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Abstract: While agriculture plays an essential role in food security, it is also one of the largest emitters
of carbon emissions. China’s carbon neutrality and carbon peaking goals mean that China’s agricul-
ture is also going through a low-carbon transition. To analyze the spatiotemporal heterogeneity and
convergence of China’s agricultural eco-efficiency (AEE), this study used a combined super-efficient
slacks-based measure (SBM), global Malmquist–Luenberger index (GML), kernel density estimation,
Moran index, and convergence model on panel data from 2005 to 2020 and from 31 Chinese provinces.
An innovative eco-efficiency index evaluation system was constructed from a low-carbon perspective
that integrated agricultural carbon sinks and carbon emissions. The results revealed that the average
AEE movement was U-shaped, but there were significant differences across regions and periods.
The AEE demonstrated a gradual decreasing pattern of “northeast > eastern > western > central”,
a declining trend during 2005–2010 and increasing trends during 2011–2020. The main reason for
AEE growth was technological progress; however, technical efficiency only played a role in several
provinces. The AEE in Chinese provinces was also found to have spatial autocorrelation characteris-
tics dominated by high-high, low-low, and high-low clustering. A “catching-up effect” existed in
the lagging AEE regions. Therefore, it is recommended to promote the integration of regional strate-
gies and low-carbon development, build a low-carbon technology support system, and construct a
national agricultural carbon trading center to facilitate agricultural low-carbon transformation.

Keywords: agricultural eco-efficiency; carbon sink; carbon emissions; modeling; super-efficient
SBM; GML

1. Introduction

Climate change has become a common global concern and has accelerated the global
move to green, low-carbon production and lifestyles. Although industry has been rec-
ognized as the primary source of carbon emissions, agriculture is also a relatively large
contributor to global carbon emissions growth [1], with agricultural food production emis-
sions increasing by 17% over the past 30 years. The global food system now accounts
for more than one-third of all global anthropogenic greenhouse gas emissions [2]. The
IPCC’s Climate Change and Land special report identified agriculture and deforestation as
critical drivers of climate change, with rice, farming, and nitrogen fertilizer significantly
contributing to GHG emissions [3]. Climate change and increased extreme weather events
have seriously impacted agricultural development [4], which in turn has threatened both
food security and the terrestrial environment.

As a large developing agricultural country, China’s agricultural development pattern
of “high input, high output, and high emissions” [5,6] has resulted in severe environmental
pollution. In 2019, the Ministry of Agriculture and Rural Affairs reported that the average
arable land grade was only 4.76/10, with 31.24% of arable land being below grade 3 [7].
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The lack of arable land per capita and the uneven land quality has resulted in an overuse
of chemical fertilizers and pesticides [8]. In 2021, as for China’s three major crops (rice,
corn, and wheat), the total chemical fertilizer utilization rate was 40.2% and the total
pesticide utilization rate was 40.6% [9]. While China ranks first in the world for fertilizer
and pesticide use, its utilization rate is 10 to 20 percentage points lower than in developed
countries. The use of fertilizers, pesticides, and fuel causes both agricultural nonpoint
source pollution and carbon emissions, which offsets soil carbon sequestration [10]. China’s
agricultural activities account for about 15% of national greenhouse gas emissions. At the
same time, agriculture has both carbon reduction and carbon sequestration functions [1,11],
which means that agriculture could significantly assist in meeting China’s dual carbon
goals. Therefore, China has included agricultural carbon emissions reduction as one of the
key actions needed to slow climate change. For example, the Ministry of Agriculture and
Rural Development and four other departments jointly issued China’s first special green
agricultural development plan, the 14th Five-Year Plan for National Green Agricultural
Development [12].

As China moves to a low-carbon, sustainable eco-environment, accurate spatial-
temporal AEE evolution evaluations are needed to ensure policymakers have the knowl-
edge to develop appropriate agricultural carbon reduction policies. However, AEE studies
have tended to focus more on the negative externalities caused by agricultural production.
Many studies have constructed evaluation index systems that have taken agricultural
carbon emissions or nonpoint source pollution as undesirable output [5,13–17], with only a
few efficiency assessment studies considering positive agricultural production externalities
other than economic output [18,19] and very few focusing on the value of carbon sinks.
However, indicator systems that only consider negative environmental externalities reduce
the comprehensiveness and accuracy of AEE assessments [1]. SBM has been widely used
in AEE evaluation studies [5,15,19–21]; however, although a GML index based on an SBM
directional distance function can effectively achieve global production frontier comparabil-
ity and decompose the reasons for the AEE changes [22,23], there have been few studies
that have combined SBM with GML and applied it to AEE assessments.

