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Abstract: In the process of walking, most pedestrians prefer to choose the shortest path, which
requires passing through the conflict area. However, in the case of high crowd density, 5–20%
of the total population will choose to follow the pre-planned route before walking or during the
initial period of the trip to bypass the conflict area. Aiming at reproducing this detour behavior
phenomenon, an extended social force model (SFM) is proposed according to a three-layer pedestrian
simulation framework. This model not only fully considers the choice of detour mode, but also
contains the avoidance and game behavior at the conflict point. At the strategic layer, a detour mode
selection model based on the Logit model is established considering the pedestrian starting time
and detour angle, to distinguish between the two groups of pedestrians who follow the pre-planned
route and those who repeatedly adjust the route during the trip. Then, the path decision based on
visual perception density at the tactical layer and the Voronoi-based SFM at the operational layer
are combined to guide the specific movement of the two types of pedestrian groups. A series of
evaluation indexes such as the central density, the mean local density, and detour level is selected, and
Kolmogorov–Smirnov (K-S) test and dynamic time warping (DTW) method are used to evaluate and
compare the scores of each index of different models. The results show that the model can improve
the existing pedestrian detour simulation model to a certain extent. In sum, the travel time score, the
detour level, and the mean local density score respectively increase from 0.71 to 0.81, 0.46 to 0.81, and
0.39 to 0.48, which indicates a significant improvement in walking performance.

Keywords: pedestrian dynamics; detour behavior; social force model; perceptual density; heuristic rules

1. Introduction

With the continuous growth of the urban population and the continuous emergence
of large-scale public infrastructure, the research on pedestrian dynamics has become more
and more important due to tasks such as formulating crowd evacuation strategies [1] and
optimizing building structure design [2]. Pedestrian movement behavior is an important
research direction of pedestrian dynamics, which has a serious impact on the spatial dis-
tribution density of pedestrians and the flow on different walking paths. The research on
pedestrian movement behavior has attracted the attention of many researchers. For pedes-
trian movement behavior, existing models are mainly divided into macroscopic models and
microscopic models according to the underlying spatial resolution and crowd size. Macro-
scopic models mainly simulate the behavior and mobility of the whole population, while
ignoring individual behavior. Common macro models include the continuum model [3],
the network model [4], and the hybrid model [5]. Microscopic models simulate smaller
groups and take into account the more detailed behavior of individuals in the group. Com-
mon microscopic models include cellular automata model (CA) [6,7], social force model
(SFM) [8,9], velocity obstacle model (VO) [10,11], and discrete choice model (DCM) [12].
Compared with the macroscopic model, the microscopic model can better represent the
individual response, so it is often used in the study of individual movement behavior. As
the SFM can well reflect the real situation of pedestrian movement and reproduce many
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pedestrian self-organization phenomena, it has been widely used in the simulation and
modeling of pedestrian flow. In the past few decades, various model modifications have
been proposed based on the traditional social force model (SFM). According to the different
psychology of pedestrians in the process of movement, most simulation frameworks based
on SFM start from three layers of pedestrian decision-making, namely, the strategical layer
describing pedestrian activity plans, the tactical layer describing pedestrian route choices,
and the operational layer describing the competitive game behavior among pedestrians [13].
Focusing on the operational layer, pedestrians decide the travel speed and direction to
take immediately in the next step. Farina et al. [14] incorporated the pedestrian travel
direction into the SFM to reflect the lateral motion of pedestrians; Li et al. [15] improved
the SFM by considering the difference in pedestrian speed and self-driving force down
the escalator. In addition to immediate action, pedestrians need to decide where to take
action based on their understanding of the environment and personal preferences, which is
the goal achieved at the tactical level. Moussaid et al. [16] proposed two simple heuristic
rules to describe avoidance behavior; Yuen and Lee [17] focused on the phenomenon that
pedestrians with high speed are accustomed to overtaking pedestrians with low speed,
and modified the SFM to reflect the overtaking behavior of pedestrians. Pedestrians are
complex individuals, and any continuous behavioral process can be divided into pre-travel
(strategic) and in-travel (tactical and operational). Hoogendoorn et al. [18] proposed a
multi-class continuum model on the basis of the microscopic SFM, describing the pedestrian
global path choice before walking at the strategic level and the pedestrian local path choice
during the trip at the tactical level. It realized the three-layer pedestrian motion modeling
at the strategic level, the tactical level, and the operation level. Modeling based on the
three-layer level can not only reveal the competitive game behavior between pedestrians
but also show the ability of pedestrians to avoid high-density areas.

