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Abstract: Black-spotted pond frogs (Pelophylax nigromaculatus), widely distributed in East Asia,
can be suitably used for the study of population genetic patterns and ecosystem monitoring. To
systematically manage, conserve, and study this species, it is necessary to understand its habitat
range. We analyzed the genetic and morphological range of black-spotted pond frog populations
within a watershed of the Geum River, one of the main rivers in South Korea. We genotyped the frogs
based on seven microsatellite loci and defined the skull shape based on landmark-based geometric
morphometrics. One watershed area was divided into 14 sub-watershed areas, the smallest unit of
the Geum River basin. The genetic structure of frogs among the 14 sub-watershed areas did not differ
significantly, nor was correlated with geographic distance. Therefore, frogs within these watershed
areas constitute a single population. Morphologically, they differed between some sub-watershed
areas, but morphological distance did not correlate with genetic distance but rather with geographic
distance. This morphological change differs depending on the environmental gradient rather than
the genetic structure. As a single population, frogs in this watershed area need to be managed in an
integrated way. We suggest that the identification of response and adaptation by population genetics
must be compared across and beyond the watershed range.

Keywords: black-spotted pond frog; management and study; morphological difference; population
genetic range; watershed area

1. Introduction

Black-spotted pond frogs (Pelophylax nigromaculatus) are a common species and one
of the easiest frogs to study in East Asia (Korea, Japan, China, and Russia) [1]. This
frog is considered a suitable model species for genetic and ecological studies because
they have low mobility and high philopatry between habitats and breeding sites, easily
breeding in the laboratory and easy to sample in the field, and have high responsiveness
to environmental factors in various types of habitats [2–8]. Therefore, black-spotted pond
frogs have been used to understand genetic and ecological phenomena caused by various
stressors, habitat conditions, and temporal change [5,6,9–11]. However, systematic studies
on conservation and management have been carried out for endangered species such as the
Suweon treefrog (Hyla suweonensis), the gold-spotted pond frog (Pelophylax chosenicus), and
the narrow-mouth frog (Kaloula borealis) in South Korea, but not for the black-spotted pond
frog. Although the focus of conservation biology has been on endangered species [12–14],
the management and conservation of common species should not be neglected. Common
species are equally susceptible to population decline or local extinction [15–17]. They may
also have important ecological and functional roles over a wider spatiotemporal range
than endangered species that exist in limited habitats and occur less frequently [17–19].
Common species can be important indicators for conservation and management roles
because they have a wide geographic distribution and can inhabit diverse environmental
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conditions [20,21]. Black-spotted pond frogs also have ecological, functional, and indicator
significance, and thus, for their conservation and management, it is necessary to confirm
their population range and define their spatiotemporal habitat.

Whether ecologically or genetically, identifying the range of a population can delineate
its management unit [22]. Additionally, it helps manage populations more systematically by
determining important or threatened habitats and extracting information about factors that
connect or disconnect habitats [23,24]. The population range can be genetically inferred
by analyzing genetic structure and diversity and gene flow [25–28]. Although many
methods exist for analyzing population genetic patterns, microsatellite methods have
high reproducibility compared to other analyses and are suitable for identifying fine-scale
population structures [29,30]. Additionally, it is possible to identify the ecological traits
or adaptations in habitats according to the population range by checking phenotypic
differences according to these genetic structures. For instance, the skull is associated with
feeding biology, predator defense, locomotory performance, and microhabitat use [31–34].
It also changes early in life history due to various factors that may control the timing of
metamorphosis [35–37].

