainty associated with accident outcomes
by analyzing intentional and unintentional driving behaviors leading to different types of
accidents and accident severities. When considering speeding alone, the results showed
a 26% probability that a collision would occur, which was a 63% increase over the initial
estimate. Guido et al. [33] employed ML algorithms to determine the number of vehicles
involved in an accident. They used several factors affecting transport safety: daylight,
weekday, type of accident, location, speed limit, average speed, and annual average daily
traffic (AADT) of rural roads in Cosenza, Southern Italy. Their results showed that type
of accident was ranked the highest, and the location variable had the lowest importance
in their analyses. Farhangi et al. [34] used machine learning algorithms integrated with
geographic information systems (GIS) to analyze the factors in the occurrence of RTCs.
They employed bagged decision trees (BDTs), extra trees (ETs), and random forests (RFs) in
their analyses. They concluded that including traffic volume in modeling could improve
the model prediction. Tamakloe and Park [35] analyzed factors influencing the number
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of vehicles and the number of casualties involved in fatal crashes at intersections and
midblocks. Their time-of-day analysis revealed that large casualties were associated with
nighttime at critical intersections. And reckless driving was related to single-vehicle
crashes at intersections. Tamakloe et al. [36] employed the Association Rules Mining
(ARM) algorithm to discover hidden groups of crash-risk factors leading to different crash
severity levels in poor road conditions. They analyzed the crashes under different lighting
conditions and determined the effect of factors on the severity of bus/minibus crashes in
Ghana. Mirzahossein et al. [37] analyzed the severity of road traffic accidents (RTAs) on
rural roads using statistical and intelligent models. Multiple Logistic Regression (MLR) was
used to predict the probability of RTAs, and its results were compared with Multi-Layer
Perceptron (MLP) and Radius Basis Function (RBF) neural networks to search for more
accurate predictions.

Based on the review of the recent literature in the analysis of RTCS, this study aimed
to identify the causes of RTCs associated with driver behavior and explore the significance
of crash-related factors, including traffic volume. The study employed some popular
supervised machine learning (ML) models within the context of a case study on a major
highway in Saudi Arabia. Moreover, by identifying the crash-contributing factors leading to
driver errors in serious RTCs, researchers and decision-makers can propose and implement
crash prevention and mitigation strategies to reduce human and material losses from RTCs,
which threaten the quality of life and economic prosperity and sustainability.

3. Materials and Methods

In this study, road traffic crashes (RTCs) were first analyzed using binomial logistic
regression (BNLOGREG). Then its results were compared with those of other supervised
machine learning (ML) models, i.e., random forest (RF) and k-nearest neighbor (kNN), to
search for more accurate predictions, as ML algorithms have a higher prediction power
than conventional logistic regression (LR) [38]. The ML methods were trained using the
same database as the one used in regression modeling, and their results were compared to
BNLOGREG since, for all data types and domains, no classification method is regarded as
superior to all others [39].

3.1. Study Site

The study site is the 761.6 km section of Highway 15 between Taif and Madinah,
passing through the cities of Makkah and Jeddah (Figure 1). The city of Makkah is one
of the oldest continually inhabited cities in the world, located in the southwest of Saudi
Arabia, inland from the Red Sea coast. The city underwent vast improvements in the last
century to host approximately 3 million visitors during the peak season [40]. Jeddah is
a major port city along the Red Sea, west of Makkah, that also serves as a major hub for
pilgrims landing and traveling to the holy cities of Makkah and Madinah. Madinah is
located about 160 km inland from the Red Sea and 442.5 km north of Mecca by road [41].

3.2. Materials

RTC data were procured from the Ministry of Transportation and Logistic Services
(MOTLS) of Saudi Arabia for three years, from 2017–2019. The database included several
unique features such as station no., road id, road type, weather and road conditions,
number of deaths and injuries, accident types and causes, number of vehicles involved, and
road geometry. Secondary data, including speed (speed limit, average, and 85th percentile
speeds) and traffic volume (annual average daily traffic-AADT with the percent of heavy
vehicle traffic volumes) information, were obtained from permanent traffic recorders (PTR)
and were associated with traffic crashes records.

Table 1 presents ten unique cases of RTCs used in the analyses. The file includes
3439 cases, and the sample size is deemed adequate based on the discussions on the
sample size requirement in the literature for logistic regression. A larger sample size is
needed to estimate parameters involving categorical variables than numerical ones. A
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sample size of 300–500 is deemed sufficient to estimate the parameters for the medium
population [42]. Several studies recommended the consideration of 500 cases to increase the
accuracy of the estimates, and their findings were statistically significant when compared
to the parameters of the targeted population [42–45]. Another recommended rule of thumb
is based on the rule of event per variable (EPV) of 50 and the formula; n = 100 + EPV × i,
where i refers to the number of independent variables in the final model [44]. In our case,
(i = 5, n = 100 + 50 × 5 = 350 << 3439) samples already satisfy the minimum sample size.

Table 1. Sample data of RTCs from Highway 15.

Station 1 Road
No.

Road
Type 2

Speed
Limit

No. of
Lanes

Weather
Cond.

Road
Cond.

No. of
Deaths

No. of
Injured

No. of
Vehicles

Road
Geometry

1568 15 fast 120 3 No rain Dry 1 10 3 Straight
1917 15 double 110 2 No rain Dry 0 0 2 Straight
1553 15 fast 120 3 No rain Dry 0 0 1 Straight
1754 15 fast 110 4 No rain Dry 0 0 2 Straight
1599 15 fast 120 3 No rain Dry 0 6 2 Straight
1753 15 fast 110 4 No rain Dry 0 1 2 Straight
1754 15 fast 110 4 No rain Dry 0 3 1 Straight
1725 15 fast 120 3 No rain Dry 0 0 2 Straight
1731 15 fast 120 3 No rain Dry 0 5 1 Straight
1602 15 fast 120 3 No rain Dry 0 0 1 Straight

1 Station: kilometer post; 2 Double: 2 lanes in one direction, and Fast: 3 or more lanes in one direction.

Preprocessing Data

The RTC data (Table 1) were first reviewed and checked to ensure quality. The study
database had 3439 cases (rows) and 46 features (columns), and 1.0% of the data had missing
values. The following steps were applied for preprocessing data before the modeling
step [39]:

1. Getting the data to know: This step studied the various attribute types, which included
nominal, binary, ordinal, and numeric attributes. Basic descriptive statistics are used
to learn more about each attribute’s values. Knowing basic statistics makes it easier to
fill in missing values, smooth noisy values, and spot outliers in the data preprocessing
stage. Knowing attributes and their values can also help deal with inconsistencies
incurred during data integration. Visualization of the RTC data provided information
on the trend of the main attributes used in modeling.

2. Checking the completeness: This step was carried out by checking the completeness
of the main attributes of crash occurrences, such as the crash type, road and weather
conditions, number of casualties and injuries, crash reasons and remarks, and road
geometry. Some missing data were imputed with information available from other
attributes, but some could not. For example, 943 out of 3439 cases were missing “road
geometry” attributes that could not be imputed and coded as ‘unknown’ or ‘other’ in
the variables used to describe roadway geometry.

3. Imputing missing data: Data with missing values for some attributes are quite com-
mon. There are various methods for handling the problem of missing values in data.
Here, using the most probable value to fill in the missing value was preferred and
determined with decision tree induction using non-missing crash attributes in the
data set [46].

4. Normalization: Data normalization gives all attributes an equal weight, where the
values are scaled to a smaller range, such as 0.0 to 1.0. Normalization benefits classifi-
cation algorithms such as neural networks or distance-based models. Normalizing
the values for each attribute included in the training set helps speed up the learning
phase when using the neural network backpropagation algorithm for classification.
For distance-based methods, normalization prevents attributes with large ranges
(e.g., AADT, min = 2083 and max = 60,244) from outweighing small-range attributes
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(e.g., binary variables). There are several methods used for normalization. The min-
max normalization was selected in this study. Min-max normalization transforms a
value x of a numeric variable V to x′ in the range (0, 1), as shown in Equation (1) below.

x′ =
x−min(V)

max(V)−min(V)
(1)

3.3. Methods

The methodology part of the study is divided into two parts: (i) an analysis of crash
data using descriptive statistics and (ii) the development of models to identify predictors
of driver-error-related RTCs.

3.3.1. Analysis of RTCs

The RTC data set used in this study is first analyzed using descriptive statistics
and visualization of the relationship between crashes and traffic and road infrastructure
attributes. The findings are presented in the results section.

3.3.2. Modeling of RTCs

The ML methods were employed to classify the causes of RTCs into two groups
(binomial outcome = (1) driver-related and (0) otherwise) using a set of possible attributes
by estimating the chance that an observation belongs to a particular class based on its
characteristics. Brief descriptions of the models are given in the following paragraphs.
Details of models can be seen in Appendix A.

Binomial logistic regression (BNLOGREG) model: The model belongs to the family of
Generalized Linear Models (GLM), which establish a relationship between the conditional
expectation of the dependent variable (DV) and a linear combination of independent or
explanatory variables (IV) using a suitable link function. The ability of BNLOGREG to
provide probabilities and classify new samples using continuous and discrete measure-
ments makes it a popular estimation tool. Predicting the probability of cases belonging to
each of the two categories of the dependent variable (DV) is possible using the model’s
coefficients as well as the possibility of directly calculating the odds ratio [47]. BNLOGREG
uses maximum likelihood estimation to evaluate the probability of categorical membership
and does not make any assumptions of normality, linearity, or homoscedasticity of variance
for independent variables. BNLOGREG necessitates careful consideration of the sample
size and examination for outlying cases. Like other data analysis procedures, initial data
analysis should be thorough and include careful univariate, bivariate, and multivariate
assessments. Specifically, multicollinearity should be evaluated with simple correlations
among the IVs. Also, multivariate diagnostics (i.e., standard multiple regression) can be
used to assess multivariate outliers and the exclusion of outliers or influential cases.