Given the limitations of existing research, this study attempted to innovate and ex-
tend these studies by making the following contributions. First, many previous studies
have taken economic output as the only desirable output and have ignored agriculture’s
environmental and ecological value [19,24,25]. Therefore, to present a more comprehensive
assessment of AEE from a low-carbon perspective, this paper innovatively considered
economic benefits and the carbon-sink values as expected output and agricultural carbon
emissions as the undesirable output. Second, to compensate for time series incomparabil-
ity, a nonradial, non-oriented, global super-efficient SBM model containing undesirable
outputs was employed that constructed the production frontiers in all periods. Further,
because GML has better continuity than the traditional ML index and can be directly pro-
jected to period one or backward to period T, the GML index and the super-efficient SBM
were combined to examine the dynamic evolution and specific reasons for the efficiency
changes [26,27]. Therefore, to provide a reference for sustainable, low-carbon agricultural
development in China, this article assessed China’s low-carbon AEE spatial-temporal
evolution and convergence characteristics using multi-dimensional analyses.

The remainder of this article is organized as follows: Section 2 reviews the literature,
Section 3 details the research methods, Section 4 presents and discusses the empirical
results, and Section 5 gives the conclusions and policy recommendations.

2. Literature Review

AEE, which was first defined in 1990 [28], is a specific eco-efficiency application
for the agricultural sector. Eco-efficiency is defined as the ratio of increased economic
value to inputs with environmental impact. In 1992, the Business Council for Sustainable
Development (WBCSD) identified eco-efficiency as the provision of reasonably priced
goods and services that meet the needs of high-quality human life while reducing the
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environmental impacts to a level consistent with the Earth’s carrying capacity. Subsequently,
the Organization for Economic Cooperation and Development (OECD) and the European
Environment Agency (EEA) further promoted the eco-efficiency concept by introducing
several indicator assessment systems that have since been widely used [5]. Eco-efficiency
is not only a simple assessment tool but also a useful instrument for the development of
national and regional strategies [29]. With the sustainable use of agricultural resources at the
core, AEE assessments seek to improve agricultural production efficiency, reduce resource
inputs, and lower waste [19]. As an important criterion for agricultural sustainability [30],
the AEE integrates agricultural economic and environmental benefits.

Various evaluation methods have been developed to assess eco-efficiency, such as
the ratio method, life cycle assessment (LCA), and modeling [30]. The ratio method,
and most typically the formula proposed by the WBSCD [31], takes a particular type
of environmental pollution or resource consumption as the denominator and economic
output as the numerator. The indicator approach focuses on economic outputs and ignores
inputs; however, inputs are the deep-seated cause of environmental pollution [1] and affect
agricultural productivity [4]. Thus, the indicator approach does not provide an accurate
assessment. LCA examines the environmental impacts of products or services at each
life cycle stage [32]; nevertheless, its accounting boundary delineation is subjective, and
the data collection and processing costs are high [30]. Modeling methods can deal with
multiple inputs and outputs, and the respective weights are allocated based on statistical
data characteristics to derive a composite value. Two main modeling approaches, data
envelopment analysis (DEA) and stochastic frontier analysis (SFA), have been commonly
applied to eco-efficiency calculations. SFA is a parametric approach that allows for the
estimation of technical efficiency to be controlled by estimating the production functions for
individual production processes; therefore, SFA is more accurate than DEA because it fully
considers the role of random error terms in individual efficiencies [33,34]. However, SFA is
more suitable for situations with multiple inputs and single outputs or large samples [24,35],
whereas DEA does not require a specific production function form to be set and can measure
the relative efficiency of the same type of decision-making unit (DMU) in a multiple-input and
output framework [36]. There is also no need to process the data to eliminate dimensionality
before building the model, which makes DEA highly flexible [15,17]. Consequently, DEA
has been widely used for efficiency studies at national [13,34], regional [6,37–39], and
organizational levels, such as farms or companies [17,40,41].

The main traditional DEA models are the CCR model and the BCC model, adding the
constraints of convex sets to the CCR model [42]. The efficiencies obtained from the CCR
and BCC models are referred to as technical efficiency and pure technical efficiency. Two
main drawbacks to these basic DEA models exist. The first is that radial DEA models do not
consider slack variables in their inputs or outputs, which could lead to overestimation. The
second drawback is that negative externalities (undesirable outputs) are not considered [5].
To overcome these shortcomings, Tone combined a directional distance function (DDF) and
the Super-SBM model [43] to construct the Un_Super_SBM model, which was nonradial,
non-oriented, and considered undesirable outputs [44]. The model involves both radial and
nonradial redundancies, which means it fully considers the input and output improvement
spaces, with the efficiency reducing as the slack variables rise. Given the advantages of the
Un_Super_SBM model, many environmental economics studies have used this method
to measure energy efficiency [14,45], urban eco-efficiency [27,46], AEE [20], and tourism
eco-efficiency [47].