We determined the population structure of black-spotted pond frogs in the watershed
area of the main river basin in South Korea and identified morphological differences ac-
cording to genetic structure. Freshwater wetland ecosystems can be managed based on the
watershed area, but this management range needs to be different for each taxon or trait of
an organism. For some species, large or small streams connect habitats, whereas for other
species, streams disconnect habitats [38–41]. Additionally, populations may be divided or
unified according to the geographical structure associated with rivers, the history of rivers
and inhabiting species, and the composition of the biogeographic area [11,25,27,42,43]. The
hydrologic unit map is considered the basic hydrological system related to water cycles.
The geographic range of the catchment area is set by identifying the confluence from the
main stream of the river. In South Korea, these ranges are used as standard boundaries
for use of water resources among water-related institutions and are considered as units of
administration, conservation, and management. The largest unit, the watershed area of
main rivers, is set around the natural independent river formed along the mountain range,
and this area is divided into several watershed area, the outlet points where the natural
streams join. Finally, each watershed area can be divided into sub-watershed areas, the
smallest watershed units. Previously, we reported the genetic diversity and population
genetic structure of black-spotted pond frogs in four main rivers [43]. However, no study
has systematically analyzed the population structure by subdividing this watershed. The
systematic analysis of population structure allows us to determine what stream or water-
shed size can genetically and morphologically separate populations of this species. It also
helps to identify whether the genetic flow also changes with stream flow from upstream to
downstream within the watershed area. Therefore, we confirmed the population genetic
structure of black-spotted pond frogs in sub-watershed areas and identified morphological
variations of the skull.

2. Materials and Methods
2.1. Field Investigation

We selected 14 sub-watershed areas from the Geum River Basin, which is one of the
largest rivers in South Korea (Figure 1). Each sub-watershed area consisted of five collection
sites. Adult male frogs were collected during their breeding season from May to July 2020.
Three frogs were collected from each site resulting in a total of two hundred and ten frogs.
The collected frogs were euthanized by pithing and stored in 70% ethanol. Muscle samples
from the femur were collected, and skeletal morphology was analyzed using X-ray. All
procedures of animal collection, experimentation, euthanasia, storage, and disposal were
performed in accordance with the regulations and with the approval of the Experimental
Animal Ethics Committee of Kongju National University (KNU_2019-01).
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Figure 1. A total of 210 black-spotted pond frogs (P. nigromaculatus) were sampled from 70 sampling 
sites in 14 sub-watershed areas along the Geum river in South Korea. Black lines represent the 
boundaries of the sub-watershed areas. Blue lines indicate the tributaries and main rivers, and red 
points indicate the sampling sites.  

2.2. DNA Extraction and Microsatellite Genotyping 
Femur muscles were collected from 210 frogs to extract genomic DNA (gDNA). Total 

gDNA was extracted using DNeasy Blood and Tissue kits (Qiagen, Hilden, Germany) accord-
ing to the manufacturer’s instructions. The concentration and quality of gDNA in frogs were 
measured using a NanoDrop 2000 (Thermo Fisher Scientific, Wilmington, DE, USA). The 
measured gDNA was diluted to a concentration of 10–25 ng/µL. Seven polymorphic microsat-
ellite loci were amplified using primers (Rnh-1, Rnh-2, Rnh-3, Rnh-4, Rnh-6, Rnh-10, and Rnh-
12) and the protocol from a previous study [4]. We visualized the amplicons using a Seq-Stu-
dio Genetic Analyzer (Thermo Fisher-Applied Bio-systems, Foster City, CA, USA) and evalu-
ated the dataset for genotype errors and the presence of null alleles using the GeneMapper 
version 6.1 (Thermo Fisher-Applied Bio-systems, Foster City, CA, USA). 

2.3. Analysis of the Genetic Diversity and Population Structure 
The genetic diversity and population structure of 210 P. nigromaculatus individuals were 

identified using the genotype dataset. The deviations of the Hardy-Weinberg equilibrium 
(HWE) and linkage disequilibrium (LD) of seven microsatellite loci were assessed using 
GENEPOP version 4.7 [44]. We did not detect null alleles, significant deviations from HWE, 
or evidence of LD at the seven loci. Additionally, seven loci were sufficient to establish popu-
lation differentiation in 210 frogs (Figure 2). 