First, the BNLOGREG model was created because logistic regression models are
mostly used for data analysis and inference, where the objective is to understand the
role of the input variables in explaining the outcome [48]. The analysis requires that
the dependent variable be non-metric (i.e., dichotomous variable) to satisfy the level
of measurement required. In this study, we decided not to apply the normalization to
BNLOGREG variables because the prediction power was not affected by normalization.
In addition, in BNLOGREG logistic regression, coefficients of variables indicate the effect
of a one-unit change in DV on the log odds of “success.” Transforming a variable by
normalization changes the “unit” of the variable in the model context. Raw data for IVs
vary across different units in the original metric. After the normalization, the data ranged
from 0 to 1, i.e., changing one unit now means going from the lowest to the highest-valued
observation. Lastly, the normalization did not affect the log odds of success change.

Random Forests (RF): RFs were introduced by Breiman [49] and further developed
by Breiman and Cutler [50]. Random Forest builds a set of decision trees. Each tree is
developed from a bootstrap sample from the training data. When developing individual
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trees, an arbitrary subset of attributes is drawn, from which the best attribute for the split is
selected. The final model is based on the majority vote from individually developed trees in
the forest. RF works for both classification and regression tasks, and the response and pre-
dictor variables can be categorical or continuous [46]. Random Forests are computationally
and statistically appealing, as well [51].

A combination of tree predictors known as a “random forest” depends on each tree
being dependent on values from a random vector sampled randomly and uniformly across
all trees in the forest. As a forest’s tree population grows, the generalization error for
forests constricts to a certain size. The strength of each individual tree in the forest and
the correlation between them determine how accurate a forest of tree classifiers is at
generalizing their results. Each node is split using a random selection of features, and the
resulting error rates are better than Adaboost but more noise-resistant. Internal estimates
track inaccuracy, strength, and correlation, which are used to demonstrate how the splitting
process responds to an increase in the number of features. To gauge the significance of a
variable, internal estimations are also used. Regression can benefit from these concepts [49].

Some random forests have consistently lower generalization errors than others, as
described in the literature. For example, the random split selection is superior to bag-
ging [52]. But none of these forests perform as well as Adaboost [53] or other algorithms
that reweight the training set adaptively (arcing) [52–55]. To increase the precision, the
injected randomness must decrease correlation while retaining strength. At each node
of the examined forests, random inputs or input combinations are used to cultivate each
tree. The generated forests have accuracy comparable to that of Adaboost. This class of
procedures has many desirable characteristics: (i) RF’s accuracy is comparable to Adaboost
and sometimes better, (ii) RF is relatively robust to outliers and noise, (iii) RF is faster than
bagging or boosting, (iv) RF provides useful internal estimates of error, strength, correlation,
and variable importance, and (v) RF is simple and easily parallelizable [49].

Random forests are a significant variation of bagging in which many de-correlated trees
are constructed and then averaged. On many tasks, random forests perform comparably to
boosting, making them easier to train and modify [48]. Forests generated randomly are
instances of ensemble methods. Imagine that each classifier in the ensemble is a decision
tree classifier, such that the ensemble is a “forest” of classifiers. A random selection of
qualities at each node determines the split when generating the individual decision trees.
Formally, each tree depends on the values of an independently sampled random vector
with the same distribution across the entire forest. Each tree votes during classification,
and the most popular class is returned [39].

Random forests can be constructed by combining bagging with random feature selec-
tion. Each new training set is drawn from the original training set, with replacement. Then,
a tree is constructed using random feature selection on the new training set. The cultivated
trees are not pruned. There are two reasons why bagging is used. First, bagging appears to
improve accuracy when random features are employed. Second, bagging can be used to
provide ongoing estimates of the generalization error of the combined ensemble of trees,
as well as estimates for the strength and correlation between the trees [49]. A training set
of d data, D, is provided. The following is the general process for generating k decision
trees for the ensemble. Each iteration, i (i = 1, 2,..., k), samples with replacement a training
set, Di, of d data from D. In other words, each Di is a bootstrap sample of D, and so some
data may appear multiple times in Di, while others may be omitted. Let F be the number
of attributes utilized to determine the split at each node, where F is significantly less than
the total number of attributes. To create the decision tree classifier, Mi, randomly selects
F attributes at each node as candidates for the node’s split. The CART method is utilized
to cultivate the trees. The trees are grown to their maximum size without pruning. This
method of generating random forests with random input selection is called Forest-RI [39].

Forest-RC is a random forest variant that uses linear combinations of input attributes.
Instead of selecting a subset of attributes randomly, it develops new attributes (or features)
that are linear combinations of the current attributes. Thus, L, the number of original
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attributes to be combined, is used to construct an attribute. At a particular node, L charac-
teristics are selected randomly and inserted with coefficients consisting of uniform random
values on the interval (−1, 1). F-linear combinations are created, after which the optimal
split is determined. This random forest variant is beneficial for reducing the correlation
between individual classifiers when few attributes are available [39].

Random forests are comparable to AdaBoost in terms of accuracy but are more tolerant
of errors and outliers. As long as there are a large number of trees in a forest, the generaliza-
tion error will converge. Therefore, overfitting is not a concern. The precision of a random
forest is determined by the quality of the individual classifiers and a measure of their
interdependence. Maintaining the effectiveness of separate classifiers without increasing
their correlation is optimal. The number of attributes selected for consideration at each
split has no effect on random forests. Usually, up to log2d + 1 are selected. An intriguing
empirical observation was that employing a single random input attribute can often result
in greater accuracy than using multiple qualities. Random forests are effective on very big
databases because they consider far fewer attributes for each split. They are sometimes
faster than bagging or boosting. Random forests provide varied internal assessments of
importance [39]. For the details of the algorithm, the reader is referred to Appendix A and
other sources for further information on RFs.

k-nearest neighbor (kNN): kNN, a non-parametric supervised learning method, was
first developed by Fix and Hodges [56] and later expanded by Cover and Hart [57]. It
can be used for both classification and regression. In both cases, the input consists of
the k closest training examples in a data set. Then, the output depends on whether it is
used for classification or regression. In the classification problem, the output is a class
membership. An object is classified by a plurality vote of its neighbors, with the object
being assigned to the class most common among its k nearest neighbors (k is a positive
integer, typically small). If k = 1, then the object is simply assigned to the class of that
single nearest neighbor. The function is approximated only locally in the classification
problem, and all computation is deferred until function evaluation. Since this algorithm
relies on distance for classification, normalizing the training data can improve its accuracy
significantly if the features represent different physical units with different scales. Both
for classification and regression, a useful technique assigns weights to the contributions of
the neighbors so that the nearer neighbors contribute more to the average than the more
distant ones. For example, a common weighting scheme gives each neighbor a weight of
1/d, where d is the distance to the neighbor. The neighbors are taken from a set of objects
for which the class is known. This can be thought of as the training set for the algorithm,
though no explicit training step is required [48,58]. Appendix A includes the details of
the method.

4. Results and Discussion

Results and discussion of the analyses and modeling of the crash data are presented in
the following sections.

4.1. Descriptive Statistics and Visualization of RTC Factors

As the summary given in Table 2, three major factors are determined in the occur-
rence of RTCs: (i) driver-related, (ii) vehicle-related, and (iii) road and traffic conditions-
related. Notably, driver-related factors and vehicle-related failures accounted for 74.7 and
14.2 percent of the total road crashes during the three-year period (2017–2019) in the case
site. The effects of road and traffic conditions (object on the road, congestion, and road
failure) and weather-related factors (low visibility due to sandstorms, rain/wet pavement,
and extreme heat) on RTCs were ignorable, with only a meager percentage attributed
to crashes (0.8%). The southwest and western regions (including Makkah, Jeddah, and
Madinah) of Saudi Arabia exhibit a semi-arid climate, contrary to other northern hemi-
sphere countries receiving substantial snow and heavy rain. Thus, only 22.4 rainfall days
throughout the year yield 111.8 mm (<150 mm in most parts of the country) of precipita-



Sustainability 2022, 14, 16654 10 of 36

tion on average [59], except in the southwestern part, where the rainfall occurs between
400–600 mm annually [60]. The RTC data includes around 8.1% of crashes with unknown
or unreported causes. Most of the crashes are driver related. In driver-related crashes,
speeding, distracted driving/loss of control, reckless driving, and driver sleepiness were
found to be the main contributors, with 29.9, 23.7, 10.3, and 7.9 percent, respectively. The
analysis revealed that the deadliest crash contributing factor was drivers falling asleep at
the wheel, with a rate of 0.195 deaths per crash, followed by distracted driving/loss of
control, with a rate of 0.162. Driver’s sleeping is also the highest injury-causing type of
crash contributing factor, at a rate of 1.044 per crash. Among other factors, crashes caused
by uncontrolled animal crossings were only 2.2 percent of all crashes (See Table 2).

Table 2. Summary of the RTCs (2017–2019).

Crash Causes
Crashes Deaths Injuries

Number Percent Number Percent Number Percent

Driver-related crashes
Speeding 1028 29.9 102 0.099 933 0.908

Distracted driving/loss of control 816 23.7 132 0.162 810 0.993
Reckless driving 353 10.3 29 0.082 341 0.966

Driver asleep 272 7.9 53 0.195 284 1.044
Other 99 2.9 15 0.269 88 1.129

Subtotal 2568 74.7 331 0.129 2456 0.956

Vehicle-related crashes
Tire-blowout 361 10.5 51 0.141 343 0.950

Mechanical/electrical
malfunction 114 3.3 10 0.088 56 0.491

Overloading/misloading 12 0.3 0 0.000 14 1.167
Subtotal 487 14.2 61 0.125 413 0.848

Other factors
Road/traffic conditions-related 20 0.6 0 0.000 16 0.800

Weather-related 10 0.3 1 0.100 9 0.900
Animal crossing 74 2.2 10 0.135 53 0.716

Other/undetermined 280 8.0 27 0.096 270 0.964
Subtotal 384 11.1 38 0.099 348 0.906

The share of driver errors as the highest contributing factor clearly reveals that RTCs
are the number one public safety concern, and they must be addressed diligently to
develop mitigation and prevention strategies. Vehicle-related factors, mainly tire blowouts,
mechanical or electrical failures of vehicles, and overloading/misloading, account for
14.2 percent of all cases. Driver-related and vehicle-related crashes have similar casualty
rates (0.129 and 0.125 deaths per crash, respectively). An in-depth look at driver errors
in RTCs shows that the top four crash causes contribute to 71.8% of all 3439 cases and
are listed as speeding (29.9%), distracted driving/loss of control (23.7%), reckless driving
(10.3%), and driver asleep at the wheel (7.9%). These findings also indicate that human
error is the number one contributor to RTCs. In vehicle-related crashes, tire blowouts attract
attention as they contribute to 0.141 deaths per crash and 0.950 injuries per crash.