Detour behavior is an important characteristic during pedestrian motion, especially
in conflict scenarios. It has an important effect on the efficiency of crowd evacuation. At
the same time, the exploration of detour routes will help urban managers better layout
public facilities. In the study of detour behavior, Xiao et al. [19] determined the pedestrian
detour direction, following direction according to the Voronoi diagram; Qu et al. [20]
applied the Voronoi diagram to improve the SFM to better describe the detour behavior of
pedestrians. These studies only describe the pedestrian immediate responses to conflict
at the operational level and lack the impact of global navigation decisions. In order to
make up for this defect, Li et al. [21] proposed a two-layer detour decision model based
on perception density. In this model, Pedestrians can predict the path points according
to the crowding degree in the visual field, so as to guide the operational layer to make
detour decisions in advance. The research shows that adding guidance at the tactical layer
makes pedestrian detour behavior more reasonable. Generally speaking, crowds are always
composed of heterogeneous pedestrians. When facing the same walking space, they have
different movement behaviors. However, the above research only describes the movement
behavior of pedestrians who repeatedly adjust their routes during the trip and does not
take into account the different path selection modes of some pedestrians, that is, some
pedestrians bypass the conflict area directly and choose large detours before walking or
during the initial period of the trip. This makes the pedestrian density in the simulation
much higher than the actual density.

In response to this problem, this study improves and expands the existing model
at the strategic level, and proposes an extended SFM that not only fully considers the
path selection mode, but also includes the avoidance game behavior at the conflict point
of pedestrian travel routes. There are two ways for pedestrians to move from one place
to another. One is to follow a pre-planned route to avoid the conflict zone. The study
found that: in the case of high crowd density, this part of the population can account for
5%–20%. This ratio is related to the degree of crowding, but there is no doubt that it has
an important impact on the overall movement of the group. Another is to go through
the conflict zone and adjust the route repeatedly to pursue the shortest path to reach the
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destination. Studies have found that personal preference [22], and sensitivity to comfort
and safety [19] are the main factors that affect the detour decision-making of pedestrians.
Especially in the case of high crowd density, the proportion of following a pre-planned
route to avoid the conflict zone will increase significantly. Therefore, it is necessary to
distinguish groups who choose two different path selection modes. At the strategic level,
the Logit model is used to separate the two groups. At the tactical level, pedestrian detour
paths are predicted by Voronoi-based perceptual density in the pedestrian visual field.
It should be noted that the group that repeatedly adjust the routes during the trip will
always consider the distance to the destination point more important, while the group
that follows the pre-planned route only considers the comfort of walking priority before
bypassing the conflict area. At the operational layer, the target direction is set according to
the path direction, which is determined by the tactical layer, and the SFM is used to guide
the specific movement of pedestrians. In the simulation, evaluation indexes such as travel
time, pedestrian density are extracted, and the dynamic time warping (DTW) method and
Kolmogorov–Smirnov (K-S) test are used to test and evaluate the similarity of different
indicators between simulation and experiment. The results show that the extended SFM
model is more similar to the real scene in the presentation and distribution of pedestrians
in the walking space than the previous detour model, and the scores of the three indexes of
travel time, detour level, and mean local density are significantly improved.

The rest of the paper is organized as follows. The Section 2 introduces the pedestrian
detour decision model based on the strategic, tactical, and operational layers. Section 3
analyzes the experimental data to select evaluation indicators and reflect the detour char-
acteristics. Section 4 conducts simulation experiments to evaluate the model. Finally, the
conclusions are summarized in Section 5.

2. Model

This section presents a three-layer framework for pedestrian detour behavior, as
shown in Figure 1. First, at the strategic level, it corresponds to the environmental cognition
and response time before walking or during the initial period of the trip. At this time,
pedestrians will make macro decisions conducive to their subsequent walking. Based on
this idea, a Logistic regression model (Logit model) is established to predict the pedestrian
detour mode choice. It should be noted that the strategical layer determines the detour
mode of pedestrians before walking, rather than the choice of departure time and desti-
nation, which is slightly different from the strategical layer proposed by Hoogendoorn
and Bovy [13]. However, Hoogendoorn classified pre-trip behavior as a strategic layer in
references (Hoogendoorn et al. [23]), so we think this mode choice belongs to a strategic
layer choice.
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At the tactical and operational levels, for one detour mode (repeatedly adjusting the
route during the trip), the detour decision model proposed by Li et al. [21] will be briefly
reviewed; for another detour mode (pre-planning the route), two heuristic rules are set
based on perceived density to make waypoint decisions. Therefore, an extended SFM is
established that not only fully considers the choice of the detour mode, but also contains
the avoidance and game behavior at the conflict point of the travel route. Pedestrian detour
mode, detour direction, and specific detour behavior are described in detail in Section 2.1,
Section 2.2, Section 2.3 respectively.

2.1. Strategic Layer Model

In the circle antipode walking experiment, there is a common conflict area since each
pedestrian walks to the symmetrical point. As shown in the area enclosed by the white
circle in the center of Figure 2a, the brighter the color, the greater the repulsive force on
pedestrians. Here, the repulsive force is calculated by the repulsive formula of the SFM, i.e.,
FR

ij in Equation (12). The repulsive force can reflect the conflict between pedestrians, and
the greater the repulsive force, the more obvious the conflict between pedestrians. When
the conflict reaches a certain degree, pedestrians will make a decision in advance between
choosing the shortest path (e.g., route 1) in Region 1 and choosing a comfortable route (e.g.,
route 2) to avoid conflict in Region 2. In order to get a comfortable walking experience, a
small number of pedestrians will pre-plan the route and directly choose large detours, or
even walk along the scene boundary (e.g., route 3).
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In order to distinguish the two detour modes between Region 1 and Region 2, Logit
model is used to divide pedestrians into two groups: “repeatedly adjusting the route during
the trip” and “pre-planning the route before walking or during the initial period of the
trip”. Since the situation of walking along the scene boundary is not common, this paper
does not consider this situation separately.