However, the efficiency values for different benchmarks are not comparable or cir-
cular when using panel data [48], which means that DEA models are unable to analyze
eco-efficiency changes over time [49,50]. Therefore, the traditional DEA-Malmquist index
needs to be improved to reflect dynamic eco-efficiency evolutions. The global Malmquist
productivity index (GM) was proposed by constructing a production technology set com-
prising all-period DMU data as the common production frontier [51]. Oh then combined
the GM and DDF to develop the global Malmquist–Luenberger productivity (GML) in-
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dex [52]. Therefore, GML and SBM methods have been used to assess energy efficiency [53],
comprehensive eco-efficiency [48], and total factor productivity growth [54,55].

Many empirical studies from different perspectives have been conducted to explore
evolutionary characteristics of AEE in China. Since its reform and opening up, Chinese
AEE has had significant stage characteristics: free development, reform promotion, market
regulation, and policy incentives [5]. Using agricultural development and rural economic
development as the first and second stages in determining the overall rural development
efficiency, Ref. [16] concluded that China’s AEE was not high but the overall trend was
favorable and showed growth. As the AEE closely correlates with economic income, the
EKC curve for AEE in the Chinese scenario has been verified [8,19], and a spatial autocor-
relation of AEE has also been found [15]. Provinces with high AEE were found to have
positive spillover effects, while provinces with low AEE had negative spillover effects [20].
Sustainable agricultural development requires an effective trade-off between agricultural
production and urbanization [56] and the promotion of agricultural transformation through
agricultural technology research and development [8].

3. Research Methods and Data
3.1. Area and Data

This paper used the agricultural input-output data of 31 provinces in China from 2005
to 2020 as samples, excluding Hong Kong, Taiwan, and Macao. Four geographic regional
unit classifications were applied according to those put forward by the Chinese National
Bureau of Statistics [57]: eastern, central, western, and northeast (Table 1).

Table 1. China’s four major regional classifications based on administrative provinces.

Regions Provinces

Northeast region (N) Liaoning, Jilin, Heilongjiang

Eastern region (E) Beijing, Tianjin, Hebei, Shanghai, Jiangsu, Zhejiang, Fujian,
Shandong, Guangdong, Hainan

Central region (C) Shanxi, Anhui, Jiangxi, Henan, Hubei, Hunan

Western region (W) Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou,
Yunnan, Tibet, Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang

The data for each province were obtained from the official website of the National
Bureau of Statistics (http://www.stats.gov.cn) (accessed on 2 November 2022), the China
Agriculture and Forestry Statistical Yearbooks, and the statistical yearbooks from each
province; the map data were collected from the national 1:1 million basic geographic
databases of the National Geographic Information Center database (www.webmap.cn)
(accessed on 2 November 2022). Missing values were first examined in the statistical
yearbooks and communiques published by local governments, and if the data could not be
accessed, they were completed using interpolation.

3.2. Index Construction

Based on previous studies [8,13,19,34], the research object was set as agriculture
(plantation) in the primary sector and the indicator system (Table 2) was established as
shown in Figure 1. According to the rule of thumb outlined in [58], the number of indicators
satisfied the requirement that the sum of DMUs was more than three times the total number
of input and output variables.

http://www.stats.gov.cn
www.webmap.cn
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Table 2. Descriptions of the agricultural eco-efficiency evaluation index system.

Primary Indexes Sub-Indexes Specific Variables Indicator Description

Input indicators

Labor input Labor force (10K people)

the labor force in the primary
industry multiplied by the

percentage of agricultural output in
the primary industry

Land input Total crops sown area (thousand ha) Actual cultivated area in agriculture

Capital input Fiscal expenditure for agriculture
(10K CNY)

Agriculture, forestry, and water
affairs expenses

Energy consumption

Total power of agricultural machinery
(10K KWH)

Diesel engines, gasoline engines,
electric motors, and other

mechanical power
Rural electricity consumption

(100 million KWH)
Electricity consumption in rural

areas

Effective irrigation area (thousand ha) Using irrigated area as a proxy for
water use

Output indicators

Desirable output
Gross agricultural output value

(100 million CNY) Economic gains of agriculture

Agricultural carbon sink value (10K ton) Ecological value of agriculture

Undesirable output

Agricultural carbon emissions (10K ton)
Emissions from different carbon

sources such as agricultural
materials, rice, and irrigation

Agricultural nonpoint source pollution
(10K ton)

The use of three major agricultural
materials such as fertilizers,

pesticides, and films
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Figure 1. Schematic diagram of the DEA model for agricultural eco-efficiency.

