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Abstract: The share of rail transport in world transport continues to rise. As the number of trains
increases, so does the load on the railway. The rails are in direct contact with the loaded wheels.
Therefore, it is more easily damaged. In recent years, domestic and foreign scholars have conducted
in-depth research on railway damage detection. As the weakest part of the track system, switches
are more prone to damage. Assessing and predicting rail surface damage can improve the safety of
rail operations and allow for proper planning and maintenance to reduce capital expenditure and
increase operational efficiency. Under the premise that functional safety is paramount, predicting
the service life of rails, especially turnouts, can significantly reduce costs and ensure the safety of
railway transportation. This paper understands the evolution of contact fatigue on crossing noses
through long-term observation and sampling of crossing noses in turnouts. The authors get images
from new to damaged. After image preprocessing, MPI (Magnetic Particle Imaging) is divided
into blocks containing local crack information. The obtained local texture information is used for
regression prediction using machine-supervised learning and LSTM network (Long Short-Term
Memory) methods. Finally, a technique capable of thoroughly evaluating the wear process of crossing
noses is proposed.

Keywords: contact fatigue; neural convolution; machine learning; turnout; switch; frog rail; rail
surface; long short-term memory

1. Introduction

Rail transportation plays a more critical role in the world transportation network. In this
context, European railway traffic is multiplying, and railways keep Europe going. Railway
operation safety has attracted more attention as a critical factor in ensuring smooth traffic. A
European survey in 2018 showed that European local and regional passenger trains experience
about one in ten travel delays. Many passenger and freight trains did not travel due to rail
failure [1]. It will see that excellent and timely railway maintenance is of great significance
to railway operation. The crossing is the main structure of the railway track to realize the
transfer of trains, and it is also the weak link of the railway track and the critical facility for
limiting the passing speed of the train [2]. The wheel-rail wear in the crossing is severe, and
the service life is short, increasing the railway operation cost and posing a potential safety
hazard. With the increase in train speed, the crossing’s action becomes more complicated,
which puts higher requirements on the quality of the crossing [3].

Most rail failures come from various damages on the rail surface, the most frequent
failure. If someone can evaluate the rails’ service conditions and the rails’ status to predict
the occurrence of rail failures, it will save a lot of inspection and maintenance costs. Timely
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pre-grinding of the rail can also remove surface fatigue cracks and increase the service
life of the rail [4]. As the weakest part of the rail system, it is imperative to detect and
evaluate its surface state and make accurate predictions. Many scholars have studied the
state of the ballast or subgrade to predict it, as shown in articles [5–8]. They are of reference
significance to the state and evaluation of subgrade bearing capacity. Many scholars have
carried out comprehensive research on various types of damage detection on the rail surface.
However, there are few studies on the surface fatigue state of rails and crossings, and the
evaluation and prediction of the state of crossings are rarer [9–11]. Moussa Hamadache
et al. summarized the existing turnout detection methods, and machine vision detection is
more environmentally friendly and efficient [12]. In Article [13] an evaluation of crossing
modelling approaches has been performed in this article to justify their selection for the
research interests of predicting the most dominant failure mechanisms of wear, rolling
contact fatigue (RCF). For the surface fatigue detection and evaluation of crossings, the
Mykola Sysyn team of the Dresden University of Technology proposed an effective research
method in the article [14,15]. They obtain the crack image of the defects detection on the
crossing nose surface. With the statistical regression algorithm, they successfully predict the
location of the damage in advance 10 Mt (million tons) of the traffic volume and determine
the state of the crossing nose. Vadim Korolev solve the issue of safe permissible dimensions
of a gauge track and flangeway gap [16]. His team also reduce maintenance expenditures
on curved turnouts and increase the travel speed through turnouts up to the ones when
rounding a curve [17]. Based on the article [13], this paper conducts a further study. First,
through the observation and sampling of the fatigue state of the surface of the crossing
noses of multiple crossings, magnetic particle inspection is carried out. Finally, it can
obtain the complete damage process of the crossing nose. Through the data of the damage
process, information on defect states can be received. In order to avoid the error of crack
feature extraction caused by natural conditions and other factors, this paper avoids the
computationally crack extraction process. Instead, the authors extract texture features from
the crossing nose image. The images need preprocessing. Firstly, the surface image of the
crossing nose was divided into small images that can contain most of the surface cracks,
and then 54 categories, including 33,696 texture features, were obtained through typical
texture feature extraction algorithms for the images from 624 regionals. Finally, through
various machine learning regression algorithms, as well as the CNN regression algorithm
and LSTM regression algorithm, these eigenvalues are fitted and regressed, and the results
to select the optimal regression algorithm can be compared. The calculation results can
quite accurately distinguish the fatigue damage state of the crossing nose surface in four
stages. The convergence index of the regression is optimal, which can accurately evaluate
the fatigue state of the crossing nose. It also has a reasonable prospect of expanding
application in other parts of the rail system. It provides a reliable research direction for
damage prediction of the rail system.

2. Features Acquisition and Methods

After years of development, several mature enough rapid detection methods, such as
electromagnetic induction and ultrasonic and magnetic particle inspection [18]. Traditional
defect detection methods need to obtain specific information about damage, such as the
length of cracks, the range of squat(s), and the size of spalling. However, after preprocessing
the magnetic particle inspection images, this paper omits the complex crack detection
process and only uses computer algorithms to obtain local texture features for analysis. As a
result, it saves data processing time and has better prediction results than the literature [15].