Logit model is one of the classical discrete choice models. When people are faced with
two or more choices (such as waiting or moving, buying, or not buying), logit model can
reflect the choice probability, and the solution speed is fast. In addition, when each variable
changes, Logit model can easily solve the selected probability of each choice in the new
environment. It is widely used in transportation [24], marketing [25], and evacuation [26].
In this model, the pedestrian detour mode is regarded as a binary dependent variable
yi. yi = 0 represents the mode of repeatedly adjusting the route during the trip; yi = 1
represents the mode of pre-planning the route before walking or during the initial period
of the trip. There are many factors affecting the choice of detour mode, such as age, gender,
physical condition, whether there is heavy luggage, road conditions and other factors. In
this experiment scenario, the experimenter is 18–28 years old, in good health, and energetic.
The test site is flat and free of water, which can provide greater friction force. These
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influencing factors are relatively consistent in the experiment, which is not considered in
this study. In this paper, detour angle X1 and pedestrian starting time X2 are regarded as
independent variables. The Logit model is established as follows:

pi(yi = 1|(X1, X2) ) =
exp(a + ∑n

i=1 biXi)

1 + exp(a + ∑n
i=1 biXi)

(1)

Here, a is a constant term; bi is the regression coefficient, representing the correlation
between independent variable and dependent variables; Xi stands for independent variable,
where X1 is the detour angle and X2 is starting time.

2.2. Tactical Layer Model

Pedestrians can adjust their path direction according to visual information [12]. The
visual field of pedestrian Pi takes the direction of the target point as the center. The visual
angle is [−Φ, Φ] and the visual length is L, as shown in Figure 3. The visual field is divided
into 2M sub-areas, which are marked as VRi =

{
Ai1 , · · · , Ain , · · · , Ai2M

}
(n = 1, 2, . . . , 2M).

The corresponding path points are distributed on the middle points of the sub-areas, and the
set of path points is

{
DPi1 , · · · , DPin , · · · , DPi2M

}
. In addition, the path point index less than

M is the path point of the pedestrian group that repeatedly adjusts routes during the trip, as
shown in the blue area in Figure 3, otherwise, it is the path point of the pedestrian group that
directly chooses large detours.
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In the walking process, pedestrians Pi will predict the crowded area and degree after
ti = L/vdes

i moment, so as to adjust the walking direction. In addition, due to different
desired speeds, pedestrians have different perceived density of the visual field. Taking Ain
(the area enclosed by the bold red line in Figure 3) as an example, the perceived density of
the sub-area is:

DAin
(t + ti) =


pAin

(xi)

|Ain |
· vi

vdes
i

; i f Ain ∈ Set(S)

pAin (xi)

|Ain |
; otherwise

(2)

Here, |Ain| is the size of Ain, vi is the current speed of Pi, vdes
i is the desired speed,

Set(S) is the set of visual sub-sectors where the path point index is less than M, and pAin(xi)
is the pedestrian density calculated by the Voronoi diagram.

The pedestrian density pAin(xi) use Voronoi cells size formed by pedestrian move-
ments to reflect the density of the region, which is proposed by Steffen and Seyfried [27].
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All Voronoi cells in the region Ain are used to calculate the density of this region pAin(xi),
see Equation (3)

pAin
(xi) = ∑i

1
|Vi|

, Ain ∩Vi 6= 0, ∀i (3)

Here, xi is the position of Pi, Vi is the Voronoi cell of Pi, and |Vi| is the size of the
Voronoi cell Vi.

2.2.1. Group That Repeatedly Adjust Routes during the Trip

For pedestrians who constantly adjust their routes, they consider the density of Ain
and the distance between the corresponding path points and the destination point in order
to pursue the shortest route. The definition of travel cost Ein is consistent with the reference
Li et al. [21].

Ein =

(
k1·

‖DPin − xdest
i ‖

∑2M
n=1 ‖DPin − xdest

i ‖
+ k2·

DAin
(t + ti)

∑2M
n=1 DAin

(t + ti)

)
(4)

Here, DPin is the path point in the visual field of Pi, xdest
i is the destination position of

Pi. k1 and k2 are the weight parameters.
Furthermore, considering the right-side avoidance rule [28], the minimum travel cost

of left and right routes is calculated as follows:

DPil = argmin
(

Ein′

)
, n′ = 1, 3, · · · , M− 1 (5)

DPir = argmin
(

Ein′′

)
, n′′ = 2, 4, · · · , M (6)

If DPil minus DPir is less than or equal to the given right tendency threshold δ, the
pedestrian will detour toward the right path point, see Equation (7).