3.2.1. Input Indicators

The production factors essential to agricultural activities, labor, land, capital, and
energy, were selected as the inputs. The number of primary industry employees was con-
verted based on the share of agricultural output in the primary industry. The agricultural
price index was used to adjust to the 2005 price benchmark for the capital input, and the
effective irrigated area was used to represent agricultural water consumption.
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3.2.2. Desired Outputs

The total agricultural economic output and carbon sink sequestration values were used
as the desired outputs. The agricultural price index was used to adjust data to the 2005 base
to eliminate any price change effect on the total agricultural economic output. Meanwhile,
drawing on [1], the agricultural carbon sink sequestration value was determined as follows:

C = ∑i Ci =
∑i CaYi(1−m)

HIi
(1)

where C was the carbon absorption of the crops (carbon sink), Ci was the carbon absorption
of i crop, Ca, m, and HIi were the carbon absorption rate (%), moisture content (%), and
economic coefficient of the crop (%), respectively (see Table A1), and Yi was the total
economic crop yield.

3.2.3. Undesirable Outputs

The typical manifestation of agricultural pollution is nonpoint source pollution, which
is mainly caused by three aspects: the loss of fertilizer nitrogen and phosphorus, the in-
effective use of pesticides, and the residue of agricultural film [15]. Fertilizer nitrogen
loss is the sum of the nitrogen content of the compound fertilizer and the nitrogen fertil-
izer amount multiplied by the nitrogen loss factor. Fertilizer phosphorus loss is the total
amount of the phosphorus content of the compound fertilizer and the phosphorus fertilizer
amount multiplied by the phosphorus loss coefficient. The amount of pesticide ineffective
utilization is calculated by multiplying the amount of pesticide used and the pesticide
ineffective utilization coefficient. The amount of film residue is measured as the amount
of film used multiplied by the film residue coefficient. At the actual accounting level, the
coefficients were determined by referring to [15,16] and the relevant data published by
the National Bureau of Statistics of China. Three empirical indicators, “fertilizer × 0.65,
pesticide × 0.5, and agricultural films × 0.1”, were adopted, meanwhile they were com-
bined into a comprehensive indicator of “agricultural nonpoint source pollution” by the
entropy value method [59].

The carbon source factors identified in this paper were divided into three main cate-
gories, as follows: (1) agricultural materials and, specifically, the carbon emissions resulting
from fertilizer, pesticide, agricultural film, and diesel fuel use; (2) agricultural irrigation,
which was related to power use, the thermal power generation for which has indirect car-
bon emissions; therefore, the thermal power coefficient was multiplied by 25 kg/hm2 [60],
and the thermal power coefficients for each province and year were calculated based on
the 2005 to 2020 China Yearbook statistics as the thermal power generation ratio to total
power generation; and (3) rice cultivation methane emissions, which were based on the
rice growing areas each year and the median of the rice growing cycle of 130 days [61]. As
the research object was agriculture in a narrow sense, the carbon emissions from ruminant
farming were not considered.

C = ∑ Ci = ∑ Mi × δi (2)

where C and Ci (the subscript i indicated the type of carbon source) denoted the total
agricultural carbon emissions and the carbon emissions from each carbon source. Mi and δi
referred to the actual amount of each carbon source and its corresponding carbon emission
coefficient (see Table A2).

3.3. Model Specification
3.3.1. Super-Efficient SBM Model Based on the Undesirable Output

Drawing on the Un_Super_SBM model [44], a production possibility set was con-
structed in which each province was treated as an independent DMU, and the optimal
realization production boundaries for all provinces for each year were set. In reference
to [62], suppose that at t = 1, 2,..., T period, each province k = 1, 2,..., K uses input vectors,
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“good” output vectors, and “bad” output vectors, that is, xtk, ytk, and btk. x denotes the
N kinds of inputs for each DMU and x = (x1,..., xn) ∈ R∗N , y represents the M kinds of
desired outputs and y = (y1,..., ym) ∈ R∗M, and b denotes I kinds of undesirable outputs and
b = (b1,..., bi) ∈ R∗I . As such, (xt

k, yt
k, bt

k) and (xt
k′n, yt

k′m, bt
k′i) were the input-output data for

period t in region k and k′. The production possibility set for each province for the current
period was obtained.