2.1. A. Image Preprocessing

Magnetic particle inspection uses the interaction between the leakage magnetic field at
the workpiece defect and the magnetic powder. It uses the difference between the magnetic
permeability of the surface and near-surface defects (such as cracks, slags, hairlines, etc.) of
steel products and the permeability of steel. After magnetization, the magnetic field at the
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discontinuity of the material will be distorted. It will generate a leakage magnetic field on
the surface of the workpiece, where part of the magnetic flux leaks. Thereby attracting the
magnetic powder to form the magnetic powder accumulation on the defect magnetic trace,
which shows the position and shape of the defect under appropriate lighting conditions,
to observe and interpret the accumulation of these magnetic particles and realize magnetic
particle inspection. The time and location of severe cracks and breakages in rails (especially in
the crossing area) are random. In this study, high-definition image shooting and magnetic
particle inspection at fixed traffic intervals were performed on multiple crossing areas until
the crossing’s complete rolling fatigue damage process was observed. The magnetic particle
inspection image is obtained from the surface inspection of the crossing nose track, as shown
in Figure 1.
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Figure 1. Image with magnetic particle inspection of a frog rail.

The original data in this paper is the complete and continuous destruction process of
a small number of crossing noses obtained by Deutsche Bahn installing 11 crossings on a
heavy traffic railway in Hannover after three years of uninterrupted observation. At the
same time, the research team of China Railway Hohhot Group also provided data as an
extension. The data of five moments in the whole service life cycle of the crossing from
brand new to complete failure was recorded. After three basic image processing steps of
image grayscale, noise reduction, and enhancement, each crossing nose can provide a set of
MPIs data for the entire life cycle. The authors also took camera images of the rail surface
during the same period for reference and verification. Figure 2 shows part of an example
crossing nose data message.
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The resulting image was unified to 1792 × 384 pixels and divided the image into
256 × 128 local patches in the 64-pixels step. The size of the partial image is selected
according to the principle that the image of this size can completely contain most of the
surface cracks of the crossing nose track. The segmented image obtained by the above
method retains all the texture features. With the code of images, the specific position of
the crossing nose track surface where the crack is located can be located, which provides
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convenience for the subsequent return of results. Figure 3 shows the partially segmented
image. Because of the geometry of the crossing nose track’s widening cross-section with
distance from the vertex, some segmented images contain more blank parts. For the
accuracy of the data, this part of the local image was removed.
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2.2. Feature Extraction

The texture of an image is the quantized image feature in image computation. The
image texture describes the spatial color distribution and light intensity distribution of an
image or a region area within it. The authors usually refer to the repeated arrangement
of some basic patterns as visual textures in image processing. Determining the tone units
constituting the texture and determining the relationship between the tone units are the
primary methods to describe texture information. The texture is a feature that exists in a
local area. It is related to the size and shape of the area. Determining the boundary between
two texture modes requires observing whether the value of the texture feature changes
significantly. Texture reflects the structural framework of the information contained in
the picture. The texture is an essential means of image segmentation, feature extraction,
classification, and recognition. Statistical and structural methods are the primary means of
texture analysis for spatial or transform domain images. Methods based on computer vision,
such as Local binary patterns [19], Scale-invariant feature transforms [20], Haar-like [21],
many image feature extraction.

However, feature extraction is mainly about finding feature points for visual detection
and classification. These methods are not the same as the research purpose of this paper
because the fractures change randomly and cannot correspond to one-to-one. General
feature extraction mainly extracts the length, thickness, and number of cracks. The above
method can be used when the crack structure is relatively simple and the number is small.
Despite, in the face of a large amount of crack information and complex crack structures,
the detection method of prominent texture features is more suitable. Because the extraction
of texture features does not require specific crack objects, it is more in line with statistical
results. More importantly, the detection method of texture features is faster than extracting
detailed physical information and is not easily disturbed by external factors. Therefore,
three detection methods of texture feature (GLCM, HOG, and Gabor) were chosen to be
suitable for this paper and extract 54 feature values for each local image. All three methods
have broad applications and validation.
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2.2.1. GLCM Feature Extraction

In 1973, Haralick [22] proposed to describe texture features with a gray-level co-
occurrence matrix (GLCM). The GLCM is a crucial method for analyzing image texture
features, which has strong robustness and stability and is widely used in practical applica-
tions. The grayscale histogram results from statistics on a single pixel on the image having a
certain grayscale. The grayscale co-occurrence matrix is obtained by statistics on the status
of two pixels that maintain a certain distance on the image, respectively, having a certain
grayscale. The joint probability density of pixels at two positions is the co-occurrence matrix.
The distribution characteristics of brightness and the position distribution characteristics
between pixels with the same or close brightness are the primary information in GCLM.
GLCM is a second-order statistical feature matrix, the basis for defining a set of texture
features. Its magnitude relates to changes in image brightness.

The gray level co-occurrence matrix of an image can reflect the comprehensive in-
formation of the gray level of the image on the direction, adjacent interval, and variation
range. It is the basis for analyzing the local patterns of the image and their arrangement
rules. The gray-level co-occurrence matrix starts from the pixel (x, y) with the gray value
of i in the image to the pixel (x + a, y + b) with the distance d, and the gray value is j. The
authors count the P(i, j, d, θ). It is the frequency of simultaneous occurrence of i and j.

P(i, j, d, θ) = {(x, y), (x + a, y + b) | f (x, y) = i, f (x + a, y + b) = j} (1)

It represents the grayscale co-occurrence matrix, an N ∗ N matrix (N is the gray level,
which is the number of different grayscales or colors in a picture). Among them, θ is the
generation direction of the gray level co-occurrence matrix, which usually goes in four
directions of 0◦, 45◦, 90◦, and 135◦. In the GLCM matrix, if the elements near the diagonal
have larger values than far elements, it means that the pixels of the image have similar
pixel values. The gray level has a significant change locally. In order to describe the texture
status with the co-occurrence matrix more intuitively, some parameters reflecting the matrix
status from the co-occurrence matrix were derived. Typically as follows:

• Energy: It is the square sum of the element values of the gray co-occurrence matrix, so
it is also called energy, which reflects the uniformity of the image’s gray distribution
and the texture’s thickness.

• Contrast: it reflects the clarity of the image and depth of texture grooves.
• Correlation: It measures the similarity of the spatial grayscale co-occurrence matrix

elements in the row or column direction. Therefore, the correlation value reflects the
local grayscale correlation in the image.