DP∗ =
{

DPir , if DPir − DPil ≤ δ
DPil , otherwise

(7)

2.2.2. Group That Pre-Plan Route before Walking or during the Initial Period of the Trip

Some pedestrians who pursue comfortable routes pre-plan the detour route before
walking or during the initial period of the trip, that is, they completely avoid the common
conflict area and directly choose large detours. They hope to move freely without too much
interference [3,29]. Therefore, two heuristic rules are proposed.

The first rule is that pedestrians will set intermediate navigation points in the path [30]
and in the process of moving toward the intermediate position, pedestrians pay more
attention to the comfort of the journey.

Guided by this rule, the intermediate navigation point is simply set on the vertical
bisector of the line connecting the start and destination points. In the process of moving
toward the middle navigation point, the path selection area is shown in the blue area
in Figure 4, the left and right detour path point is determined by Equations (8) and (9).
Similarly, consider the right-hand tendency of pedestrians, see Equation (7).

DPil = argmin
(

DA
in′
(t + ti)

)
, n′ = M + 1, M + 3 · · · , 2M− 1 (8)

DPir = argmin
(

DAin′′
(t + ti)

)
, n′′ = M + 2, · · · , 2M (9)
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The second rule is that pedestrians pay more attention to the distance from the target
point when crossing the middle position to the target point. This reflects the straightness of
pedestrians walking toward the target point. So, the optimal path point is:

DP∗ = xdest
i (10)

After determining the path point DP∗, the optimal path direction
→
e

path
of the two

groups of “repeatedly adjusting the route during the trip” and “pre-planning the route
before walking or during the initial period of the trip” can be unified into Equation (11).

→
e

path
= (DP∗ − xi)/‖DP∗ − xi‖ (11)

2.3. Operational Layer Model
2.3.1. Movement Speed

Social force model (SFM) is a classic pedestrian motion model based on Newtonian
mechanics, see Equation (12). The motion of each pedestrian is affected by three kinds
of forces, namely, self-driving force FD

i , the repulsive force by other pedestrians FR
ij , and

the repulsive force by obstacles FO
iW . Therefore, the change of pedestrian walking speed

can be determined according to Newton’s second law. More details can be found in the
reference(Helbing [8]).

mi
dvi(t)

dt
= FD

i + FR
ij + FO

iW (12)

In SFM, pedestrians are driven by the combined force of self-driving force, the repul-
sive force between pedestrians, and the force between pedestrians and obstacles. In other
words, pedestrians move isotropically. When the pedestrian density in the scene is large,
the interaction between pedestrians will lead to pedestrian movement blocks or stagnation.
Empirical evidence shows that most of the time, pedestrians tend to move forward, that is,
their speed vector is usually consistent with their direction [14]. Therefore, the correction
of motion speed is shown in Equation (13). If the angle between the speed direction and
the desired speed direction is greater than 90

◦
, the pedestrian will choose to stop moving

temporarily, and the pedestrian’s speed is 0. This functional form was chosen just because
it is the simplest self-stopping mechanism that reproduces the experimental trajectory [31],
as shown in Section 4.

vi(t) =

{
vi(t), if

→
e

v
i ·
→
e

desire
i ≥ 0

0, otherwise
(13)
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2.3.2. Movement Direction

For pedestrians Pi, the desired direction points to the optimal path direction, which
depends on the tactical layer described above:

→
e

dest
i =

→
e

path
i (14)

In the process of walking toward
→
e

dest
i , pedestrian shall deal with the local conflict

with the pedestrian in front and move toward the local detour direction [32]. Thus, the
desired direction can be determined by Equation (15).

→
e

desire
i =


→
e

dest
i , C ≥ 0
→
e

dtr
i , otherwise

(15)

C is a judgment variable, see Equation (16). The choice of pedestrian walking toward
the path direction or the local detour direction is determined by the conflict with the front
pedestrian Pf . If C < 0, pedestrian Pi may collide with Pf within relaxation time τi.

C = di f − β·τi

(
vi ∗

→
e

v
i − v f ∗

→
e

f
i

)
→
n i f (16)

Here, di f is the distance from Pi to Pf ; β is a constant parameter; τi is the relaxation

time of Pi; vi and v f are the velocity values of pedestrian Pi and Pf ;
→
e

v
i and

→
e

f
i are the

velocity directions of Pi and Pf ;
→
n i f is the unit vector direction pointing from Pi to Pf .

→
e

dtr
i is the optimal local detour direction. Considering the local Voronoi-based density

and the conflict with the pedestrians in front, it is defined as the direction pointing to the
Voronoi node. More details can be found in the reference (Xiao et al. [32]).

3. Experimental Data Analysis

In this section, the circle antipode walking experiment and some evaluation indexes of
the model are briefly introduced. At the same time, the two detour modes, starting time, and
detour angle in the experiment are analyzed to reflect the detour characteristics of pedestrians.