The mean number of alleles (NA), effective number of alleles (NE), observed (HO), and 
expected (HE) heterozygosity, Shannon’s information index (I), molecular diversity (h), and 
inbreeding coefficient relative to the subpopulation (FIS) were calculated for all populations 
using GenAlEx version 6.5 add in Microsoft Excel [45] and Arlequin version 3.5 [46]. We se-
lected I, h, and FIS to compare the genetic diversity of frogs in the 14 sub-watershed areas. 
Paired population differentiation (paired FST) and p-values obtained by Arlequin version 3.5 
were used to compare the genetic distance among populations of 14 sub-watershed areas. 
Nei’s genetic distance obtained by GenAlEx version 6.5 was used to create a hierarchical tree 
(unweighted pair group method with an arithmetic mean, UPGMA) in using the three soft-
ware packages [47]. 

Figure 1. A total of 210 black-spotted pond frogs (P. nigromaculatus) were sampled from 70 sampling
sites in 14 sub-watershed areas along the Geum river in South Korea. Black lines represent the
boundaries of the sub-watershed areas. Blue lines indicate the tributaries and main rivers, and red
points indicate the sampling sites.

2.2. DNA Extraction and Microsatellite Genotyping

Femur muscles were collected from 210 frogs to extract genomic DNA (gDNA). Total
gDNA was extracted using DNeasy Blood and Tissue kits (Qiagen, Hilden, Germany)
according to the manufacturer’s instructions. The concentration and quality of gDNA
in frogs were measured using a NanoDrop 2000 (Thermo Fisher Scientific, Wilmington,
DE, USA). The measured gDNA was diluted to a concentration of 10–25 ng/µL. Seven
polymorphic microsatellite loci were amplified using primers (Rnh-1, Rnh-2, Rnh-3, Rnh-4,
Rnh-6, Rnh-10, and Rnh-12) and the protocol from a previous study [4]. We visualized
the amplicons using a Seq-Studio Genetic Analyzer (Thermo Fisher-Applied Bio-systems,
Foster City, CA, USA) and evaluated the dataset for genotype errors and the presence
of null alleles using the GeneMapper version 6.1 (Thermo Fisher-Applied Bio-systems,
Foster City, CA, USA).

2.3. Analysis of the Genetic Diversity and Population Structure

The genetic diversity and population structure of 210 P. nigromaculatus individuals
were identified using the genotype dataset. The deviations of the Hardy-Weinberg equilib-
rium (HWE) and linkage disequilibrium (LD) of seven microsatellite loci were assessed
using GENEPOP version 4.7 [44]. We did not detect null alleles, significant deviations
from HWE, or evidence of LD at the seven loci. Additionally, seven loci were sufficient to
establish population differentiation in 210 frogs (Figure 2).

The mean number of alleles (NA), effective number of alleles (NE), observed (HO), and
expected (HE) heterozygosity, Shannon’s information index (I), molecular diversity (h), and
inbreeding coefficient relative to the subpopulation (FIS) were calculated for all populations
using GenAlEx version 6.5 add in Microsoft Excel [45] and Arlequin version 3.5 [46]. We
selected I, h, and FIS to compare the genetic diversity of frogs in the 14 sub-watershed areas.
Paired population differentiation (paired FST) and p-values obtained by Arlequin version 3.5
were used to compare the genetic distance among populations of 14 sub-watershed areas.
Nei’s genetic distance obtained by GenAlEx version 6.5 was used to create a hierarchical
tree (unweighted pair group method with an arithmetic mean, UPGMA) in using the three
software packages [47].
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Figure 2. The number of multilocus genotypes (MLG) based on the number of combined loci from 
210 black-spotted pond frogs. When we included six or more loci, the 207 individuals could be sep-
arated with a 100% accuracy. The central square dot indicates the mean value, the central line indi-
cates the median value, the bottom box indicates the 25th percentile value, the top box indicates the 
75th percentile value, the bottom and top of line indicate the range within 1.5 interquartile, and the 
circles indicate the outlier. 