Descriptive statistics of RTCs, traffic flow characteristics, and road geometry attributes
used in the classification models are presented in Table 3. As seen, crashes caused by driver
errors (0.1288 casualties per crash) are 13.1% deadlier than crashes caused by other factors
(0.1139 casualties per crash). Similarly, crashes caused by driver errors (0.9911 injuries per
crash) result in 22.2% more injuries than crashes caused by other factors (0.7710 injuries per
crash). Overall, the number of RTCs was reduced by 19.9% from 2017 to 2019, and deaths
and injuries by 6%, and 16.9%, respectively, for the road segment in this case study. This
observation is aligned with the national statistics reported by WHO [2].



Sustainability 2022, 14, 16654 11 of 36

Table 3. Summary statistics of the variables for modeling (2017–2019).

Variable Mean Std. Dev. Min. Max. Sum
(No. of Cases) 2

RTCs by causes and consequences
Annual number of RTCs 1146.33 141.11 1048 1308 3439

RTCs caused by driver error 856.67 32.52 820 882 2570
RTCs caused by other factors 289.67 118.25 215 426 869

Annual number of total casualties 143.33 7.09 137 151 430
Casualties due to driver-errors 110.33 13.61 115 121 331
Casualties due to other factors 33 19.92 21 56 99

Number of casualties per all crashes 0.1258 0.01 0.1154 0.1355 0.1250
Casualties per driver-error crashes 0.1293 0.02 0.1077 0.1476 0.1288
Casualties per other factor crashes 0.1086 0.02 0.0921 0.1315 0.1139

Annual number of total injuries 1072.33 100.27 980 1179 3217
Injuries due to driver-errors 1018.33 131.98 855 1017 2800
Injuries due to other factors 139 20.07 125 162 417

Number of injuries per all crashes 0.9378 0.0378 0.9014 0.9769 0.9354
Injuries per driver-error crashes 0.9919 0.0739 0.9093 1.0518 0.9911
Injuries per other factor crashes 0.7362 0.1295 0.6491 0.8850 0.7710

Traffic flow characteristics
Annual average daily traffic (AADT) 1 13,756.08 14,377.92 2083 60,244 (3327) 2

Daily average speed of traffic flow (ASF) in kph 1 96.77 8.86 70.5 116 (3327) 2

85th percentile speed in kph 117.56 10.17 101 151 (3320) 2

Road geometry characteristics
Number of lanes (NL) 1 2.93 0.65 2 4 (3435) 2

Speed limit (km/h) 116.91 4.63 100 120 (3435) 2

Categorical variables
Causes of RTCs (DV) 1 = driver-error (count = 2570) (2852) 2

0 = otherwise (count = 869) (587) 2

RG1: Straight segment 1 1 = straight (count = 2438) (2438) 2

0 = otherwise (count = 1001) (1001) 2

RG2: Horizontal curve 1 1 = horizontal curve (count =39) (3400) 2

0 = otherwise (count = 3400) (39) 2

1 IVs, 2 No. of cases.

In the data set, some IVs have missing values, such as AADT and ASF (112 cases)
and the number of lanes (4 cases). These missing values are to be imputed as described
in the preceding sections. The continuous IVs (i.e., ASF and AADT) were investigated
against outliers. The minimum and maximum values, first and third quartiles, interquartile
range, and z-scores are given in Table 4. Figure 2 displays boxplots and marks outliers
for continuous IVs considered in this study (the numbers on the graphs are case numbers
marked with stars). When we look at them closely, for ASF, although there are 43 cases
with z-score > 2.698 (Table 4), none of them are marked as outliers because, for them,
ASF = 70.50 km/h, which cannot be considered as an outlier, corresponding to the minimum
value of the variable. For AADT, there are 230 cases with z-score > 2.68, but they are
considered legitimate outliers ranging between 55,443 and 60,244 veh/day. So, they are not
excluded from the analyses.

Figure 3 depicts RTC frequency vs. AADT. The distribution follows a normal distri-
bution, skewed to the right. In all intervals of AADT, RTCs associated with driver errors
dominate the other factors. For AADT ranging between 5000 and 10,000, RTCs associated
with driver errors increased by 2.5 folds compared to AADT of less than 5000. However,
the same rate was 1.3 for the RTCs associated with other factors. The highest number of
RTCs (1287 driver-error related, 370 other factors) was observed when AADT was between
5000–10,000, then continued to decline while AADT was increasing.
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Table 4. Descriptive statistics of the continuous IVs (AADT and ASF).

Variable Q1 Q3 Q3 − Q1 z-Scores 1

Min. No. of Cases Max. No. of Cases

ASF 88.5 102.2 13.7 −2.9658 > −2.698 * 43 2.1715 < 2.698 * N/A 2

AADT 6794 12,904 6110 −0.8119 < −2.698 * N/A 1 3.2333 > 2.698 * 230
1 z (Q1 or Q3) ± 1.5 IQR = ±0.6745 ± (1.5 × 1.349) = ± 2.698 [61]; 2 N/A: not applicable; *: Far (true) outliers.
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Figure 4 shows that in four-lane (per direction) segments, driver-error-associated
RTCs were considerably reduced compared to two- and three-lane segments by 27%
(=(645 − 471)/645) and 67.5% (=(1451 − 471)/1451), respectively. Similar reductions
were observed for other factor-related crashes (29.2% and 74.2% for N = 2 and 3 lanes,
respectively). RTCs also substantially decreased by increasing the 85th percentile speed
to 120 km/h (Figure 5). Speeds beyond 120 kph are illegal because that was the legal
limit for the time period studied, so the RTCs associated with driving at such high speeds
are not representative of legitimate behaviors in traffic. 1371 (72.3%) out of 1895 crashes
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associated with driver errors occurred at speeds higher than 120 km/h. Driving beyond the
speed limit is considered dangerous because it may increase the possibility of a traffic crash
leading to injury or death. Exceeding the speed limit on 120 km/h speed limit roads by
1 km/h will increase injury and fatal crashes by about 1.7% and 3.3%, respectively [25,26].
As shown in Figure 6, when road geometry is considered, the dominant cause of RTCs
is driver error, contributing to 79.0% of crashes occurring on straight road segments and
84.6% on horizontal curve segments. For non-straight and horizontal curve segments, the
RTCs associated with driver errors were higher than half of the crashes (64.4 and 74.6%).
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4.2. Modeling Results

The results of the classification analyses are presented and discussed here. The type of
algorithm employed for classification plays a great role in affecting accuracy. BNLOGREG
and other ML methods were compared since ML has received great attention due to its
robustness in classification problems. The use of supervised ML algorithms in various
applications can be found in the literature [1,62–64].

4.2.1. Results of BNLOGREG

The outputs are presented and discussed as follows. First, the case possessing sum-
mary is presented in Table 5. Due to the incompleteness of some attributes, there were
112 missing cases out of 3439, constituting 3.3% of all cases. Cases with missing values of
AADT and ASF attributes were excluded from the analysis; thus, 3327 cases were analyzed.
Categorical independent variables (RG1: Straight section, and RG2: Horizontal curve) are
listed in Table 6. RTCs occurring on straight sections represent 70.5% of the cases, and
horizontal curve-related RTCs are just 1.2%.

Table 5. BNLOGREG case processing summary.

Unweighted Cases N Percent

Selected Cases Included in Analysis 3327 96.7
Missing Cases 112 3.3

Total 3439 100.0

Unselected cases 0 0.0
Total 3439 100.0

Table 6. Summary of categorical independent variables.

Unweighted Cases N Percent

RG1: Straight Section Straight section (1) 2344 70.5
Other (0) 983 29.5

RG2: Horizontal Curve Horizontal curve (1) 39 1.2
Other (0) 3288 98.8
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Table 7 presents Model 0 (without IVs) and the prediction power of the model
(74.2 percent) when IVs are not included but the constant. According to Wald statis-
tics, the constant is significant at the level of 0.01 (p < 0.001). To measure how well the
model performs, omnibus tests are performed. The chi-square statistic (Table 8), which
represents the change in the −2 log-likelihood between Models 0 and 1, is significant
(Chi-sqr. = 133.834, p < 0.001). The method used is stepwise forward LR (Likelihood Ratio)
regression. The change from Model 0, where no variables are entered, makes a significant
improvement in Model 1 (after all five IVs are included) because the significance of the
change is small (sig. = 0.001 < 0.05), and the prediction power of the model is improved
from 74.2 to 74.5 percent (Table 9).

Table 7. Prediction power of Model 0 (without IVs).

Variable in the Equation

Model B S.E. Wald df Sig. Exp(B)

Model 0 Constant 1 1.055 0.040 709.766 1 <0.001 2.873

Predicted

CRTC Percentage

Observed Otherwise = 0 Driver error = 1 Correct 2

Model 0 CRTC Otherwise = 0 0 859 0.0
Driver error = 1 0 2468 100.0

Overall percentage 74.2
1 Constant is included in the model; 2 The cut value is 0.500.

Table 8. Omnibus Tests of Model Coefficients (Model 0 vs. Model 1).

Model Chi-Square df Sig.

Step 5 Model 0 10.109 1 0.001
Model 1 133.384 5 <0.001

Table 9. Prediction power of Model 1 (IVs included).

Predicted

CRTC Percentage

Observed Otherwise = 0 Driver Error = 1 Correct 2

Model 1 1 CRTC Otherwise = 0 16 843 1.9
Driver error = 1 7 2461 99.7

Overall percentage/accuracy rate 74.5
1 Constant and five IVs included in the model, 2 The cut value is 0.500.