• Entropy: It measures the amount of information an image has, and texture information
belongs to the information of the image, which is a measure of randomness.

• Inverse differential moment: It reflects the homogeneity of the image texture and
measures the local variation of the image texture. A significant value indicates no
variation between different image text areas, and the local area is uniform.

This paper calculates the image matrix’s mean, variance, and standard deviation of
the above five main parameters. As a result, 15 features as reference data for regression
analysis can be obtained.

2.2.2. HOG Feature Extraction

Histogram of Oriented Gradient (HOG) is a computational method that can be used
to characterize the images. In computer vision detection, the detection target is locked by
image processing [23]. Computing the gradient direction histogram of the local area of
the image is a method for HOG to construct image features. The method of HOG feature
analysis is typical in the field of image classification. HOG obtains the gradient feature of
the image by calculating the size and direction of the gradient of each pixel in the image
and is a feature descriptor. Due to the computation of local histograms and normalization,
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it is remarkably invariant to image geometric and optical deformations. Figure 4 shows the
processing process.
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The authors need to divide the image into several cells. In this paper, 16× 16 pixels are
one cell, and adjacent cells do not overlap. Unlike the traditional method, the magnitude
of the gradient direction in each cell needed to be counted. All gradient directions were
divided into 9-dimensional feature vectors. This method counts the cumulative gradient
values corresponding to each angle. Each single cell unit group has nine values, connecting
cells into a block. This way, the authors count the accumulated gradient values corre-
sponding to each direction in a block. These values are the HOG features of this paper.
However, there is an overlap between these blocks. All information is overlapped an equal
number of times and does not affect the final statistical proportions. The final value has to
be normalized. The value is the HOG description feature. Each image can get nine texture
features. However, the crack feature studied in this paper is comprehensive data rather
than a feature point, so the calculation method of the HOG feature is slightly modified here.
In the calculation process of this paper, each block is a cell, so there is no overlapping area
of data. The focus of the data is on the histogram channel values in nine gradient directions.
Finally, the mean and variance of each matrix will be calculated separately. The final HOG
features that make up the mobile phone are in this paper. In this way, the authors obtain
18 eigenvalues for each image corresponding.

2.2.3. Gabor Feature Extraction

Gabor filter has excellent advantages when extracting texture features of objects. It is
very similar to the working principle of the optic nerve of the human visual system [24].
Gabor filters are good at extracting local spatial and frequency domain information from
images. The Gabor wavelets have good sensitivity to the edges of objects. It can provide
good orientation features and scale features. The insensitivity to illumination changes
has little effect on the Gabor filter. These characteristics make the Gabor wavelet widely
used in visual information analysis. It is a common means of computing technology
sense detection. The two-dimensional Gabor wavelet transform is an essential tool for
signal analysis and processing in the time-frequency domain. Its transform coefficients
have good visual characteristics and biological backgrounds, so it is widely used in image
processing, pattern recognition, and other fields. The complex sine function modulated by
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the Gaussian function constitutes the Gabor function, which can extract a given region’s
local frequency domain features. The two-dimensional Gabor kernel function consists of a
Gaussian function Multiplied by a cosine function, where θ, φ, γ, λ, σ are parameters.

gλ,θ,ϕ,σ,γ(x, y) = exp
(
− x′2 + γ2y′2

2σ2

)
cos

(
2π

x′

λ
+ ϕ

)
(2)

x′ = x cos θ + y sin θ (3)

y′ = −x sin θ + y cos θ (4)

Wavelength (λ): represents the wavelength parameter of the cosine function in the
Gabor kernel function. Its value is specified in pixels, usually greater than or equal to 2, but
not greater than 1/5 of the input image size.

Orientation (θ): Indicates the orientation of the parallel strips in the Gabor filter kernel.
Valid values are real numbers from 0◦ to 360◦.

Phase offset (ψ): represents the phase parameter of the cosine function in the Gabor
kernel function. Its value range is−180◦ to 180◦. Among them, the equations corresponding
to 0◦ and 180◦ are symmetrical with the origin, and the equations of −90◦ and 90◦ are
centrosymmetric about the origin.

Aspect ratio (γ): The spatial aspect ratio, it determines the shape of the Gabor function.
When γ = 1, the shape is circular; when γ < 1, the shape elongates with the direction of the
parallel stripes. Usually, this value is 0.5.

Here σ represents the standard deviation of the Gaussian factor of the Gabor function.
In this paper, the wavelength λ is 16, and the direction θ are zero, π/6, π/4, π/2, 3π/4,

5π/6 and π. The relative phase offset ψ is zero. The aspect ratio is 0.5. It can obtain seven
sets of feature matrices in different directions. These data’s mean, variance, and standard
deviation were calculated again. Finally, the authors can get 21 texture features. In this
paper, three texture extraction methods and 54 features are the primary data for analyzing
and predicting the surface damage of frog tracks.

3. Regression Analysis

Although the direct extraction of texture information has saved much time compared
to the direct extraction of crack and damage features, more than 30,000 data with 54 sets
cannot be directly calculated and analyzed. With such massive data, it is difficult to ensure
accuracy and efficiency using basic statistical analysis methods. Computer science has
dramatically improved computing power and data storage capacity [25]. The advent of
machine learning has provided more options for solving these types of problems. Machine
learning has many types of tasks, but supervised, and unsupervised learning can generally
be used. The focus of the supervised learning model of machine learning is to predict
the target/marker of an unknown sample based on the knowledge of existing experience.
Unsupervised learning tends to analyze the characteristics of things themselves, and
commonly used techniques include Dimensionality Reduction and Clustering. This paper
explores the observation and prediction of rolling fatigue damage on the rail surface,
which is the analysis and prediction of continuous variables. Therefore, the supervised
regression prediction algorithm is suitable for the research data in this paper. The deep
learning algorithm of the neural network also has this wide application and a good effect
on regression prediction [26,27]. Therefore, the authors use these two methods to regress
the data and compare the results.