Bayesian clustering algorithms were used to identify the population genetic structure 
of frogs among 14 sub-watershed areas using STRUCTURE version 2.3.4 [48]. STRUC-
TURE analysis, an admixture model, confirms whether individual i has inherited a por-
tion of its genetic material from ancestors in population k. One hundred thousand simu-
lations were included in each analysis after an initial burn-in of 100,000 simulations. The 
STRUCTURE Harvester [49] estimated the best K value in the range of 1 to 14 possible 
clusters with three independent runs each. This was based on the second-order rate of 
change in the log probability of the data between successive values of K. We used the ΔK 
method [50] to identify the best-supported K value, which was determined based on the 
K value with the highest change ratio in the posterior probabilities of the two sequential 
K values. The STRUCTURE harvester showed that the most suitable K for dividing 14 
populations was two (Figure 3). 

Discriminant analysis of principal components (DAPC) was used to compare the ge-
netic structure of frogs. This multivariate clustering method used in the ‘adegenet’ R pack-
age [51]. Principal component analysis (PCA) was performed to reduce the dimension of 
genetic variation in DAPC. The linear combination of correlated alleles in the linear dis-
criminant analysis was then produced using principal components. 

Figure 2. The number of multilocus genotypes (MLG) based on the number of combined loci from
210 black-spotted pond frogs. When we included six or more loci, the 207 individuals could be
separated with a 100% accuracy. The central square dot indicates the mean value, the central line
indicates the median value, the bottom box indicates the 25th percentile value, the top box indicates
the 75th percentile value, the bottom and top of line indicate the range within 1.5 interquartile, and
the circles indicate the outlier.

Bayesian clustering algorithms were used to identify the population genetic structure
of frogs among 14 sub-watershed areas using STRUCTURE version 2.3.4 [48]. STRUCTURE
analysis, an admixture model, confirms whether individual i has inherited a portion of its
genetic material from ancestors in population k. One hundred thousand simulations were
included in each analysis after an initial burn-in of 100,000 simulations. The STRUCTURE
Harvester [49] estimated the best K value in the range of 1 to 14 possible clusters with
three independent runs each. This was based on the second-order rate of change in the
log probability of the data between successive values of K. We used the ∆K method [50]
to identify the best-supported K value, which was determined based on the K value with
the highest change ratio in the posterior probabilities of the two sequential K values. The
STRUCTURE harvester showed that the most suitable K for dividing 14 populations was
two (Figure 3).
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the prootic. The digitized landmark coordinates were converted into Procrustes coordi-
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analysis (CVA) was used to compare differences in skull shape among frogs. The Procrus-
tes distance and significance of differences in skull shape between frogs were obtained 
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Figure 3. Best K value determination using the STRUCTURE harvester. One hundred thousand
simulations after burn-in of 100,000 simulations were performed for the ∆K (delta K) method. Three
independent runs in the range of 2 to 14 possible clusters were obtained by the simulations. The
highest delta K value was achieved with a K of 2.



Sustainability 2022, 14, 16530 5 of 14

Discriminant analysis of principal components (DAPC) was used to compare the
genetic structure of frogs. This multivariate clustering method used in the ‘adegenet’ R
package [51]. Principal component analysis (PCA) was performed to reduce the dimension
of genetic variation in DAPC. The linear combination of correlated alleles in the linear
discriminant analysis was then produced using principal components.

2.4. Bone Image Tomography

To analyze skull morphology, we performed X-ray tomography as previously de-
scribed [52,53]. We obtained skeletal images using fixed frog specimens in the same
position. A Styrofoam plate was fixed at the bottom of a plastic box containing 70% ethanol.
The frogs were placed on top and fixed with pins. The pins were not directly pierced
through the frogs. After three days, the frogs were completely fixed, labeled, and stored in
a separate bottle. A dual-energy X-ray absorptiometer (DEXA; Medikors InAlyzer, Seong-
Nam, Republic of Korea), at the Korea Basic Science Institute (Gwangju, Korea), was used
to obtain the skeleton images, which were then used to analyze the skull shapes.