3.1. Experiment Setting

Controlled laboratory experiment is one of the methods used and studied in the
current empirical research. It refers to the actual pedestrian movement research under
non-emergency conditions with pedestrians as the research subject and pedestrians or
movement environment with certain designs or restrictions. Although it is not a completely
real and natural pedestrian movement, the pedestrian movement in the experiment is
enough to reflect most of the pedestrian behavior in real pedestrian movement.

In 2017, Jiang Rui and other scholars from Beijing Jiaotong University carried out the
circle antipode walking experiment. The experiment has been fully described in references
Xiao et al. [32], and only a brief introduction is given here. The experiment is divided
into two types with circle radii of 5 m and 10 m. Each person’s starting position and
antipode position are uniformly assigned a mark with the same number, as shown in
Figure 5. Experiments with a radius of 5 m and 10 m included 8, 16, 32, and 64 participants
respectively. For convenience, the 5 m experiment with 32 participants is named 5m-32p.
Taking the 5m-32p experiment as an example, half of the participants were assigned
a number from 1 to 16, which means that two people have the same number. After
receiving the start command, all pedestrians need to walk to the same number position.
All participants are 18–28 years old students from Beijing Jiaotong University. They did not
wear uniforms, but all participants were required to wear clothes that are not bright.



Sustainability 2022, 14, 16522 9 of 17

Sustainability 2022, 14, x FOR PEER REVIEW 9 of 18 
 

 

trajectory refers to the starting and ending points of all pedestrians being rotated to the 
same point respectively. 

 
Figure 5. Scene diagram of the circle antipode experiment. 

3.2. Model Evaluation Indexes 
The original trajectory constitutes the data source of quantitative analysis. The trajec-

tory data of pedestrians in the walking experiment can be expressed by Equation (17): ݏ௜(ݐ) = ቄቀ൫ݔ௜(ݐ), ൯ቚ1(ݐ)௜ݕ ≤ ݅ ≤ ܰ, ௜ݐ ௦௧௔௥௧ ≤ ݐ ≤ ௜ௗ௘௦௧ቁቅ (17)ݐ

Here, ݔ௜(ݐ), ݕ௜(ݐ) are the coordinates of ௜ܲ. ݐ௜ ௦௧௔௥௧ is the departure time of ௜ܲ, ݐ௜ௗ௘௦௧ 
is the arrival time of ௜ܲ. 

In addition, in order to show the pedestrian’s path detour decision and conflict avoid-
ance characteristics more intuitively, rotate the original path trajectory around the center 
of the circle until the starting point of the path overlaps with point O, as shown in Figure 
6. The pedestrian polar coordinate after rotation is calculated by Equation (20): 

,ߩ) (ߠ = ۔ۖەۖ
ۓ ቆඥ(ݔ௜(ݐ))ଶ + ,(ଶ(ݐ)௜ݕ) arctan (ݐ)௜ݔ(ݐ)௜ݕ − arctan ௜(0)ݔ௜(0)ݕ + ቇ݅݌                if arctan (ݐ)௜ݔ(ݐ)௜ݕ ≥ 0

ቆඥ(ݔ௜(ݐ))ଶ + ,(ଶ(ݐ)௜ݕ) arctan (ݐ)௜ݔ(ݐ)௜ݕ + ݅݌2 − arctan ௜(0)ݔ௜(0)ݕ + ቇ݅݌     if arctan (ݐ)௜ݔ(ݐ)௜ݕ < 0 (18)

Then, the polar coordinates are converted into rectangular coordinates, i.e., (ߩsinߠ, (ݐ)௜ோݏ :The rotated pedestrian trajectory data are represented by Equation (19) .(ߠcosߩ = ቄቀ൫ݔ௜ோ(ݐ), ൯ቚ1(ݐ)௜ோݕ ≤ ݅ ≤ ܰ, ௜ݐ ௦௧௔௥௧ ≤ ݐ ≤ ௜ௗ௘௦௧ቁቅ (19)ݐ

Figure 5. Scene diagram of the circle antipode experiment.

Video of the experiment was recorded with a high-definition camera and Petrack
software was used to extract experimental data. In the visual presentation of the data,
we recorded the walking trajectory and rotation trajectory of each pedestrian. Rotational
trajectory refers to the starting and ending points of all pedestrians being rotated to the
same point respectively.

3.2. Model Evaluation Indexes

The original trajectory constitutes the data source of quantitative analysis. The trajec-
tory data of pedestrians in the walking experiment can be expressed by Equation (17):

si(t) =
{(

(xi(t), yi(t))
∣∣∣1 ≤ i ≤ N, ti

start ≤ t ≤ ti
dest
)}

(17)

Here, xi(t), yi(t) are the coordinates of Pi. ti
start is the departure time of Pi, ti

dest is the
arrival time of Pi.