Though the correlation measures to estimate the strength of the relationship (pseudo-R
square measures) are calculated as Cox and Snell = 0.039, and Nagelkerke = 0.058, these
do not really tell much about the accuracy or errors associated with the model. The model
summarizes the difference in the probability of driver-related errors for the causes of RTCs
(CRTC) that are non-driver-related and CRTCs that are not. Non-metric IVs (RG1 and RG2)
are included as a “factor,” and dummy-coded (straight road section = 1, otherwise = 0,
and horizontal curve = 1, otherwise = 0), and continuous IVs (NL, ASF, and AADT) are
included as “covariates.”. The estimated constant and the coefficients of IVs (NL, ASF,
AADT, RG1, and RG2) are given in Table 10. The constant and all IVs are significant at a
0.01 level according to the Wald chi-square test (all p < 0.001).
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Table 10. Coefficient of variables in BNLOGREG model.

Coefficient β̂ Std. Error Wald df Sig. eβ̂

Constant 4.375 0.622 49.495 1 <0.001 79.463
NL −0.501 0.101 24.782 1 <0.001 0.606
ASF −0.027 0.005 28.831 1 <0.001 0.973

AADT. 10−3 0.016 0.005 12.580 1 <0.001 1.017
RG1 (Straight = 1) 0.824 0.086 92.068 1 <0.001 2.280

RG2 (Horz.curve = 1) 1.268 0.451 7.904 1 0.005 3.555

The outputs are presented and discussed as follows. The intercept β̂0 is the odds of
a driver-related CRTC if it is driver-related. The weight β̂4 = 0.824 is the change of RG1
(straight section) in the log-odds ratio for a driver-related CRTC relative to a non-driver-
related CRTC. The exponentiated value of e0.824 = 2.280 indicates that, on average, the
odds that the CRTC will be 2.280 times driver-related if the RG1 is a straight section. This
output is aligned with earlier findings confirming that straight road sections are one of
several factors that can cause drivers to fall asleep while driving [26]. Similarly, horizontal
curve (HC) sections might increase the CRTC to be driver related, as the odds ratio of the
driver error is 3.555 times more for HC sections than for non-horizontal curve sections.
AADT’s effect on the increase in driver error is relatively small (0.016 per 1000 vehicles).
On the other hand, one unit increase in NL and ASF will decrease the odds ratio of CRTC
by 0.501 and 0.027, respectively. It is intuitive that the increase in the NL and ASF relieves
road congestion and decreases driver-related errors in RTCs. The data visualization also
supports this conclusion (Figures 4 and 5). Moreover, Elvik et al. [65] examined a more
disaggregated level and reported that large traffic flows reduce speed and increase the
crash risk [26].

Similar conclusions concerning the travel speed and the occurrence of RTCs are re-
ported in the literature. As the average speed of traffic flow increases, the number of vehicle
collisions may indeed be reduced; however, the injuries caused to pedestrians increase
significantly [66]. The data from a federal report [67] also indicated that accident rates were
reduced at sites where speed limits were raised and increased at sites where speed limits
were lowered. Before and after data were collected simultaneously at comparison sites
where speed limits were not changed to control the time trends. Repeated measurements
of speed limit changes were observed at 14 locations to examine the short and long-term
effects. The study showed that lowering speed limits by up to 20 miles per hour (32 km
per hour) or increasing them by up to 15 miles per hour (24 km per hour) had little in-
fluence on the speed of motorists. The majority of drivers did not increase or decrease
their speed by 5 or 10 miles per hour (8 or 16 km per hour) when posted speed restrictions
were increased or decreased. According to data collected at the research locations, the
majority of speed restrictions were set below the average traffic speed. Thus, dropping
speed restrictions below the 50th percentile had no effect on accident rates but considerably
impacted speeding. In contrast, increasing the listed speed limit did not increase speeds
or collisions [67].

Using the cross-tabulation of observed and predicted values of CRTC in Table 9, sensi-
tivity, specificity, false positive (FP) rate, and false negative (FN) rate are calculated. The
percent occurrences vary with different cut-off values (here, it is 0.5), which may not be
a good representation of goodness of fit unless an optimum value is determined. The
accuracy assesses how precisely a model can predict the outcome. CRTC equal to zero
was observed and predicted 16 times, though it was observed and predicted to be equal
to one 2461 times. Therefore, the accuracy rate is calculated as 16 plus 2461, divided
by the total valid sample size of 3327, equal to 74.5 percent. The misclassification rate
is the percentage of observations predicted incorrectly. In the classification with BNLO-
GREG described above, the misclassification rate is calculated as (7 + 843) divided by
3327, resulting in 25.5 percent. The model needs improvement because it has a serious
misclassification. After all, 843 crashes caused by non-driver errors were classified as
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caused by driver-related factors. This error is called Type I, and the values are called False
Positive (FP). Sensitivity or recall (percent of occurrences correctly predicted), specificity
(percent of non-occurrences correctly predicted), false positive (FP) rate (percent of non-
occurrences incorrectly predicted), and false negative (FN) rate (percent of occurrences
incorrectly predicted) are used for observations in the classification table. The model’s
sensitivity is the ratio of occurrences or events correctly predicted. It is the probability that
the predicted value of DV is equal to one, given the observed value of DV being one
(2461/(7 + 2461) = 99.7%). On the other hand, specificity is the percentage of non-
occurrences being correctly predicted, that is, the probability that the predicted value
of DV is zero, given that the observed value of DV is also zero (16/(16 + 843) = 1.9%). The
false positive (FP) rate is the percentage of non-occurrences that are mispredicted events
(1 − Specificity = 1 − 1.9% = 98.1%). Similarly, the false negative (FN) rate is the percentage
of occurrences that are predicted incorrectly (1 − Sensitivity = 1 − 99.7% = 0.3%). For
different cut-off values, the model’s predictive power is presented in Table 11. Additionally,
Youden Index (Sensitivity + Specificity − 1) is proposed to select the best cut-off value, con-
sidering both true positive and true negative rates [68]. Based on the index, the best cut-off
value for the model is between 0.58 and 0.59, as it yields the highest accuracy (74.8%).

Table 11. BNLOGREG predictive power for different cut-off values.

Cut-Off
Value Observed

Predicted Percent
Correct

Accuracy
(%)

Sensitivity
(TPR) (%)

Specificity
(1-FPR) (%)

Youden
Index0 1

0.60 CRTC
0 127 732 14.8

74.5 1 95.3 1 14.8 1 10.1 1
1 116 2352 95.3

0.59/
0.58

CRTC
0 124 735 14.4 74.8 ↑ 95.8 ↑ 14.4 ↓ 10.2 ↑1 104 2364 95.8

0.55 CRTC
0 84 775 9.8 74.8 ↑ 97.4 ↑ 9.8 ↓ 7.2 ↓1 65 2403 97.4

0.50 CRTC
0 16 843 1.9

74.5
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Variables not in the model are shown in Table 12. According to the Wald test used to
predict whether an independent variable would be significant in the model, all p-values are
higher than 0.05, so they are concluded as statistically not significant. With its coexistence
of ASF in the model, the “speed limit” variable becomes statistically insignificant with a
high correlation (Wald = 0.889, sig. = 0.343 > 0.05). Also, with the coexistence of the 85th
percentile speed, AADT was dropped from the model (Wald = 3.397, sig. = 0.065 > 0.05) in
our trials. Thus, it was decided to include ASF and AADT in the model because they are
the fundamental indicators of highway traffic flow.

Table 12. Coefficient of variables not in BNLOGREG equation.

Coefficient Wald df Sig.

Accident hour 20.477 23 0.613 > 0.05
Weekday 5.187 6 0.520 > 0.05

Month 5.271 11 0.219 > 0.05
Weather 3.853 5 0.247 > 0.05

Speed limit 0.899 1 0.343 > 0.05

The multicollinearity matrix is presented in Table 13. As seen, only a medium corre-
lation (0.658 < 0.70) is available between NL and AADT. 10−3. Other variables show no
significant correlations at all. Multicollinearity can also be identified using the variance
inflation factor (VIF), which evaluates the correlation and correlation strength between
the predictor variables in a regression model. One is the least possible value for VIF,
which implies no association among the variables in the model. A value between 1 and
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5 is typically not severe enough to warrant special attention. VIFs larger than 5 indicate
significant collinearity levels where the coefficient estimations cannot be relied upon, and
the statistical significance is uncertain. The VIF for each variable can be calculated using
the following formula as shown in Equation (2) [69]:

VIF
(

β̂ j
)
=

1
1− R2

Xj |X−j

(2)

where R2
Xj |X−j

is the R2 from a regression of Xj onto all of the other predictors. If R2
Xj |X−j

is

close to one, collinearity is present so that the VIF will be large. In the BNLOGREG model,
all VIFs are much smaller than 5, with only two values higher than 2.0.

Table 13. Multicollinearity matrix and VIF values of the variables in the model.

Variables VIF NL ASF AADT. 10−3 RG1 = 1 RG2 = 1

NL 2.273 1.000
ASF 1.349 0.245 1.000

AADT. 10−3 2.148 −0.658 0.133 1.000
RG1 (Straight = 1) 1.049 −0.012 −0.132 0.023 1.000
RG2 (Horz.crv = 1) 1.031 −0.036 −0.021 0.019 0.121 1.000

4.2.2. Comparison of BNLOGREG with Machine-Learning Algorithms

Orange software (an open-source data visualization, machine learning, and data
mining toolkit) was used to perform the comparison analysis [46] with different supervised-
learning classification models. Figure 7 presents the workflow of the modeling process.
After importing the data file, data imputing and sampler steps are inserted in case missing
values need to be imputed to avoid misclassifications. The data may be divided into
two sets: training and testing. However, at first, both of the two steps are skipped. So,
the data included 3439 cases and 45 attributes with 0.9% missing data. Later on, two
more alternative data sets were created in addition to using the whole data: (i) cases with
missing attributes were removed, and only 69.44% of data was used for model training, and
(ii) secondly, using model-based imputer (simple tree), 100% of data is used to train models.
The IVs of NL, ASF, AADT. 10−3, RG1 (Straight = 1), and RG2 (Horz.curve = 1) were
employed to determine the probability of CRTC whether or not it is driver-error related
using the BNLOGREG and other supervised machine-learning classifiers, such as random
forest (RF) and k-nearest neighbor (kNN). The models learned from the training data set
and tested using 10-fold cross-validation.