2.5. Comparison of Skull Shapes

The skull shape was analyzed using landmark-based geometric morphometrics. We
used the TpsDig software [54] to digitize and designate eight landmark points in the skull
(Figure 4) according to a previous study performed on the same species [6,34]: (1) the
posterior tip of the premaxilla, (2) the left tip of the maxilla, (3) the anterior tip of the
sphenethmoid, (4) the right tip of the maxilla, (5) the left tip of the quadrate, (6) the
right tip of the quadrate, (7) the left posterior tip of the prootic, and (8) the posterior
right tip of the prootic. The digitized landmark coordinates were converted into Procrustes
coordinates using the Morpho J software (version 1.07a, Manchester, UK). Canonical variate
analysis (CVA) was used to compare differences in skull shape among frogs. The Procrustes
distance and significance of differences in skull shape between frogs were obtained after
1000 permutation rounds in CVA. The contribution was calculated from each canonical
variate (CV). The differences in skull shapes were visualized using a rectangular grid with
landmark vectors and a wireframe graph of CV1 and CV2.
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Figure 4. X-ray body image of a black-spotted pond frog obtained by a dual-energy X-ray absorp-
tiometry (DEXA). Eight landmark points characterize the skull shape: (1) the posterior tip of the
premaxilla, (2) the left tip of the maxilla, (3) the anterior tip of the sphenethmoid, (4) the right tip of
the maxilla, (5) the left tip of the quadrate, (6) the right tip of the quadrate, (7) the posterior left tip of
the prootic, and (8) the posterior right tip of the prootic.
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2.6. Correlation Analysis of Genetic, Morphological, and Geographic Distance among 70 Collecting Sites

The paired FST among 70 collection sites in 14 sub-watershed areas were obtained
using Arlequin version 3.5. Procrustes distances among 70 collection sites were obtained
using the Morpho J software (version 1.07a, Manchester, UK). Geographic distances among
70 collection sites were computed to find evidence of genetic and morphological separation
by geographic isolation. The matrix of geographic distance was obtained by calculating
the distance between the geographic coordinates of collection sites from the ‘geodist’ R
package [55]. These three-matrix data (genetic, morphological, and geographic distance)
were used to analyze the correlation using the Mantel test (number of permutations 999)
with the ‘vegan’ R package [56].

3. Results
3.1. Comparison of Genetic Diversity and Population Genetic Structure

The overall Shannon’s information index (I) of the 210 frogs was 0.428 (0.377–0.524), the
overall molecular diversity (h) was 0.442 (0.390–0.541), and the overall inbreeding coefficient
relative to the subpopulation (FIS) was 0.170 (−0.029–0.415). The genetic diversity of the
GW12 population was highest in I and h and lowest in the GW7 population (Table 1).
Except for four populations (GW12, GW10, GW14, and GW5), the genetic diversity was
lower in most populations compared to the overall population. Most populations had a
positive FIS value, whereas only the GW4 population had a negative FIS value.

Table 1. Genetic diversity of black-spotted pond frogs (P. nigromaculatus) from 14 sub-watershed
areas based on seven microsatellite loci: Shannon’s information index (I), molecular diversity (h),
inbreeding coefficient relative to the population.