In addition, in order to show the pedestrian’s path detour decision and conflict avoid-
ance characteristics more intuitively, rotate the original path trajectory around the center of
the circle until the starting point of the path overlaps with point O, as shown in Figure 6.
The pedestrian polar coordinate after rotation is calculated by Equation (20):

(ρ, θ) =


(√

(xi(t))
2 + (yi(t)2), arctan yi(t)

xi(t)
− arctan yi(0)

xi(0)
+ pi

)
if arctan yi(t)

xi(t)
≥ 0(√

(xi(t))
2 + (yi(t)2), arctan yi(t)

xi(t)
+ 2pi− arctan yi(0)

xi(0)
+ pi

)
if arctan yi(t)

xi(t)
< 0

(18)

textls[-25]Then, the polar coordinates are converted into rectangular coordinates, i.e.,
(ρ sin θ, ρ cos θ). The rotated pedestrian trajectory data are represented by Equation (19):

si
R(t) =

{((
xi

R(t), yi
R(t)

)∣∣∣1 ≤ i ≤ N, ti
start ≤ t ≤ ti

dest
)}

(19)

In order to evaluate the accuracy of the simulation model in reproducing the actual
pedestrian behavior, a series of statistical indicators are used to analyze the experimental
and simulation data.
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Travel time: The time for pedestrians to walk from the departure point to the destina-
tion point, see Equation (20).

Ti = tdest
i − tstart

i (20)

Route length: The route length Li of Pi is calculated according to Equation (21) based
on the original trajectory.

Li = ∑tdest
i −1

t=tstart
i
‖si(t + 1)− si(t)‖ (21)

Detour level: It intuitively shows the degree of pedestrians bypassing crowded areas,
see Equation (22).

Di =
Li·Mi

L0
i ·L

0
i

(22)

Here, l0
i = 2r, r is the experiment radius; Mi is the route potential calculated by

Equation (23):

Mi = ∑tdest
i −1

t=tstart
i

(
yR

i (t + 1) + yR
i (t)

2
·
(

xR
i (t + 1)− xR

i (t)
))

(23)

Density time series: Two indexes of the central area density and the mean local density
are selected to explore the density characteristics of pedestrian detours. The calculation
areas are 2× 2 = 4 m2 and 12× 12 = 144 m2 square areas centered on the experimental
center. The density is calculated by Equation (3).

3.3. Detour Statistical Characteristics
3.3.1. Starting Time

In order to reflect the different initial situations of pedestrians after receiving the
walking command, the concept of starting time is introduced, which is defined as the
interval between the travel time of the first 1 m and the time of receiving the walking
command. The calculation is shown in Equation (24):

T1i = t1m
i −min

(
tstart
i

)
(24)

Here, t1m
i is the travel time of the first 1 m. min

(
tstart
i

)
is the earliest pedestrian start

time, which is equivalent to the time of receiving the walking command.
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The distribution of pedestrian starting time in each experiment is shown in Figure 7.
The average starting time increases with the increase of the number of pedestrians. That is
because the increase in the number of pedestrians makes the intersection path area more
crowded, and pedestrians need more time to make trade-off decisions in high-density
scenes. In the 5 m experiments, the starting time is in the range of 5~50 frames, and the
interval time of each frame is 0.04 s. In the 10 m experiments, the starting time is in the
range of 5~30 frames. Each distribution has a peak, which increases with the increase of
the number of pedestrians. K-S test is used to test whether the distribution of starting time
conforms to normal distribution, as shown in Table 1. The p-value refers to the probability
when the assumption is true. When p-value is greater than 0.05, it indicates that there is no
significant difference between the distribution of starting time and the normal distribution,
that is, the starting time obeys the normal distribution at the confidence level of 0.05.
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Table 1. The p-value of the pedestrian starting time.

Experiment
p-Value

8p 16p 32p 64p

5 m 0.4288 0.6495 0.3389 0.1354
10 m 0.1411 0.1376 0.6501 0.5860

3.3.2. Detour Mode and Angle

Facing the central conflict area, pedestrians will choose different detour modes. This
paper divides pedestrians into two groups: “repeatedly adjusting the route during the trip”
and “pre-planning the route before walking or during the initial period of the trip”. For Pi,
when his or her route deviates from the shortest route by more than 45%, it is classified as a
group that chooses a large detour by following the pre-planned route before or during the
initial period of the trip (Route 1), otherwise, it is a group that repeatedly adjusts the route
during the walking process (Routes 2 and 3). Analyzing the trajectory data, a comparison
chart of the proportion of detour modes in each experiment is obtained, which is shown in
Figure 8.