The performance of the models, such as the area under the ROC curve (AUC), classi-
fication accuracy (CA and balanced CA), the harmonic mean of the precision and recall
(F1), Precision, and LogLoss (a negative average of the log of corrected predicted proba-
bilities for each instance) is given in Table 14. LogLoss is considered the most important
classification metric when the data is imbalanced against one of the classes. For any given
problem, a lower value means better predictions. Unlike accuracy, LogLoss is robust in the
presence of imbalanced classes. It is observed that ML algorithms have a higher prediction
power than conventional logistic regression [38]. The metrics confirmed this result, where
RF yielded the highest classification accuracy (CA). BNLOGREG got third place in terms
of accuracy. However, accuracy alone may not be a good metric for unbalanced data
(CRTC = 1 cases are 74.7%), where 843 cases were classified as false-positive (FP) by BN-
LOGREG. In this case, balanced accuracy (BAC = (TPR + TNR)/2) is recommended as a
better metric (highest BAC = 0.593 yielded by RF). F1 also shows how precise and robust
the model is; however, the biased “recall” values affect the accuracy of F1.
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Table 14. Performance of classification models with alternative data sets.

Model AUC Accuracy
(CA)

Balanced
Accuracy (BAC) F1 1 Precision LogLoss

Dataset (1): 3439 cases (no data imputing) and models were tested using 10-fold cross-validation.

RF 2 0.701 0.760 0.593 0.853 0.787 0.512
kNN 3 0.612 0.745 0.600 0.839 0.792 4.557

BNLOGREG 4 0.607 0.747 0.500 0.855 0.747 0.548

Dataset (2): Cases with missing values removed (69.44% data used) and models tested using
10-fold cross-validation.

RF 2 0.653 0.787 0.500 0.881 0.787 0.490
kNN 3 0.595 0.724 0.556 0.829 0.809 2.365

BNLOGREG 4 0.554 0.787 0.500 0.881 0.787 0.510

Dataset (3): Model-based imputer (simple tree) used to replace missing values (100% data used),
and models tested using 10-fold cross-validation.

RF 2 0.712 0.762 0.598 0.854 0.789 0.503
kNN 3 0.643 0.755 0.547 0.851 0.794 2.154

BNLOGREG 4 0.608 0.747 0.500 0.855 0.747 0.547
1 F1 = (2 × Precision × Recall)/(Precision + Recall); 2 No. of tress =10 without splitting subsets smaller than 5;
3 Lasso (L1) regularization with C = 1; 4 No. of neighbors = 5, distance = Euclidean, weight = distance.

ROC (Receiver Operating Characteristic) curve graphically illustrates the diagnostic
ability of a binary classifier as its discrimination threshold is varied. It summarizes the
performance by combining confusion matrices at all threshold values. AUC is the area
under the ROC curve and measures the entire two-dimensional area underneath the ROC
curve from (0, 0) to (1, 1). AUC turns the ROC curve into a numeric representation
of performance for a binary classifier, indicating how successfully a model separates
positive and negative classes. Using the models’ outputs, the ROC curves are plotted
for TP rate (Sensitivity) vs. FP rate (1 − Specificity) for the different models tested at
different classification thresholds (Figure 8). ROC curves can provide insight when studying
the performance of classifiers on class-imbalanced data. The greater the AUC, the more
accurately the model classifies cases. The ROC curve should ideally extend to the upper left
corner, where the AUC value would be 1, indicating that the model properly classifies every
instance. The model is unusable if the AUC is 0.5 for a binary classification model [39].
Figure 8 shows that RF has the biggest AUC of all the models studied here (0.712 for
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RF > 0.643 for kNN). Overall, the metrics for data set (3), using the model-based imputer,
yielded superior results compared to alternative data sets (1) and (2) because including all
cases with missing data and cases removed with missing data caused a great deal of loss of
valuable information in the training set.
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The prediction results (the confusion matrix) of the RF model are given in
Table 15. The accuracy rate is 76.2 percent. The misclassification rate is 23.8 percent. The
model’s sensitivity or recall (percentage of occurrences correctly predicted) is 93.1%
(=2392/(178 + 2392). On the other hand, specificity (percentage of non-occurrences cor-
rectly predicted) is 26.4% (=229/(229 + 640). The false positive (FP) rate (the percentage
of non-occurrences that are mispredicted events) is 73.6% (1 − Specificity = 1 − 26.4%).
Similarly, the false negative (FN) rate (the percentage of occurrences that are predicted
incorrectly is 6.9% (1 − Sensitivity = 1 − 93.1%). As seen, compared to the BNLOGREG
model, although the RF model’s accuracy is increased by only 1.9% from 74.8% to 76.2%,
the specificity (ability to predict a true negative) is significantly improved by 83.3% from
14.4% to 26.4%.

Table 15. Prediction results (confusion matrix) of the RF model.

Predicted

CRTC Percentage

Observed Otherwise = 0 Driver error = 1 Correct

RF model 1 CRTC Otherwise = 0 229 640 26.4
Driver error = 1 178 2392 93.1

Overall percentage/accuracy rate 76.2
1 No. of tress =10 without splitting subsets smaller than 5.

Figure 9 visualizes the impact of variables on the RF model. As seen, the highest-
ranked variable is ASF, with a score of 0.405 obtained from the “rank” widget (i.e., it has
the highest impact on the model’s prediction). The intensity of the red dots on the left
means that an increase in ASF decreases the probability of CRTC = 1 (RTCs caused by
driver errors), similar to NL (its score = 0.113). However, AADT in 1000, the second highest
ranked variable with a score of 0.300, increases the probability of CRTC = 1 as the red
dots are intensified on the right side of the graph. Regarding the horizontal alignment
features, both RG = 1 (straight section) and RG = 2 (horz.curve) increase the probability of
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CRTC = 1, with scores of 0.088 and 0.017, respectively. The impact of straight sections
is higher than that of horizontal curves on the model. In conclusion, road geometry
significantly influences the occurrence of RTCs associated with driver errors.
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Figure 10 shows the importance of the IVs in the RF model. As seen, the variables
of ASF, AADT in 1000, straight section, and NL have high impacts in decreasing the
AUC by determining the probability of RTCs related to driver-errors, and ASF is the most
influential feature with the highest mean value (0.195). Secondly, the impact of AADT in
1000 is the second highest, with a mean value of 0.107. The rest (straight section, NL, and
horizontal curve) are ordered from high to low with mean values of 0.082, 0.069, and 0.005.
The impact of the horizontal curve in reducing the AUC is the lowest in the RF model;
similarly, it ranks 4th in order from high to low with its impact in the BNLOGREG model
(mean value = 0.008), where the straight section variable scores the highest with a mean
value of 0.079.
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4.2.3. Discussion of the Results and Research Limitations

Identifying the causes of road traffic crashes (RTCs) and contributing factors is of
utmost importance for developing sustainable road network plans and urban transport
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management. Driver-related factors are the leading causes of RTCs, and speed is claimed
to be a major contributor to crash occurrences. The results reported in the literature are
mixed regarding speed-crash occurrence causality on rural and urban roads. Even though
recent studies shed some light on factors and the direction of effects, knowledge is still
insufficient to allow for specific quantifications. Thus, this paper aims to discover the
factors contributing to the occurrence of RTCs associated with driver errors using analytical
models. In summary, while AADT and road geometry features (straight sections and
horizontal curves) increase the probability of RTCs caused by driver-related errors (such as
speeding or losing control), an increase in NL and ASF reduce that probability, confirming
similar findings by previous studies and literature reviews as reported in [26,32,66]. The
findings support previous studies (very few, in fact) in similar study contexts that looked
at speed dispersion in crash occurrence and severity but disagreed with others that looked
at absolute speed at individual vehicle or road segment levels. Thus, the paper contributes
to insufficient knowledge of the factors in crash occurrences associated with driver errors
on major roads. It is of foremost importance that roadway designers and planners use the
results of this study as guidance in their efforts to implement countermeasures to reduce
the occurrence and severity of RTCs in the future.

The study has some limitations due to the data set analyzed; for example, different
environmental factors such as weather, pavement condition, visibility, and horizontal and
vertical geometric design features were not considered in the analyses. Weather-related
crashes were only 0.3% of all cases (see Table 2). Moreover, the gender, age, and level
of education of drivers were not included in the data set to analyze them. Their impact
on crash occurrences should be considered. For future work, the inclusion of additional
variables concerning the incidence of road crashes, such as driving environment, safety
treatments and speed control methods, weather conditions, and road alignment design
elements, is to be considered to achieve improved performance in crash classification.
Next, crash prevention and mitigation strategies are recommended regarding the factors
determined in the occurrence of RTCs associated with driver errors.

4.3. Crash Prevention and Mitigation Strategies

Cultural and behavioral factors associated with dangerous driving habits in different
countries must be examined to develop empirically driven strategies to prevent traffic
crashes and injuries [70–76]. Compared to the general population, teen drivers are in-
volved in a disproportionately high number of fatal and injury-incurred motor vehicle
crashes [71,77–80]. Based on the summary of crash statistics presented in the preceding
sections, it is of utmost significance to propose strategies that prevent and mitigate the
impacts of RTCs. Such strategies can be named as developing target-oriented driver edu-
cation and awareness programs and implementing technology-driven traffic control and
management approaches to increase road safety in the case study area and other places
in Saudi Arabia. RTCs cause notable deaths and injuries yearly in Saudi Arabia despite
the severe penalties imposed on violators [81]. Due to some common contributing factors,
general prevention and mitigation strategies can be applied to reduce the impact of such
RTCs. However, some unique types of crashes may require in-depth analysis to identify the
root causes. Al-Wathinani et al. [82] reported the voluntary responses of 316 participants
in a cross-sectional study that men between 20 and 39 years old generally drove safely;
however, they exceeded the legal speed limit, drove aggressively around slow drivers,
and became distracted while driving at some frequency. That being said, similar driving
behaviors (speeding, distracted and reckless driving, sleeping at the wheel, violating right-
of-way, improper passing maneuvers, driving in the wrong direction, sudden acceleration
or deceleration, mobile phone use, and taking a wrong exit) constituted 74.7% of the RTCs
in this case study. The most complicated factors are erratic driver behaviors; it is usually
not easy to manage because the driver population presents a wide range of behaviors
with several underlying reasons. Though several studies have already offered remedies to
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prevent and mitigate the impact of RTCs [62,83–89], some are found to be noteworthy to
recommend to the engineers and planners within the scope of this case study.