Basin N I h FIS

GW1 15 0.386 0.399 0.329
GW2 15 0.392 0.405 0.079
GW3 15 0.404 0.418 0.051
GW4 15 0.408 0.422 −0.029
GW5 15 0.448 0.463 0.343
GW6 15 0.414 0.428 0.119
GW7 15 0.377 0.390 0.026
GW8 15 0.440 0.455 0.415
GW9 15 0.405 0.419 0.168
GW10 15 0.444 0.459 0.057
GW11 15 0.420 0.434 0.103
GW12 15 0.524 0.541 0.272
GW13 15 0.427 0.441 0.179
GW14 15 0.500 0.517 0.271

Mean of total 0.428 0.442 0.170

The hierarchical tree (UPGMA) of the Nei’s genetic distance separated the population
of the 14 sub-watershed areas into two major groups (Figure 5a), consistent with the results
of the STRUCTURE harvester. However, the STRUCTURE analysis revealed that the genetic
structure of frogs was similar among 14 sub-watershed areas (Figure 5b). The 210 frogs
were grouped into the same K-cluster, indicating that genetically, all frogs belonged to the
same population.

The DAPC and STRUCTURE analysis showed that all frogs belonged to the same
genetic population. Discriminant function 1 (DF1) explained 21.78% and DF2 16.76% of the
total genetic variation. On the DF1 axis, the GW12 and GW11 populations were separated
from the other populations. In contrast, on the DF2 axis, not all populations were separated
by genetic variation (Figure 6a). Finally, the fine-scale genetic structure was revealed using
100% of the explanatory power. None of the discriminant functions were detected in the
genetic difference of frogs from 14 sub-watershed areas (Figure 6b).
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sub-watershed areas: (a) unweighted pair group method with arithmetic mean (UPGMA) tree with
Euclidean distance; (b) population genetic structure provided by STRUCTURE analysis.
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Figure 6. Population genetic structure based on discriminant analysis of principal components
(DAPC): (a) scatter plot based on two major discriminant functions (DF). DF1 explained 21.78% of
the genetic variation in black-spotted pond frogs, while DF2 explained 16.76%. Each node represents
the genotype of frogs connected to a centroid assigned based on the clustering of the DAPC scores;
(b) membership probability of DF determined that the sampled frogs were optimally clustered into
14 sub-watershed areas.



Sustainability 2022, 14, 16530 8 of 14

Based on paired FST, the GW11 population was genetically significantly distant from
the eight populations (GW3, GW4, GW6, GW7, GW9, GW10, GW13, and GW14), indicating
that it was the most genetically distant group (Figure 7). Additionally, GW4 and GW14
were genetically significantly distant from the four groups, although no specific pattern
was found.
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3.2. Differences in the Skeletal Shape of the Skull

Two major morphological variations were identified using CVA. Canonical variate 1 (CV1)
and CV2 explained 29.41% and 23.70% of the morphological variation, respectively, in
210 frogs from 14 populations. A higher CV1 value indicated a narrower and longer skull,
while a higher CV2 values indicated a broader and shorter skull (Figure 8). Procrustes
distance and significance of CVA distance showed that some populations were separated
from the other groups (Figure 9). However, a relationship similar to the genetic segregation
pattern was not observed.

3.3. Relationship between Geographic, Genetic, and Morphological Distances

Based on the geographical distances among the 70 collection sites, the Mantel test
revealed no significant (p > 0.05) genetic isolation (Figure 10). Moreover, genetic distance
did not correlate with morphological distance (p > 0.05), but morphological distance and
geographic distance were strongly correlated (Mantel statistic, r = 0.160, p < 0.05).
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Figure 8. The skull shape variation among frogs collected from 14 sub-watershed areas determined
by performing canonical variate analysis (CVA). The scatterplot consists of two major canonical
variates (CV). CV1 and CV2 explained 29.41% and 23.70% morphological variation, respectively in
frogs from 14 sub-watershed areas. Circles in the deformation grids and the black wireframe graphs
indicate the skeletal shape of the individuals with the lowest CV values. Sticks in the deformation
grids and the gray wireframe graphs indicate the change of skeletal shape with increasing CV value.
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Figure 9. A heatmap showing Procrustes distance among frogs obtained from 14 sub-watershed areas.
The green boxes indicate Procrustes distance values. Dark gray colored boxes indicate significant
difference of Procrustes distance from CVA between two groups, whereas light gray colored boxes
indicate the non-significant difference of Procrustes distance from CVA between two groups.
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4. Discussion