3.1. Machine Learning Regression

The most common examples of supervised machine learning are Support Vector
Regression and Tree Ensemble. Both algorithms are prevalent and mature. Gaussian process
regression (GPR) is generally regarded as a highly expressive supervised learning algorithm
comparable to the deep neural network (DNN). GPR has the excellent intuitive property
that all interpolated mean predictions are generated as a weighted linear combination of
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the existing mean points in the training set, as measured by the distance from the test
point to a given data point (measured in the space of the kernel function) zoom. [28]. GPR
require less data because they have fewer parameters to tune. However, with more data,
significantly when the density does not increase over the fixed domain [29], which can help
significantly improve performance. Predicted values are probabilistic (Gaussian), so the
empirical confidence intervals can be calculated and then, based on this information, re-fit
(online fitting, adaptive fitting) predictions in a particular region of interest. Moreover,
GPR is robust to phenomena such as exploding and vanishing gradients. Different cores
can be specified. Standard kernels are provided, but specific kernels can also be selected.

Gaussian process regression (GPR) models are nonparametric kernel-based probabilis-
tic models with a finite collection of random variables with a multivariate distribution [30].
The Gaussian process has one more time or space dimension than the Gaussian distribu-
tion or one more prediction process. Figure 5 shows the steps of using Gaussian process
regression prediction.
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This paper uses three algorithms for regression processing of the same dataset in SVR,
Tree Ensemble, and GPR. First, the results of the above three methods are compared, and
the best-supervised machine learning algorithm is selected. Then the authors compare the
machine-learning algorithm with the results of deep learning to ensure that the final result
obtained in this paper is optimal.

3.2. Deep Learning Regression

Convolutional Neural Networks (CNN) are best at processing images. The human
optic nervous system inspires it. Currently, the application of CNN is the most extensive in
deep learning, such as face recognition, automatic driving, security, and many other fields.
However, what has sprung up for regression problems is Recurrent Neural Networks
(RNN). RNN is a class of artificial neural networks that have become more popular recently.
RNN learns from ordered data, and RNN will remember the last data like a human but
sometimes forget the previous data [31]. To solve this drawback of RNN, In 1997, Sepp
Hochreiter and Jürgen Schmidhuber presented LSTM networks [32], whose full English
name is Long short-term memory, which is also one of the most popular RNNs. Compared
with the simple RNN structure, LSTM is an excellent variant model of RNN. It inherits
the characteristics of most of the RNN models and solves the Vanishing Gradient problem
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caused by the gradual reduction of the gradient backpropagation process. In addition,
LSTM introduces a “gate” structure, which effectively avoids terrible conditions such as
gradient explosion and gradient dispersion, and thus has better prediction and fitting
performance for data. LSTM is popular in image recognition, semantic understanding,
time series analysis, and other fields. In comparisons with other nets, Elman nets, and
Neural Sequence Chunking, LSTM leads to many more successful runs, and learns much
faster. LSTM also solves complex, articial long time lag tasks that have never been solved
by previous recurrent network algorithms. Structures called “gates” are carefully designed
parts of an LSTM. It can remove or add information to the cell state. The primary function of
the gate is to select suitable information. It consists of a pointwise multiplication operation
and a sigmoid neural network layer. A single-layer module repeat calculates in standard
RNN. LSTM-Network has a similar structure to RNN.

Nevertheless, the repeated modules of the LSTM have a unique structure, as shown in
Figure 6. It comprises four neural structures that communicate information in particular
ways. Figure 6 illustrates the architecture of a simple LSTM network for regression. The
network starts with the sequence input layer and then the LSTM layer. Finally, a fully
connected layer and a regression output layer are at the network’s end.
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The specific steps of LSTM are too complicated. This paper makes a simple analysis
in Figure 7. When the input is input to the hidden layer of the LSTM network, it is
firstly transformed by the input gate and then superimposed with the memory cell state
processed by the forget gate to form a new memory cell state. Finally, the memory cell state
is processed by the nonlinear function. The output of the hidden layer can be obtained by
dot product with the current information state processed by the nonlinear function. At the
same time, the ordinary CNN model can also realize the regression algorithm of the data.
Therefore, it can be called an RNN network. In order to verify that the calculation results
of LSTM in predicting the evolution of fatigue on crossing nose surfaces are relatively
superior, this paper will also build a CNN model for regression prediction. This paper
compares the results of the two with those calculated by machine-supervised learning,
allowing us to find a relatively perfect fit regression model.
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3.3. Evaluation Indicators

In regression tasks (prediction of continuous values), common evaluation metrics
are Root Mean Square Error (RMSE) [33], Mean Squared Mean Square Error (MSE) [34],
and Mean Absolute Error (MAE) [35]. RMSE has the same dimension as MAE, but after
calculating the result, the authors will find that RMSE is larger than MAE. RMSE is to
square the error first and then extract a root, which magnifies the gap between larger errors.
The MAE reflects the true error. Therefore, in the measurement, the smaller the value of
RMSE, the better the fitting because its value can reflect its maximum error and is relatively
small. The problem with the above measurement methods is that there is no upper and
lower limit, and the coefficient of determination) R2 [36] solves this problem. This article
does not discuss their differences in detail and directly uses these data to measure the effect
of regression models.

The smaller the first three values are, the better the fitting effect. The larger the R2 is,
the higher the degree of explanation of the independent variable to the dependent variable.
At the same time, the higher the percentage of the change caused by the independent
variable to the total change. The scatter points are more clustered near the regression line
(note that R2 is not necessarily a 1:1 line), and in general, when R2 is higher than 0.8, the
fitting effect is better.