4.3.1. Designing Safe Roads and Maintaining Work Zone Safety

Road design and construction greatly affect road safety. While some RTCs are at-
tributed to driver errors, mechanical failures, and environmental conditions, many results
from the failure to meet certain design criteria in geometric design [90]. A good design and
taking necessary safety precautions eliminate conflicts by proposing the physical separation
of conflicting movements and by taming excessive speed and aberrant driving behaviors
that can significantly increase the accident risk on roads. Based on the findings of this
study, it is evident that an increase in traffic volume increases driver errors leading to RTCs,
and improved traffic flow with higher average speed and an increased number of traffic
lanes reduce driver errors in the occurrence of RTCs. High-speed roads must be divided
with wide medians and guard rails. On the right-hand side of such roads, emergency
lanes must be available to accommodate wide vehicles in case of vehicle breakdown and
a wide obstacle-free zone to prevent fixed-object crashes. Intersections with and between
motorways should always be grade separated [91].

Road work zones are dangerous and crash-prone areas posing many health hazards
that can cause RTCs resulting in injuries and deaths of road users or site workers. US
Department of Transportation reported that work zone fatalities were 845 and 857 in 2019
and 2020 in all territories of the USA [92]. Road construction or maintenance areas can
potentially contribute to increasing rear-end, fixed-object, and head-on crashes by slowing
or stopping vehicles. Driver behavior was regarded as the highest risk factor in crash
occurrence by road users and experts in Saudi Arabia, such as reckless or aggressive
driving through the work zones. Secondly, lack of lighting and work-zone road signs
were reported as other contributory factors. Suggestions to improve road safety in work
zones were identified as (1) taking strict actions against contractors or consultants who
create safety violations, (2) creating a stronger collaboration between government agencies
to improve road safety, and (3) employing certificated safety engineers or professionals
on the project for road risk assessment [93]. In that respect, Road Safety Audit (RAS)
should become mandatory for all highways [90]. RSA is the formal safety performance
examination of an existing or future road or a junction by an independent, multidisciplinary
team. It qualitatively estimates and reports on potential road safety issues and identifies
opportunities for improvements in safety for all road users [94,95]

In road design, self-explaining roads (SER) and forgiving roadside (FRS) concepts
were developed to make roads safer and more user-friendly for all road users. The idea of
SER encouraging drivers to naturally adopt behavior consistent with design and function
was introduced by Theeuwes and Godthelp [96] and Theeuwes [97]. SER was first applied
in the Netherlands and other parts of Europe. The design is aimed to be distinctive for
different classes of roads regarding the features such as road width, pavement markings,
signing, and street lighting that would be consistent throughout the route. Drivers would
perceive the type of road and instinctively recognize how to behave. The environment
effectively provides a “label” for the particular type of road, and there would thus be
less need for separate traffic control devices, such as additional traffic signs, to regulate
traffic behavior [98]. The notion of SER has gained great popularity and is now considered
the main design principle for road authorities and departments of transportation world-
wide. In many countries, roads were redesigned and adapted to be consistent with the
SER principles. The EU Mobility and Transport committee also adopted this principle
and funded research projects on this issue [99]. The SER approach uses simplicity and
consistency of design to reduce driver stress and error. It is already used for high-speed,
high-volume roads. However, on low-class roads, consistency in design is often compro-
mised by other objectives such as high access levels, variable alignment, mixed-use and
varied roadside development, which result in a lack of consistency and differentiation be-
tween road classes [98]. Similarly, the concept of FRS targets minimizing the consequences



Sustainability 2022, 14, 16654 24 of 36

of driving errors rather than preventing them. Safer roads and roadsides aim to reduce the
risk of vehicles leaving the road, provide adequate recovery space when vehicles run off
the road, and ensure that any collision occurring on the roadside will not cause severe or
fatal injury to vehicle occupants) [100,101].

4.3.2. Driver Education and Awareness

Novice drivers (most in their late teens or early twenties) are overrepresented in crash
statistics, and there is a clear need for remedial measures [102]. Young drivers (aged 15–25)
constitute 11.8% of the male population of Saudi Arabia in 2021 and are active in daily traffic.
Most importantly, they see driving quite differently from adults. Taking erratic behaviors
in traffic and speeding are quite normative for them. To target young drivers, the agonizing
results of RTCs must be delivered to them through diverse visual, aural, and written media,
as well as traffic awareness programs in formal education institutes and driving schools.
Driving schools currently present adult-oriented information and mostly ignore young
drivers informing them about their erratic actions in traffic. It is recommended that first-
time drivers, especially teens between 16 and 18 years who wish to apply for a driving
license, complete a target-oriented driver education and awareness program. The education
and awareness program must not only include information and statistics like it is conducted
in regular class sitting but also should include visits to hospitals, accident sites, post-
accident rehabilitation centers, and police departments. Those first-timers need to witness
the implications and side effects of breaking traffic laws. And those who wish to renew their
driving license may be required to attend a refresher course about erratic driver behaviors
and consequences based on their driving records. In summary, increasing the level of
awareness and improving the curricula of driving schools might have a higher impact on
the safety of young drivers and others in road traffic, as aggressive and speedy driving
behavior among young drivers (aged 18–24) is one of the most common causes of road
accidents in Saudi Arabia [103]. Another hypothesis is that children inherit their parents’
driving habits through genetic disposition and model learning. A series of regression
models indicated that parents’ self-reported driving behavior explains their children’s
respective self-reported behavior, even when exposure and demographic and lifestyle
factors are controlled [104]. Distracted driving behavior among young drivers is quite
common, and developing enforcement and educational strategies to reduce this behavior
might directly affect the probability of crash risk [12]. Therefore, it is necessary to improve
driver education for all ages regardless of cultural background, individual behaviors, and
personal attitudes and enroll them in proper training without compromising because
children are inclined to present similar behaviors to their parents. Training programs
actively engaging young drivers can reduce their tendency to speed, and such programs
may efficiently reduce young drivers’ speeding and other aberrant driving behaviors [86].
It was found that the effectiveness of such programs was significantly increased if they
were strengthened by further communication campaigns targeting key segments of the
population such as the female, young, with lesser educational levels, and non-driving
population, which was found to benefit less from them because not all population segments
in terms of gender, education, and income have the same remembrance level, and gaps in
accessing to information channels and sources may possibly vary [105]. In fact, it was shown
that carefully designed and well-executed positive messages in mass-media campaigns
can successfully contribute to the reduction in alcohol-impaired driving, according to
U.S.-based studies published between 2007 and 2014 [106].

4.3.3. Application of Advance Technologies

Intelligent transportation and vehicle/highway systems (ITS) are offering safer driving
vehicles and environments. Intelligent transportation is indeed a prominent aspect of smart
city development. Intelligent transportation targets handle several issues by considering
traffic or human mobility, sensory data, and geographical data generated in cities. It
combines the concepts of urban sensing, data management and analytics, and various
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service-providing mechanisms into a recurrent process for a discreet and continuous
improvement of an individual’s transit experience and operations of the city transport
authority [107]. The main goal of creating intelligent transportation systems architecture is
to design and implement human-focused, sustainable transportation systems with cutting-
edge technologies such as industry 4.0 technologies, mobile applications, augmented reality,
and the internet of things [108]. ITS technologies and monitoring systems are quite popular
and reasonably well deployed in developed countries, particularly the roadways and
airways [109].

Moreover, real-time highway traffic and performance monitoring of black spots and
construction zones are also very promising. The technology is available and cheaper
compared to previous times for tracking and classification of vehicles with the computation
of traffic flow parameters. This provides information to identify the underlying reasons
for certain types of RTCs. The system can process video continuously over long periods,
accumulating large volumes of tracking data to build daily highway models consisting
of the traffic flow parameters, density, flow, and speed. These daily models are used to
categorize the speed profile of live traffic [110].

Smart vehicle technologies have developed rapidly in recent years, improving mobility
and safety across transportation systems. Drivers’ behavior is pivotal in developing new
transportation technologies, such as connected and automated vehicle technology, and
planning for future transportation systems. Connected and automated vehicle technologies
are expected to improve mobility and safety significantly. As connected and autonomous
vehicles have not been used in practice at a large scale, there are still some uncertainties
about their applications. Therefore, researchers utilize traffic simulation tools to model the
presence of these vehicles. Several studies have shown the impacts of vehicle connectivity
and automation at the segment level. With the advent of connected vehicle (CV) tech-
nology, driver–vehicle behavior is expected to change significantly, as these vehicles can
communicate with each other and also traffic management centers on a real-time basis [111].

A vehicle navigation system guides the vehicle along the optimal path from starting
to destination. A reliable vehicle navigation system can reduce traffic chaos in the city
and improve the level of service [112]. Drivers who use a navigation system can travel
with less stress and more confidence behind the wheel. According to those who think that
driving with a navigation system that delivers traffic information improves the quality of
the chosen route, this positively impacts traffic safety. As a result, the journey time and
navigation errors are reduced. However, more studies on human behavior need to be
pursued concerning using cellular telephones and route guidance in-vehicle navigation
systems [113–115]. Using an intelligent speed adaptation and safety system (ISASS), if
speed limits were strictly followed, road fatalities and hospitalized injuries are estimated
to be reduced by 20% and 15%, and fuel usage and carbon dioxide emissions lowered
by 11% [116].

Finally, it should be underlined that potential problems are needed to be addressed in
implementing advanced technologies and user willingness related to shared data privacy
and user perceptions of insecurity. Vehicles equipped with such technologies continuously
broadcast data while using certain ITS services, including their speed and location. Some
interviewed stakeholders raised their concerns about data privacy and protection breaches
because the data are personal, and the driver must consent to public authorities to use the
data according to the European General Data Protection Regulation. There can be only a
few exceptions to this when the use of the data is of vital interest to the driver himself or
the public in general [117].