In Figure 8, Routes 1, 2, and 3 are consistent with those described in Figure 2b. Among
them, Route 3 is a special case in the latter group. We can see that the proportion of pedes-
trians choosing large detours (Route 2) increases gradually in the 5 m experiments, and the
proportion at 5m-32p is close to 20%. Moreover, when the number of pedestrians reaches
64, the proportion of pedestrians walking around the boundary increases significantly, this
is due to excessive pedestrian congestion. In the 10 m experiments, the proportion of this
large detour (Route 2) is low. At 10m-64p experiment, the proportion is close to 10%, less
than 5m-64 experiment. That is because pedestrians walking space in the 5 m experiment
is less than 10 m, and the more congested situation makes pedestrians willing to directly
choose a large detour during the initial period of the trip.
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In general, although the proportion of pedestrians choosing large detours (Route 2)
significantly increases with the increase of population density, the group that chooses to
repeatedly adjust the route through the conflict area (Route 1) remained the majority. On
the one hand, this is because pedestrians often choose the shortest route, although they
rarely realize that they are taking the minimization of distance as the main route selection
strategy. On the other hand, the model in this paper starts from the circle antipode walking
experiment. The participants in the experiment are young people aged 18–28, and they
were in a youthful state. When facing the conflict area, they are more inclined to choose
to go through the conflict area and pursue the shortest path. In the real situation, due to
the influence of age, gender, physical condition, and other factors, the proportion of the
group that passes through the conflict area will decrease, while the proportion of the other
group that chooses large detours will increase. This also proves that it is necessary for us to
consider the group that avoids the common conflict area and directly chooses large detours
before walking or during the initial period of the trip.

Accordingly, the angle of large detours pedestrian deviates from the direction of
the destination point is larger. Figure 9 depicts the travel angle distribution between the
pedestrian walking direction and the destination point direction in each experiment.
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Figure 9. Pedestrian travel angle distribution.

As the number of pedestrians increases, the number of large detour pedestrians also
increases, so the average travel angle of pedestrians increases gradually. The pedestrian
counts decrease with the increase of travel angle, and the exponential distribution is
introduced for fitting. Similarly, when p-value is greater than 0.05, it indicates that the
travel angle follows the exponential distribution, and the p-value indicates that it has a
good fitting effect, as shown in Table 2. Note that the 64p experiment does not conform
to the exponential distribution. This is because pedestrians are too dense, and the detour
angle of pedestrians will be seriously tailed, even some angles greater than 90◦.
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Table 2. The p-value of pedestrian travel angle.

Experiment
p-Value

8p 16p 32p 64p

5 m 0.2536 0.4734 0.3045 0
10 m 0.6189 0.6992 0.1688 0

4. Simulation Experiment

In this section, different pedestrian dynamics models, namely traditional SFM, double-
layer decision model, and the extended SFM proposed in this paper are used to simulate and
analyze the circle antipode walking experiment, and then compared with the experimental
data to study the performance of the extended SFM. Section 4.1 describes the parameter
setting and simulation results of each model; Section 4.2 uses relevant indicators to evaluate
the extended SFM.

4.1. Parameter Setting and Simulation Results

At the strategy level, this paper uses the maximum likelihood estimation method to
calculate the parameters a, b1, and b2 of logit models, as shown in Table 3, so the equation
of Logit model is expressed as follows:

pi =
exp(−6.613 + 0.189·X1 + 0.228·X2)

1 + exp(−6.613 + 0.189·X1 + 0.228·X2)
(25)

Table 3. Logit parameter estimation results.

Independent Variables B S.E. Wald Sig. Exp(B)

Detour angle b1 0.189 0.063 9.085 0.000 1.208
Starting time b2 0.228 0.057 16.093 0.000 1.256

Constant a −6.613 1.346 24.136 0.000 0.001
Note: B: estimated value of constant term and partial regression coefficient; S.E.: standard error; Wald: chi-square
value used to test the B; Sig.: significance; Exp(B): OR value.

The Sig. values are less than 0.05, indicating that the independent variable has a
significant impact on the choice of pedestrian detour mode. This is the reason why this
paper selects the two parameters: starting time and detour angle. At the same time, the
Exp(B) values of the two parameters are 1.208 and 1.206 respectively, both greater than 1,
indicating that the larger the starting time and detour angle of pedestrians, the higher the
probability of choosing a large detour.

At the tactical level, the predicted visual perception density is used to guide the
decision-making of detour points, and the relevant parameters are consistent with the
papers of Li et al. [21]. The visual angle is [−60

◦
, 60

◦
]. k2 is calculated by the detour

level and the distance from the starting point l, i.e., k2 = exprnd(µD)
l/4+1 . Detour level obeys

the exponential distribution of parameter µD. The maximum instantaneous speed of the
pedestrian in the quarter motion cycle is defined as the desired speed. It is verified that
the desired speed of pedestrians follows a log-normal distribution with a mean of 0.9267
and a variance of 0.2767. For the group that repeatedly adjusts routes during the trip, the
minimum travel cost is used to determine the optimal path point. For the group which has
pre-planned the route before the travel or during the initial period of the trip, two heuristic
rules are used to guide the decision-making of detour points. The parameter settings in
tactical layer are shown in Table 4.
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Table 4. Model parameter.

Parameter Value Parameter Value

L 8 m M 12
µD 1.58953 δ 0.004
mi [65, 90] kg τi 0.29 s
α 0.26 β 2.78
k1 1 k2 Determined by µD

At the operational level, the Voronoi-based SFM is used to deal with the temporary
conflict in the process of moving toward the detour point, and the relevant parameters are
consistent with the papers of Helbing D. [8].