4. Results

Observing many variables that reflect things is a problem that modern scientific
research often faces. Scholars must collect large amounts of data for analysis and then look
for patterns. A large number of multivariate samples undoubtedly provide rich information
for research and application, but it also increases the workload of data collection to a certain
extent. Usually, many associations exist between variables, which increases the difficulty of
snooping on patterns and brings inconvenience to analysis. Principal component analysis
(PCA), is mainly used for dimensionality reduction operations on high-dimensional data to
extract the main features of the data and remove useless or noisy information. In this paper,
the process of reducing the dimension of the experimental data through PCA is expected to
obtain a reasonable feature dimension. The first six main features in the PCA-calculated
data were selected and gradually increased to 54. The four evaluation indicators of the
experimental results are then compared to determine the optimal feature selection result.

Table 1 is mainly to confirm the number of features that need to be selected in this
paper. After sorting by feature influence, increase the number of features in order to observe
the changes of the corresponding four parameters, so as to select the optimal number of
features. It is observed from the results in Table 1 that the values of RSME, MSE, and MEA
decrease significantly at the beginning as the number of selected features increases. Then it
starts to slow down in the range of the number of features from 27 to 44. When the number
of features increases to 54, there is a significant decline again and to the minimum. In
contrast, R2 has the opposite trend with these three values. They are reducing the number
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of features to reduce the calculation time. Eighteen principal components can be chosen for
analysis when the data is vast because the R2 value has exceeded 80%. However, to get the
best results, this paper selects all 54 features for machine learning.

Table 1. Variation of the Indicators as the Number of Features Increases.

Feature
No. 6 12 18 27 35 44 48 52 54

RSME 7.314 6.2298 4.4361 4.1066 4.1909 3.9339 3.8559 3.8628 3.3273

MSE 53.495 38.811 19.679 16.864 17.563 15.475 14.868 14.921 11.071

MEA 5.2493 4.3527 3.1284 2.9974 3.0312 2.8421 2.8344 2.8266 2.3086

R2 0.58 0.7 0.85 0.87 0.86 0.88 0.88 0.88 0.91

4.1. Machine Learning Results

SVR and Tree Ensemble have supervised learning methods for regression. SVR uses
the principle of Statistical Risk minimization to fit the regression line. Tree Ensemble cuts
the data set into many easily modeled data and then uses linear regression techniques for
modeling. Similar to GPR, these two algorithms also need a kernel function. Algorithms
lacking contrast are not enough to justify the choice. In this paper, the above two algorithms
and the GPR algorithm are used to perform regression analysis on the surface texture data
of the crossing nose. The authors incorporate multiple kernel functions into each algorithm.
Finally, the regression prediction results of machine learning in 11 are obtained. This
paper lists the four evaluation indicators of the 11 models in Table 2 for comparison. The
optimal machine-learning model was selected. The purpose of Table 2 is to select the
optimal unsupervised learning algorithm by comparison. This algorithm is then compared
with the algorithm of the deep neural network. The optimal algorithm may be selected
after multiple comparisons. From the results in Table 2, it can be seen that the regression
model of the GPR algorithm has advantages. The GPR algorithm, whose kernel function is
Rational Quadratic, has the best results compared with other machine learning algorithms.
The values of RSME, MSE, and MEA reach the minimum, while R2 reaches the maximum,
up to 0.91. This result can be fully applied to actual detection and prediction. The results
in Tables 1 and 2 also show that RSME is almost proportional to the other two indicators
(MSE and MEA). Therefore, the authors only need to refer to one indicator. R2 and RSME
were applied as comparison metrics for neural network results.

Table 2. Machine Learning Regression Comparisons.

GPR Tree Ensemble

Squared
Exponential Matern 5/2 Rational

Quadratic Exponential Bagged
Trees

Boosted
Trees

RSME 3.5518 3.3739 3.3273 3.9627 4.9450 5.0920

MSE 12.6160 11.3830 11.071 15.7370 24.4530 25.9290

MEA 2.5092 2.3460 2.3086 2.8581 3.5040 3.8013

R2 0.90 0.91 0.91 0.88 0.81 0.80

SVR

Linear Quadratic Cubic Fine
Gaussian

Medium
Gaussian

Coarse
Gaussian

RSME 7.0201 28.528 21.025 8.7155 5.4601 8.3760

MSE 49.282 62.847 42.199 73.787 27.408 68.912

MEA 5.1181 3.6229 3.6891 7.2957 3.8202 6.0487

R2 0.62 0.51 0.67 0.43 0.79 0.46
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4.2. Long Short-Term Memory Results

The input layer of the LSTM network in this chapter is 54 texture feature data, and
the LSTM layer contains a total of 200 hidden units. At the end of the network is a fully
connected layer. Finally, the regression result is output through the regression layer. During
this period, the data needs to go through 250 rounds of training. Specify an initial learning
rate of 0.005 and reduce the learning rate after 125 epochs by multiplying by a factor of 0.2.
To prevent exploding gradients, the authors set the gradient threshold to 1. Figure 8 shows
the training process of LSTM.
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The RMSE value of LSTM keeps decreasing until it reaches a meager value. In contrast,
CNN implements regression prediction. The input data is in the form of m × n. here
m represents how many input features there are (54 features). n is how many samples
(624 data samples). The output data is “one × n”, and 1 (one) represents the output is
a single output. After the convolutional layer and the activation function are two fully
connected layers with 384 neurons. The final regression layer outputs the regression results.
As the optimal solution in supervised learning, GPR is compared with the regression model
of CNN and LSTM. Figure 9 compares the scatter plots formed by the predicted values of
the three models with the actual values.