4.3.4. In-Vehicle Technologies and Autonomous Driving

In-vehicle technologies for safe driving are included in ITS; however, many car man-
ufacturers have already developed and employed several of them successfully in certain
vehicle types and models independently of the integrated intelligent vehicle-highway
systems. Autonomous vehicles equipped with advanced in-vehicle technologies (AVTs)
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are expected to improve road traffic safety and reduce accidents by replacing the driver’s
role and introducing new capabilities [118]. This includes vehicle control technology to
mitigate harm due to collisions, leveraging automation to react quicker and more consis-
tently than human drivers. Among researchers, the most discussed AVT helps to avoid
obstacles, i.e., to plan the motions of vehicles to eliminate collisions [119,120]. However,
due to uncertainty created by the behavior of other road users, collisions can never be
eliminated [121]. Increased use of AVTs has generated excitement and concern among
researchers, policymakers, and the public. An increasing number of driver assistance
systems are already available in today’s automobiles, and many of them are expected to
become standard. Such technologies must ensure to meet the needs of drivers, particularly
younger and older age groups, who are known to have a higher crash risk [118]. Such
existing and new technologies must focus on improving road safety for all users with both
manual and autonomous driving.

In-vehicle (plug-in) monitoring driving devices [122,123] must be considered for new
drivers, traffic law violators, or a specific-age target group. Such devices would record
speed, excessive breaking or accelerating, hard turns, going over or below the speed limits,
changing lanes without signaling, losing vehicle control, and so on. The owner or user of
such devices would get a performance report of these parameters. Some private companies
in the US are using plug-in monitoring driving devices to monitor the driving behaviors of
their employees, especially those who work in the field [124]. Some insurance companies in
the US offer insurance policy discounts for their policyholders if they agree to plug in those
monitoring driving devices. A growing number of people are ready to give it a try—in
exchange for lower insurance premiums, according to recent research from Nationwide,
one of the largest insurance companies in the U.S. The same study shows two-thirds of
consumers said they would allow a device to monitor their driving behavior if it provided a
discount [125]. Among the obvious cost-saving benefits, the driver will be more vigilant and
careful since his driving is monitored consistently. In addition, authorities and researchers
would have access to real and accurate behavioral driving data to study and analyze. Issue
of data privacy might be an issue for some individuals or countries; however, the same
concerns might be said about personal health data.

4.3.5. Legislation and Enforcement of Traffic Regulations

Saudi traffic laws focus on correcting behavior. Strict traffic regulations are expected
to deter anyone who lacks a sense of responsibility when using roads and penalize those
who fail to correct their behavior. Traffic laws are created and applied to correct improper
behavior and benefit road users. A road traffic crash is deemed to be a liability if it is
due to driver negligence. The law mechanism in Saudi Arabia ensures road safety for all
users [126]. So, when an integrated traffic system is in place, it establishes fundamental
rules that contribute to reducing traffic accidents and achieving the necessary security
and goals established by authorities [1]. For example, speed regulation policies towards
high-level speeding can be highly effective. Viallon and Laumon [24] reported that the
fraction of fatal crashes attributable to high-level speeding (>20 kph over the speed limit)
decreased from 25% to 6% and that attributable to medium-level speeding (10–20 kph over
the speed limit) decreased from 13% to 9%, whereas that attributable to low-level speeding
progressively increased from 7% to 13%. Similar trends were observed on main roads.
These results demonstrate the effectiveness of the speed regulation policies introduced
during the study period with respect to high-level speeding. They also suggest that future
policy should focus on low and medium-level speeding to significantly reduce road deaths
since these levels correspond to the major fraction of fatal crashes [24].

In order to achieve the targeted goals, current legislation and enforcement of traffic
regulations must be continuously reviewed and updated. Most of the cities of Saudi Arabia
have already accommodated the enforcement of traffic safety regulations and added smart
cameras to detect overspeeding, crossing at the red light, mobile phone use while driving,
and not wearing seatbelts. These safety management steps are expected to improve road
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safety in Saudi Arabia; however, human behaviors are quite complex and often hard to
modify; thus, continuous data collection and analyses are desired for the betterment of
traffic safety.

Finally, developing a reward system for law-obeying drivers can be implemented
to encourage drivers to further obey the laws by offering tax cuts, lower insurance costs,
reduced renewal driving license fees, gas coupons, or any other incentive-driven programs.
For example, the North Carolina Safe Driver Incentive Plan (SDIP) was created by the
state law to give drivers a financial incentive to practice safe driving habits. SDIP points
are charged for convictions and at-fault accidents occurring during the experience period
(a three–year period preceding either the date an individual applies for coverage or the
insurance company prepares to renew an existing policy) [127].

Through multiple road safety initiatives (i.e., speed limit and red light violation
cameras, geometric improvements of highway sections and intersections, implement-
ing warning vibrations on shoulders along highspeed highways, placing high-tensile
fences and guardrails, and so on), and cooperation among different governmental agen-
cies, Saudi Arabia 2030 Vision already achieved 13.5 deaths per 100,000 in 2021, and
it is targeting to reduce the number of traffic fatalities on its road network to 8 deaths
per 100,000 by 2030 [128]. The country observed a 33% decrease in traffic accident deaths
and 25% in injuries and accidents during 2018 compared to 2017 [129]. It is recommended
that transportation authorities, traffic and road engineers, drivers, and other stakehold-
ers continue to work together to address this critical issue. Furthermore, an integrated
approach that combines engineering interventions, education initiatives, and enforcement
actions is recommended to increase awareness and compliance among drivers as a means
to support crash prevention in the future.

4.3.6. Benefits of Academic Studies and Research on Traffic Safety

Oftentimes transferability of findings from academic studies and research on traffic
safety from other places can be quite limited if the cultural background and personal
attitudes are rather different in local cases. For this reason, research and scientific studies on
traffic safety should be supported and encouraged by universities and research institutions
at local, regional, and national levels. The desired level of collaboration among related
authorities, such as the Ministries of Transportation, Interior, and Health, must be achieved
to foster traffic safety studies and reduce the frequency and severity of traffic crashes.
Data regarding traffic crashes, such as location, type, involvements, hospitalization, cost of
damage, and so on, must be systematically collected, stored, and processed in a national
database with authorized accesses and with open and free access to the public. It is
recommended that government and private funds be used to create a “national traffic study
fund initiative” that will be used to support research initiatives related to the betterment of
traffic safety in the future.

5. Summary and Conclusions

As many developed and developing, nations are dealing with the crisis of RTCs
causing many lives to be lost and tremendous costs associated with them in terms of
monetary value and human assets. Studies show that driver-related factors are the leading
causes of road traffic crashes (RTCs). This paper aimed to determine the road features and
traffic flow parameters leading to RTCs associated with driver errors along a 761.6 km long
section of an access-controlled major road (Highway 15 between Taif and Medina) in Saudi
Arabia using supervised ML models. BNLOGREG, RF, and kNN models were developed,
and several standard metrics were used to measure their performances, including the
AUC of the ROC curve, F1, classification accuracy (CA), and the Youden index. First,
the BNLOGREG equation was developed to understand the role of the input variables in
explaining the outcome. The model’s accuracy is 74.8%. The five independent variables
(IV) found statistically significant at 0.01 level by the regression are NL (β = −0.501,
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sig. < 0.001), ASF (β = −0.027, sig. < 0.001), AADT (β = 0.016, sig. < 0.001), the road
geometry features (RG1, β = 0.824, sig. < 0.001; RG2, β = 1.268, sig. = 0.005).

The performance of the BNLOGREG model was compared with those of RF and kNN.
The RF model yielded the highest CA of 76.2%. For such unbalanced data with a high
percentage of RTCs (CRTC = 1, 74.7% driver-related cases), the metric of balanced accuracy
(BAC) was calculated to see the actual accuracy. Compared to CAs, BACs were significantly
reduced, ranging from 19.5 to 36.5%. They decreased the most (36.5%) for the RF and
BNLOGREG models with data set (2), i.e., cases with valuable information of the predictors
were removed from the data set. The reduction was less (21.5 to 33.1%) with the imputed
data set (3) used in training. All models performed well regarding the BAC. The RF model
outperformed the rest in all metrics except F1 with data sets (1) and (3). The BNLOGREG
model ranked first regarding the F1 metric with all data sets. Overall, RF is the best model
with its highest AUC (0.712), followed by kNN (0.643).

The following conclusions are reached:

• The performance of all models is comparable, so they are found to be suitable for
predicting the probability of driver errors in the occurrence of RTCs and understanding
the role of the input variables in explaining the model outcomes.

• The two most influential variables are ASF and AADT in the RF model. In line with
the findings of previous research conducted in a similar study context, an increase in
the number of lanes (NL) and daily average speed of traffic flow (ASF) reduces the
likelihood of the RTCs caused by driver errors. This finding is also supported by the
results of previous studies [32,67]. In contrast, an increase in traffic volume (AADT)
and the road geometry features (straight sections and horizontal curves) significantly
contributed to driver errors leading to RTCs.

• Straight road sections and the sections with horizontal curves increase the probability
of driver-error-related RTCs by more than two and three folds (odds ratios = 2.280 and
3.555 yielded by BNLOGREG).

• The impact of geometric elements is significant on the RF model’s output
(Figures 9 and 10). Thus, it is concluded that road geometry substantially influences
the occurrence of RTCs associated with driver errors.

• The inferences concerning the effects of crash attributes are in agreement with the
findings in the literature. Thus, the paper sufficiently contributes to insufficient
knowledge of the factors in RTCs on major roads within the context of this case study.