South Korea’s main rivers include the Geum, Han, Yeongsan, and Nakdong Rivers.
These river basins are divided into several watersheds. It was confirmed that the black-
spotted pond frogs were genetically distant along the main river basin [43]. We focused
on the sub-watershed area that comprises the watershed area from one of the main rivers,
the Geum River, and identified the population genetic structure in the smallest watershed
unit. The results of Bayesian and multivariate clustering analyses showed that the black-
spotted pond frogs inhabiting 14 sub-watershed areas in the Geum River genetically belong
to the same population. However, populations inhabiting isolated sites or those with
different habitat traits may be partially separated. Some populations showed high or
low genetic diversity and differentiation of genetic structures in FST and genetic diversity.
Since we only wanted to determine whether the frogs were genetically divided within
this watershed area, we do not know about differences depending on specific factors
revealed from previous studies, such as isolation of habitats, biophysical connectivity, or
landscape features [11,57,58]. The genetic segregation of black-spotted frogs in the four
main river basins can be explained by geographic distances, large mountain ranges, and
habitat differences [43,59]. In contrast, the Geum River watershed area targeted in our
study is a single territory [42]. It is also geographically restricted, so the black-spotted pond
frogs inhabiting this area belongs to a single population. Because of these results, it was not
possible to predict or identify any impact on genetic flow by upstream and downstream, or
on genetic isolation by the size or scale of the stream.

Contrary to the genetic patterns, we found morphological variations between frogs
from the 14 sub-watershed areas. We expected morphological differences to change with
genetic structure. However, these morphological distances correlated with geographic
distance but not with genetic distance. Reportedly, the morphological change in head
width or length can appear in response to the exposure duration of thyroid hormones due
to accelerated or delayed metamorphosis [36,37]. The duration of frog metamorphosis
can vary depending on environmental factors, such as duration of tadpole stage, predator
pressure, temperature, protein content in food, and water level [36,60–64]. Even if we
collected all frogs from paddy fields near streams with homogenous environments, it
seems that the gradients of these environmental factors may differ among sub-watersheds.
This difference in pattern may lead to an adaptive response to local selection pressures.
Microsatellite patterns can be influenced by larger and/or stronger factors than detailed
response, whereas morphological traits can be a sensitive response to local environmental
changes [6,11,25]. The morphological response within the same population may be slightly
different, and morphological comparisons of populations with different genetic structures
must be performed in animals from a larger watershed range.
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5. Conclusions

The population belonging to a single origin in a watershed area has several implica-
tions. From a species conservation and ecosystem management viewpoint, it is necessary to
understand that the black-spotted pond frog population is a meta-population with a single
origin and should be managed as a whole. In contrast, even in genetic structures with a
single origin, a population with a remarkable difference in genetic structure or very low
genetic diversity in some sites in a sub-watershed area to watershed area can be considered
to experience isolation or differentiation or to be threatened by specific factors. In the
future, it will be possible to identify populations exhibiting these patterns and manage
them intensively. In particular, the black-spotted pond frog is considered to be in a condi-
tion that is experiencing population decline due to human agricultural pressures, habitat
degradation, overharvesting, and chemical pollution, from the IUCN red list [65]. However,
their conservation priority in Korea is very low. Therefore, it is necessary to organize such
ecological information and manage the population based on it in preparation for decline.
From an experimental and research viewpoint, the population within a watershed area can
be regarded as a population with a single origin, and experiments can be conducted by
excluding differences in population genetic structure. Conversely, to identify the differences
in environmental response or adaptation according to the population’s genetic structure, it
is necessary to compare populations in a larger watershed area. Since some populations
in our study showed segregated microscopic genetic structures, we expect to see more
apparent separation when organisms from a larger area are included.
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