The data in Figure 9 shows a damaging process on the surface of a crossing nose. The
vertical axis is the traffic volume. The original data is the texture data of the crossing nose
surface when the traffic volume is 13 Mt, 22 Mt, 33 Mt, and 43 Mt. The crossing nose surface
was damaged entirely when the traffic volume was 52 Mt. Because the image of a wholly
broken MPI will cause blank areas to cause missing crack information, only the texture
data before the complete breakage is included in the analysis. In the results of the three
regression prediction models in Figure 8, the predicted points of GPR and CNN have a
specific error with the actual value, but the results are relatively accurate. The results of the
two models form a cluster of predictions for each period, and there are individual points
with significant errors. However, the predicted result of LSTM is relatively continuous, and
the error of the actual value is small and within a reasonable range. The results in Figure 9
indicate that LSTM has the best regression fit.
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4.3. Results Evaluation

Figure 10 is the regression prediction result of LSTM. This result is not only smaller
than the RMSE, the leading indicator of GPR but also achieves a high value of 0.9756 for
R2. The results of this paper have higher sensitivity than the results of [15]. The size of
the main index proves that the result can evaluate and predict the damaged state of the
track surface at any time. However, literature [15] can only expect in advance the surface
damage of crossing nose tracks with a traffic volume of 10 Mt.
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The discrete points in Figure 9 are the red data points in Figure 10. The blue curve and
light blue confidence intervals in Figure 10 are the regression predictions for the breaking
time of crossing nose surface. The crack change is a continuous process corresponding
to the constant evolution of the blue curve. Although the calculated result has a large
dispersion, it is enough to measure the fatigue degree of the rail surface and judge whether
the area needs to be polished in time.

Applying the LSTM’s regression prediction results to evaluate the crossing nose’s current
fatigue state is not intuitive enough. In this paper, the calculated value of the regression
function is converted to a more intuitive expression of the gradient color. As shown in
Figure 11, the rail surface image of each traffic volume is divided into 168 partial photos. After
the regression function calculation of LSTM or CNN, each analysis result is a long rectangular
image composed of a group of 168 small color blocks. Take the CNN regression result with a
traffic volume of 43Mt as an example. Each small color block in the large rectangle corresponds
to the predicted value of a region image in Figure 2. According to the arrangement position of
the local images in Figure 2, the corresponding color blocks are mapped to the 43Mt regression
results. Therefore, the eight rectangular bars in Figure 11 are the independent results obtained
from the 168 partial images calculated by the regression function. There are a total of four
measurement data and two analysis methods, which correspond to the verification results of
the regression function on 1344 local images.

Sustainability 2022, 14, x FOR PEER REVIEW 15 of 17 
 

 
Figure 11. Predicting coloration of surface damage on crossing nose. 

The regression prediction results of LSTM are more accurate and timely. At the same 
time, the side with more traffic on the same crossing nose surface is also brighter. In prac-
tical applications, when the predicted result of the fatigue defect is between green and 
yellow, a grinding process on the crossing nose surface was taken. The predicted value of 
the polished crossing nose turns blue predictably. Not only can the authors find the cross-
ings that need grinding in time, but also the maintenance costs can be saved, and the en-
ergy consumption can be reduced. The crack change is continuous, but the measurements 
are spaced. Using the regression function to convert the measurement results into corre-
sponding colors, when the blue color block is small, and the yellow color block becomes 
more, it indicates that the rail will be seriously damaged. At this time, grinding the cross-
ing nose’s surface can effectively avoid severe damage and prolong the service life. How-
ever, the predicted advance cannot be used as a reference. When the yellow patches ap-
pear, the fatigue has accumulated to a certain extent. When the green patches disappear, 
severe damage may soon occur. To ensure the railway operation safety, it is best to per-
form maintenance on the crossing nose before the green color patch disappears when ap-
plying this paper’s results. 

5. Conclusions 
The research on the evolution of surface cracks in the whole service cycle of crossing 

noses in this paper shows that the characteristic changes of cracks can be obtained by ex-
tracting texture data. The problem extraction algorithms of GLCM, HOG and the Gabor 

Figure 11. Predicting coloration of surface damage on crossing nose.



Sustainability 2022, 14, 16565 15 of 17

The results are sufficiently general and applicable. The more serious the surface
damage of the crossing nose, the higher the predicted value and the brighter the color. Dark
blue indicates no dangerous rolling fatigue cracks on the surface of the crossing nose. The
color changes from blue to green to yellow as the traffic volume increases. As a sample
crossing nose to display, it needs to be replaced at 43 Mt, and the bright yellow warning is
in the picture. When it reaches 52 Mt, as shown at the bottom of Figure 11, the surface of
the crossing nose has a severe block drop and ultimately fails. Figure 11 also compares the
CNN model further with the LSTM. In Figure 9, the calculation results of the CNN and
GPR models are similar. In Figure 11, the calculation result of LSTM corresponds to the
color change. It is more continuous and smooth. The results of CNN and LSTM are similar,
verifying the feasibility of predicting crossing nose failures through crack features. But the
results of LSTM are more explicit and can better identify the surface state of the crossing
nose at this time. We add the magnetic particle inspection pictures corresponding to the
accumulated traffic volume in Figure 11 as a verification. Combined with the evaluation of
DB experts, there are a large number of complex structural cracks and surface spalling in
the 43 Mt magnetic particle inspection results, and the crossing nose is in an early warning
state at this time. However, the LSTM algorithm in this paper passes a sufficient number of
yellow blocks, that warn of failures at 33 Mt. Sure enough, at 52 Mt, there were large areas
of falling blocks on the surface of the crossing nose, which seriously affected driving safety.

The regression prediction results of LSTM are more accurate and timely. At the same
time, the side with more traffic on the same crossing nose surface is also brighter. In
practical applications, when the predicted result of the fatigue defect is between green
and yellow, a grinding process on the crossing nose surface was taken. The predicted
value of the polished crossing nose turns blue predictably. Not only can the authors find
the crossings that need grinding in time, but also the maintenance costs can be saved,
and the energy consumption can be reduced. The crack change is continuous, but the
measurements are spaced. Using the regression function to convert the measurement
results into corresponding colors, when the blue color block is small, and the yellow color
block becomes more, it indicates that the rail will be seriously damaged. At this time,
grinding the crossing nose’s surface can effectively avoid severe damage and prolong the
service life. However, the predicted advance cannot be used as a reference. When the
yellow patches appear, the fatigue has accumulated to a certain extent. When the green
patches disappear, severe damage may soon occur. To ensure the railway operation safety, it
is best to perform maintenance on the crossing nose before the green color patch disappears
when applying this paper’s results.