Finally, it is important to acknowledge that analyses of RTCs in different cultural and
environmental settings may yield unique results in determining the contributing factors
and their weights in calculating the probabilities of outcomes that may be affected by local
conditions. For this reason, other data sets should be obtained and analyzed to examine the
transferability of the results of this study to other cases and situations. Detailed analyses
of RTCs concerning the features of road geometry, especially at curved road sections with
the combination of high-grade straight sections and vertical curves, are recommended for
future study.
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Appendix A

BNLOGREG model: The typical setup for logistic regression is as follows: there is
an outcome y that falls into one of two categories (say 0 or 1), and Equation (A1) below
is used to estimate the probability that y belongs to a particular category given inputs,
X = (x1, x2, . . . , xk) [69]:

P(y = 1|X) = sigmoid(z) =
1

1 + e−z =
ez

1 + ez where x ∈
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Appendix A 
BNLOGREG model: The typical setup for logistic regression is as follows: there is an 

outcome y that falls into one of two categories (say 0 or 1), and Equation. (A1) below is 
used to estimate the probability that y belongs to a particular category given inputs, 𝑋 =(𝑥 , 𝑥 , … , 𝑥 ) [69]: 𝑃(𝑦 = 1|𝑋) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑧) = 11 + 𝑒 = 𝑒1 + 𝑒         𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ ⟦0, 1⟧ (A1) 

and 𝑧 = 𝛽 + 𝛽 𝑥 + 𝛽 𝑥 + ⋯ + 𝛽 𝑥  (A2) 

The equation for z is called a linear predictor, and it is transformed by the sigmoid 
function so that the values fall between 0 and 1, and can therefore be interpreted as 

(A1)

and
z = β̂0 + β̂1x1 + β̂2x2 + . . . + β̂kxk (A2)

The equation for z is called a linear predictor, and it is transformed by the sigmoid
function so that the values fall between 0 and 1, and can therefore be interpreted as
probabilities. β̂i’s are the estimated linear coefficients. The resulting probability is then
compared to a threshold to predict a class for y based on X. In BNLOGREG used in this
study, the probability of category membership on a dichotomous dependent variable
(DV: cause of the road traffic crash (CRTC), driver-related = 1, and otherwise = 0) was
based on multiple independent variables (IVs: number of lanes (NL), the daily average
speed of traffic flow (ASF), annual average daily traffic (AADT), and road geometry
(RG: binary, straight section = 1, otherwise = 0, and horizontal curve = 1, otherwise = 0)).
Three of the IVs (NL, ASF, and AADT) are continuous (i.e., interval or ratio in scale), and
the remaining two (RG1 = straight section and RG2 = horizontal curve) are categorical
(binary). Non-metric IVs (RG1 and RG2) are included as a “factor,” and dummy-coded
(straight road section = 1, otherwise = 0, and horizontal curve = 1, otherwise = 0), and
continuous IVs (NL, ASF, and AADT) are included as “covariates.” The same DV and IVs
are used in other supervised classification models used in this study.

While binomial logistic regression does compute correlation measures to estimate the
strength of the relationship (pseudo-R square measures), these correlation measures do not
really tell much about the accuracy or errors associated with the model. The regression
coefficients for logistic regression are calculated using maximum likelihood estimation
(MLE). The natural logarithm of the odds ratio is equivalent to a linear function of the
independent variables. The antilog of the logit function permits the following estimation of
the regression equation, Equation (A3):

logit ( p̂) = ln
(

p̂
1− p̂

)
= β̂0 + β̂1·NL + β̂2·AADT + β̂3·ASF + β̂4·RG1 + β̂5·RG2 (A3)

We isolate p by taking the antilog of Equation (A3) and get:

p̂
1− p̂

= eβ̂0+β̂1·NL+β̂2·AADT+β̂3·ASF+β̂4·RG1+β̂5·RG2 (A4)
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We continue to solve for p̂ as shown below:

p̂ = eβ̂0+β̂1·NL+β̂2·AADT+β̂3·ASF+β̂4·RG1+β̂5·RG2(1− p̂) (A5)

Then, by skipping the intermediate steps, we estimate the probability p̂ for the logistic
regression equation:

p̂ =
eβ̂0+β̂1·NL+β̂2·AADT+β̂3·ASF+β̂4·RG1+β̂5·RG2

1 + eβ̂0+β̂1·NL+β̂2·AADT+β̂3·ASF+β̂4·RG1+β̂5·RG2
(A6)

and the BNLOGREG equation becomes:

P(CRTC = Driver error = 1|0) = 1

1 + e−(β̂0+β̂1·NL+β̂2·AADT+β̂3·ASF+β̂4·RG1+β̂5·RG2
(A7)

As two common problems, overfitting and underfitting, are observed in regression
models, regularization is used to train the model of BNLOGREG in order to avoid them.
In the case of overfitting, the model performs well on the training data set but not so
well on the test data set. In underfitting, the model neither performs well on the training
data nor on the test data sets. Simplifying the model as in Equation (A2) and using
fewer parameters overcomes the overfitting issue. In addition, other approaches can be
considered to overcome the overfitting problem, such as (i) regularizing the model (putting
constraints on the model with Lasso-Least Absolute Shrinkage and Selection Operator, and
Ridge regression techniques), (ii) gathering more training data, (iii) removing variables that
do not improve the model, and (iv) removing the noise in the training data (e.g., fixing data
errors and removing outliers).

Underfitting occurs when the model is too simple to understand the underlying
structure of the data properly. This can be overcome by (i) building a better model with
more parameters, (ii) feeding better features to the learning algorithm, and/or (iii) reducing
the constraints on the model. It must be noted that increasing the sample size for the training
data set will not help. The regularization technique adds an extra term—the regularization
term– to the error function used in the training stage. The Ridge regularization term is
the sum of the squares of all parameters, which is known as weight decay and drives
parameters toward zero. The Lasso regularization term is the sum of the absolute values of
the parameters [130]. Equations (A8) and (A9) show the Ridge and Lasso terms added to
the minimization of the residual sum of squares (RSS), respectively [69]:

λ
p

∑
i=1

∣∣β j
∣∣ (A8)

λ
p

∑
j=1

β2
j (A9)

where p is the number of variables included in the model, and λ ≥ 0 is a tuning parameter
to be determined separately. Ridge and Lasso implicitly function as their own form of
feature selection, as shown in Equations (A8) and (A9). The attributes that do not contribute
to the predictive power of the regression have their coefficients lowered, but the more
predictive features have higher coefficients, despite the extra penalty. Because Ridge
regression squares the coefficients in the penalty term, coefficients on less valuable features
tend to approach zero but not quite reach it. On the other hand, Lasso will shrink certain
parameters (β j) towards zero, but it will not set any of them exactly to zero (unless λ = ∞).
This may not hurt prediction accuracy, but it can make model interpretation difficult in
the circumstances with a large number of variables, p. However, as λ→ ∞, the shrinkage
penalty’s weight grows, and regression coefficient estimates will approach zero. Unlike
the least squares method, which generates only one set of coefficient estimates, Lasso and
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Ridge regression will produce a different set of coefficient estimates, β̂L
λ and β̂R

λ , for each
value of λ. So, selecting a good value for λ is critical [60].

Random forest (RF) algorithm: A Random Forest is a tree-based ensemble with each
tree depending on a collection of random variables. More formally, for a p-dimensional
random vector X =

(
X1, . . . , Xp

)T representing the real-valued input or predictor variables
and a random variable Y representing the real-valued response, we assume an unknown
joint distribution PXY (X, Y). The goal is to find a prediction function f (x) for predicting
Y. The prediction function is determined by a loss function L(Y, f (X)) and defined to
minimize the expected value of the loss [51]:

EXY(L(Y, f (X))) (A10)

where the subscripts denote expectation with respect to the joint distribution of X and Y.
Intuitively, L(Y, f (X)) is a measure of how close f (X) is to Y; it penalizes val-

ues of f (X) that are a long way from Y. Typical choices of L are squared error loss
L(Y, f (X)) = (Y− f (X))2 for regression and zero-one loss for classification [51]:

L(Y, f (X)) = I(Y 6= f (X)) =

{
0 if Y = f (X)
1 otherwise.

(A11)

In the classification situation, if the set of possible values of Y is denoted by Y , mini-
mizing EXY(L(Y, f (X))) for zero one loss gives

f (x) = argmax
y∈Y

P(Y = y|X = x), (A12)

otherwise known as the Bayes rule [51].
Ensembles construct f in terms of a collection of so-called “base learners”

h1(x), . . . , hj(x) and these base learners are combined to give the “ensemble predictor”
f (x). In classification, f (x) is the most frequently predicted class (“voting”)

f (x) = argmax
y∈Y

J

∑
j=1

I
(
y = hj(x)

)
· (A13)

In Random Forests, the jth base learner is a tree denoted hj
(
X, Θj

)
, where Θj is

a collection of random variables and the Θj’s are independent for j = 1, . . . , J. To
understand the Random Forest algorithm, it is important to know the type of trees used as
base learners [51].

k-nearest neighbor (kNN): kNN is commonly employed in pattern recognition. Nearest-
neighbor classifiers learn by analogy or by comparing a set of test data with similar training
data. The training dataset is characterized by n attributes. Each data point represents
a location in a space with n dimensions. This way, all the training data are stored in
n-dimensional pattern space. When given unknown data, a kNN classifier searches the
pattern space for the k training data closest to the unknown data. These k training data
are the k “nearest neighbors” of the unknown data, which is the core decision factor in the
model’s accuracy. k is usually an odd number if the number of classes is even. The model’s
performance must be checked by calculating the prediction on different values of k and com-
paring their performance. “Closeness” is defined as a distance metric, such as Euclidean
distance [39]. The Euclidean distance between two points, say, X1 = (x11, x12, . . . , x1n) and
X2 = (x21, x22, . . . , x2n), is described by Equation (A14):

dist(X1, X2) =

√
n

∑
i=1

(x1i − x2i)
2 (A14)
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There are other distance measures, like the Manhattan distance (Equation (A15)),
which is also very commonly used for continuous variables:

dist(X1, X2) =
n

∑
i=1
|x1i − x2i| (A15)

Typically, the values of continuous attributes are normalized before using Equation
(A14) or Equation (A15). This prevents attributes with initially large ranges (e.g., AADT)
from outweighing the ones with smaller ranges (e.g., NL and binary attributes such as RG1
and RG2). The algorithm has the following three steps: (i) calculate distance using Equation
(A14) or Equation (A15), (ii) find k-nearest neighbors, and (iii) assign a class containing the
maximum number of nearest neighbors. In the case of very small values of k, the algorithm
is too sensitive to noise. Larger values of k make the class boundaries smoother, which
might not be desirable as the points of other classes may get included in the neighborhood.
When the training data points are scattered, the value of k is difficult to determine [131].
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