Figure 10a shows the pedestrian trajectory and rotation trajectory in the first exper-
iment of 5m-32p. The rotation trajectory is to rotate all pedestrian tracks to the same
starting point and ending point, see Equation (18). Taking this experiment as the simulation
object, traditional SFM, double-layer decision model, and the extended SFM are used for
simulation, as shown in Figure 10b–d. Comparing the experiment and the simulation dia-
grams, we can see that the previous pedestrian detour models do not reflect the feature that
pedestrians directly choose a large detour before departure or during the initial period of
the trip, resulting in an obvious increase in the mean local density of pedestrian trajectory.
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4.2. Model Evaluation

Generally speaking, there are three main methods to verify pedestrian dynamic models:
1© the fundamental diagram [31,33]; 2©observation data (e.g., trajectory and statistical charac-

teristics) [34]; 3© self-organized phenomena (e.g., arching formation and stripe formation) [35].
In this study, in order to reflect detour decision-making, conflict avoidance, and other crucial
motion characteristics, we choose trajectory data and some statistical indexes to intuitively
show pedestrian detour behavior. For trajectory, it can show the spatial distribution density
of pedestrians and the flow on different walking paths. For statistical indexes, it can quan-
titatively reflect the characteristics of the walking trajectory. In addition, pedestrians will
make different choices when facing the conflict area in the central area in the experiment. To
measure this feature, the density of the population was calculated.

Usually, K-S test is used to test the similarity of two samples, and DTW method is
used to test the similarity of two sequences. Therefore, the travel time, route length, and
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detour level are tested by K-S test. Similarly, the DTW method is applied for mean local
density and central density. Equations (25) and (26) are used to standardize the results
obtained by the K-S test and DTW method, as shown in Figure 11.

SD = 1/
(
1− log10 p

)
(26)

ST = 1/
(
1 + log10(1 + DTW)

)
(27)
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The expanded SFM performs well in the five distribution indexes. As can be seen
from Figure 11, the scores of the five indexes are 0.81 (detour level), 0.48 (mean local
density), 0.28 (central density), 0.81 (travel time), and 0.61 (route length). In particular, the
indexes of detour level, mean local density and travel time are significantly better than the
double-layer detour decision model and traditional SFM.

The trajectory diagram and the index score results show that the extended SFM can
well reproduce the trajectory in the circle antipode walking experiment. This is because
the model divides pedestrians into two groups: “repeatedly adjusting the route during
the trip” and “pre-planning the route before walking or during the initial period of the
trip” at the strategic level. The latter directly chooses a large detour to avoid the conflict
in the central area. The reduction of the number of pedestrians in the former leads to less
conflict, and accordingly, shorter travel time and lower pedestrian density. This is more in
line with the detour of the experiment. Whereas previous detour models do not consider
that some pedestrians will choose large detours according to the pre-planned route. When
the population density is high, the applicability of the double-layer decision model will be
reduced.

5. Conclusions

The previous detour behavior modeling work only described the detour decision of
pedestrians repeatedly adjusting routes during the trip, without considering that some
pedestrians have pre-planned their routes before walking or in the first period of time,
which led to the obvious high pedestrian density in the simulation. To improve the
simulation method of pedestrian detour decisions, this paper establishes an extended
SFM model based on the three-level framework of pedestrian simulation proposed by
Hoogendoorn and Bovy [13]. In this model, the two groups of “repeatedly adjusting the
route during the trip” and “pre-planning the route before walking or during the initial
period of the trip” are separated at the strategy level, so as to give tactical guidance to the
two groups respectively. At the tactical level, for the latter, two simple heuristic rules are
used to guide its detour direction, while for the former, the perceived density in the visual
field is used to determine the detour direction. At the operational level, Voronoi-based
SFM is used to cope with the direct conflicts to the detour direction at the tactical level.
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Compared with the traditional SFM and the double-layer decision model, the extended
SFM proposed in this paper describes the detour characteristics of the two groups in the
circle antipode walking experiment in more detail. The simulation trajectory and the index
score show that both the original trajectory and the rotation trajectory are better than the
above models.

However, this paper still has the following limitations:

(1) In reality, pedestrians may switch or combine the two movement modes of “repeatedly
adjusting the route during the trip” and “pre-planning the route before walking or
during the first period of the trip”, which is not considered in this paper. In the future,
we will continue to explore whether the path decision-making modes of pedestrians
have changed in the process of moving from one place to another, which has not
received much attention so far.

(2) Pedestrians are directly divided into two groups at the starting position for different
walking guidance, without considering the dynamic time difference of pedestrians
making this large-scale detour decision. In fact, this decision is made before the trip
or during the initial period of the trip, and there is a certain time difference.

(3) In fact, the speed of movement depends on the quality of the road and the landform.
The tendency of pedestrians to avoid conflict areas is related to the individual char-
acteristics of pedestrians. In the future, we will further study the influence of road
quality, terrain and individual characteristics on pedestrians’ walking speed, and
detour tendency.
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