5. Conclusions

The research on the evolution of surface cracks in the whole service cycle of crossing noses
in this paper shows that the characteristic changes of cracks can be obtained by extracting
texture data. The problem extraction algorithms of GLCM, HOG and the Gabor filter are
suitable for rolling fatigue research on the rail surface. The texture data on the surface of the
crossing nose has a significant positive correlation with the life cycle of the crossing nose. In
this paper, the fatigue damage information about crossing noses is obtained by only extracting
the surface texture features of crossing noses. This method saves the time of calculation and
processing and has a broader scope of application. Among machine learning algorithms, the
regression prediction of GPR algorithm data has the best results.

On the other hand, the convolutional neural algorithm of LSTM is more suitable for
predicting fatigue damage on the surface of crossing noses. The predicted results of the
LSTM algorithm not only have stronger sensitivity than other algorithms and correspond
continuously to the actual results. Therefore, the algorithm can realize a real-time prediction
in practice, improving railway operation safety and reducing maintenance costs.

However, this method cannot be practical because acquiring MPI images takes a long
time in practical applications. It is a significant disadvantage. The regular operation of
railways has often been open to traffic, and if it takes too long to collect data, it will have a
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severe impact as a future research question. The authors want to replace MPI images with
camera images or videos. The LSTM model combined with CNN can directly extract image
features through high-definition images, reducing computing time. However, the above
methods require data over a long time and capital investment.

Author Contributions: Conceptualization, M.S. and S.F.; methodology, L.K., Y.H. and D.P.; software,
J.L.; validation, J.L., O.N. and L.K.; investigation, L.K., Y.H. and D.P.; resources, M.S.; data curation,
M.S.; writing original draft preparation, L.K.; writing—review and editing, S.F.; visualization, O.N.,
Y.H. and D.P.; supervision, M.S. and S.F. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used and/or analyzed during the current study are
available from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kienzler, C.; Lotz, C.; Stern, S. Using Analytics to Get European Rail Maintenance on Track. McKinsey.com. 2020. Available

online: https://www.mckinsey.com/industries/public-and-social-sector/our-insights (accessed on 10 October 2022).
2. Milosevic, M.; Pålsson, B.A.; Nissen, A.; Nielsen, J.; Johansson, H. Condition Monitoring of Railway crossing Geometry via

Measured and Simulated Track Responses. Sensors 2022, 22, 1012. [CrossRef] [PubMed]
3. Chandran, P.; Asber, J.; Thiery, F.; Odelius, J.; Rantatalo, M. An Investigation of Railway Fastener Detection Using Image

Processing and Augmented Deep Learning. Sustainability 2021, 13, 12051. [CrossRef]
4. Cuervo, P.A.; Santa, J.F. Correlations between wear mechanisms and rail grinding operations in a commercial railroad. Tribol. Int.

2015, 82, 265–273. [CrossRef]
5. Talebiahooie, E.; Thiery, F.; Meng, J.; Mattsson, H.; Nordlund, E.; Rantatalo, M. Modelling of Railway Sleeper Settlement under

Cyclic Loading Using a Hysteretic Ballast Contact Model. Sustainability 2021, 13, 12247. [CrossRef]
6. Szalai, S.; Eller, B.; Juhász1, E.; Movahedi1, M.R.; Németh, A.; Harrach, D.; Baranyai, G.; Fischer, S. Investigation of deformations

of ballasted railway track during collapse using the Digital Image Correlation Method. Rep. Mech. Eng. 2022, 3, 258–282.
[CrossRef]

7. Przybyłowicz, M.; Sysyn, M.; Gerber, U.; Kovalchuk, V.; Fischer, S. Comparison of the effects and efficiency of vertical and side
tamping methods for ballasted railway tracks. Constr. Build. Mater. 2022, 314, 125708.

8. Feng, B.; Liu, Z.; Tutumluer, E.; Huang, H. Data-Driven Railway Crosstie Support Condition Prediction Using Deep Residual
Neural Network: Algorithm and Application. Transport. Res. Rec. 2022, 2676, 160–171. [CrossRef]

9. Kou, L. A review of research on detection and evaluation of the rail surface defects. Acta Polytech. Hung. 2022, 19, 167–186.
[CrossRef]

10. Kazemian, M.; Astaraki, F.; Dosst, A.M.; Akbarivarmayiar, M.; Rad, M.M.; Fischer, S. Effects of Wheel Surface Defects on Ground
Borne Vibration. Acta Polytech. Hung. 2022, 19, 129–141.

11. Momenitabar, M.; Bridgelall, R.; Dehdari Ebrahimi, Z.; Arani, M. Literature Review of Socioeconomic and Environmental Impacts
of High-Speed Rail in the World. Sustainability 2021, 13, 12231. [CrossRef]

12. Hamadache, M.; Dutta, S.; Olaby, O.; Ambur, R.; Stewart, E.; Dixon, R. On the Fault Detection and Diagnosis of Railway Switch
and Crossing Systems: An Overview. Appl. Sci. 2019, 9, 5129. [CrossRef]

13. Pillai, N.; Shih, J.-Y.; Roberts, C. Evaluation of Numerical Simulation Approaches for Simulating Train–Track Interactions and
Predicting Rail Damage in Railway Switches and Crossings (S&Cs). Infrastructures 2021, 6, 63. [CrossRef]

14. Sysyn, M.; Kovalchuk, V.; Jiang, D. Performance study of the inertial monitoring method for railway turnouts. Int. J. Rail Transp.
2018, 7, 103116. [CrossRef]

15. Sysyn, M.; Gerber, U.; Nabochenko, O.; Gruen, D.; Kluge, F. Prediction of Rail Contact Fatigue on crossings Using Image
Processing and Machine Learning Methods. Urban Rail Transit. 2019, 5, 123–132. [CrossRef]

16. Korolev, V. Methods for Analyzing Combinations of Wheelset Sizes and Switch Elements. In Networked Control Systems for
Connected and Automated Vehicles; Springer: Berlin/Heidelberg, Germany, 2022. [CrossRef]

17. Loktev, A.; Korolev, V.; Shishkina, I. Curved Turnouts for Curves of Various Radii. In Networked Control Systems for Connected and
Automated Vehicles; Springer: Berlin/Heidelberg, Germany, 2022. [CrossRef]

18. Jamshidi, A.; Faghih-Roohi, S.; Hajizadeh, S.; Núñez, A.; Babuska, R.; Dollevoet, R.; Li, Z.; Schutter, B. A Big Data Analysis
Approach for Rail Failure Risk Assessment. Risk analysis: An official publication of the Society for Risk Analysis. Risk Anal. 2017,
37, 1495–1507. [CrossRef] [PubMed]

https://www.mckinsey.com/industries/public-and-social-sector/our-insights
http://doi.org/10.3390/s22031012
http://www.ncbi.nlm.nih.gov/pubmed/35161758
http://doi.org/10.3390/su132112051
http://doi.org/10.1016/j.triboint.2014.06.025
http://doi.org/10.3390/su132112247
http://doi.org/10.31181/rme20016032022s
http://doi.org/10.1177/03611981211049423
http://doi.org/10.12700/APH.19.3.2022.3.14
http://doi.org/10.3390/su132112231
http://doi.org/10.3390/app9235129
http://doi.org/10.3390/infrastructures6050063
http://doi.org/10.1080/23248378.2018.1514282
http://doi.org/10.1007/s40864-019-0105-0
http://doi.org/10.1007/978-3-031-11058-0_143
http://doi.org/10.1007/978-3-031-11058-0_144
http://doi.org/10.1111/risa.12836
http://www.ncbi.nlm.nih.gov/pubmed/28561899


Sustainability 2022, 14, 16565 17 of 17

19. Ojala, T.; Pietikainen, M.; Harwood, D. Performance evaluation of texture measures with classification based on Kullback
discrimination of distributions. In Proceedings of the 12th International Conference on Pattern Recognition, Jerusalem, Israel,
9–13 October 1994; Volume 1, pp. 582–585.

20. Brown, M.A.; David, L.G. Invariant Features from Interest Point Groups. BMVC 2002, 4, 398–410.
21. Lienhart, R.; Kuranov, A.; Pisarevsky, V. Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object

Detection. Lect. Notes Comput. Sci. 2003, 2781, 297–304.
22. Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, 3,

610–621. [CrossRef]
23. Harris, F.J. On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform. Proc. IEEE 1978, 66, 51–83.

[CrossRef]
24. Lee, T.S. Image Representation Using 2D Gabor Wavelets. IEEE Trans. Pattern Anal. Mach. Intell. 1996, 18, 959–971.
25. Wang, L.; Yan, J.; Ma, Y. Cloud Computing in Remote Sensing, 2nd ed.; Chapman and Hall: London, UK, 2019.
26. Murai, K.; Imai, T.; Arai, K.; Kobayashi, T. Feature Extraction System during Bolt Tightening Work by Regression CNN and

Classification CNN. In Proceedings of the 2021 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV,
USA, 10–12 January 2021; pp. 1–4.

27. Xu, Z.; Ma, W.; Lin, P.; Shi, H.; Pan, D.; Liu, T. Deep learning of rock images for intelligent lithology identification. Comput. Geosci.
2021, 154, 104799. [CrossRef]

28. Rasmussen, C.E. Gaussian Processes in Machine Learning; Springer: Berlin/Heidelberg, Germany, 2004; p. 3176.
29. Belkin, M. Fit without Fear: Remarkable Mathematical Phenomena of Deep Learning through the Prism of Interpolation. arXiv

2021, arXiv:2105.14368. [CrossRef]
30. Yanagaimoto, H.; Hashimoto, K. Review Rating Prediction with Gaussian Process Classification. In Proceedings of the 2019 14th

International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP), Chiang Mai, Thailand, 30
October–1 November 2019; pp. 1–6.

31. Kruse, R.; Borgelt, C. Computational Intelligence: A Methodological Introduction (Texts in Computer Science), 2nd ed.; Springer-Vieweg:
Wiesbaden, Germany, 2015; p. 515.

32. Lai, C.M.; Kuo, T.J. Available Capacity Computation Model Based on Long Short-Term Memory Recurrent Neural Network for
Gelled-Electrolyte Batteries in Golf Carts. IEEE Access 2022, 10, 54433–54444. [CrossRef]

33. Hyndman, R.J.; Doksum, K.A. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [CrossRef]
34. Hyndman, R.J.; Koehler, A.B. Mathematical Statistics: Basic Ideas and Selected Topics, 2nd ed.; Taylor and Francis Inc.: Singapore,

2015; p. 20.
35. Willmott, C.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing

average model performance. Clim. Res. 2005, 30, 79–82. [CrossRef]
36. Cameron, A.C.; Windmeijer, F.A.G. An R-squared measure of goodness of fit for some common nonlinear regression models. J.

Econom. 1997, 77, 328–342. [CrossRef]

http://doi.org/10.1109/TSMC.1973.4309314
http://doi.org/10.1109/PROC.1978.10837
http://doi.org/10.1016/j.cageo.2021.104799
http://doi.org/10.1017/S0962492921000039
http://doi.org/10.1109/ACCESS.2021.3123789
http://doi.org/10.1016/j.ijforecast.2006.03.001
http://doi.org/10.3354/cr030079
http://doi.org/10.1016/S0304-4076(96)01818-0

	Introduction 
	Features Acquisition and Methods 
	A. Image Preprocessing 
	Feature Extraction 
	GLCM Feature Extraction 
	HOG Feature Extraction 
	Gabor Feature Extraction 


	Regression Analysis 
	Machine Learning Regression 
	Deep Learning Regression 
	Evaluation Indicators 

	Results 
	Machine Learning Results 
	Long Short-Term Memory Results 
	Results Evaluation 

	Conclusions 
	References