Pt(xt) = { (yt, bt) : ∑K
k=1 zt

kyt
km ≥ yt

km, ∀ m; ∑K
k=1 zt

kbt
ki = bt

ki , ∀ i; ∑K
k=1 zt

kxt
kn ≤ xt

kn, ∀ n ; ∑K
k=1 zt

k = 1, zt
k ≥ 0 , ∀ k

}
(3)

where zt
k was the weight of each cross-sectional observation. If ∑ zt

k = 1 and zt
k ≥ 0, the pro-

duction technology was viewed as variable returns to scale (VRS), and if
zt

k ≥ 0, the production technology was viewed as returns to scale (CRS). The current pro-
duction possibility set Pt(xt)was replaced with the global production possibility set PG(x),
which demonstrated that PG(x) = P1(x1) ∪ P2(x2) ∪ P3(x3) . . . PT(xT). Using the DEA
method, Equation (4) was obtained.

PG(x) =
{ (

yt, bt) : ∑T
t=1 ∑K

k=1 zt
kyt

km ≥ yt
km, ∀ m; ∑T

t=1 ∑K
k=1 zt

kbt
ki = bt

ki, ∀ i; ∑T
t=1 ∑K

k=1 zt
kxt

kn ≤ xt
kn,

∀ n; ∑K
k=1 zt

k = 1, zt
k ≥ 0 , ∀ k

} (4)

The following equation is the definition of the global Un_Super_SBM model:

ρ = minρ = min
1 + ( 1

N ∑N
n=1 Sx

n/xt
k′n)

1− 1
M+I [∑

M
m=1 Sy

m/yt
k′m + ∑I

i=1 Sb
i /bt

k′i]

s.t. xt
k′n ≥ ∑T

t=1 ∑K
k=1 zt

kxt
kn − Sx

n, ∀ n

yt
k′m ≤∑T

t=1 ∑K
k=1 zt

kyt
km − Sy

m, ∀ m;

bt
k′i ≥

T

∑
t=1

∑K
k=1 zt

kbt
ki + Sb

i , ∀ i ;

∑K
k=1 zt

k = 1, zt
k ≥ 0, ∀ k;

Sx
n ≥ 0, ∀ n

Sy
m ≥ 0,∀ m (5)

where ρ denotes the AEEi,t. Sx
n, Sy

m, and Sb
k were the slack vectors for the inputs and outputs

that reached the efficiency frontier, and indicated the excessive inputs, the insufficient
“good” outputs, and the excessive “bad” outputs, respectively.

3.3.2. Global Malmquist–Luenberger Productivity Index (GML)

Fukuyama and Weber’s method [63] determined the SBM directional distance function
to be as follows:

→
S

G

v

(
xtk′ , ytk′ , btk′ , gx, gy, gz

)
=

1
N + M + I

max

(
∑N

n=1
Sx

n
gx

n
+ ∑M

m=1
Sy

m

gy
m
+ ∑I

i=1
Sb

i

gb
i

)

s.t.
T

∑
t=1

∑K
k=1 zt

kxt
kn + Sx

n = xt
k′n, ∀ n ;

∑T
t=1 ∑K

k=1 zt
kyt

km − Sy
m = yt

k′m, ∀ m ;

∑T
t=1 ∑K

k=1 zt
kbt

ki + Sb
i = bt

k′i, ∀ i ;

∑K
k=1 zt

k = 1, zt
k ≥ 0, ∀ k ;

Sx
n ≥ 0, ∀ n ;
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Sy
m ≥ 0,∀ m ;

Sb
i ≥ 0, ∀ i ; (6)

where
→
S

G

v

(
xt, yt, bt, gx, gy, gb

)
represented the global SBM directional distance functions

and the current period DDF
→
S

t

v

(
xt, yt, bt, gx, gy, gb

)
can be obtained by removing the

time factor from the constraint. gx, gy, and gb were the directional vectors that respectively
indicated a decrease in inputs, a growth in “good” outputs, and a decrease in “bad” outputs.

The GML index shows the dynamic efficiency changes. The GML index can be
decomposed into a technical efficiency change index (EC), which indicated the management
system and resource allocation improvements, and a technological progress index (PBC),
which indicated the production process and manufacturing skill improvements. In this
way, the reasons for the eco-efficiency changes could be better explained [14]. The GML
index and its decomposition were as follows:

GMLt+1
t =

1 +
→
S

G

v

(
xt, yt, bt, gx, gy, gb

)
1 +

→
S

G

v
(
xt+1, yt+1, bt+1, gx, gy, gb

) = ECt+1
t × PBCt+1

t

ECt+1
t =

1 +
→
S

t

v

(
xt, yt, bt, gx, gy, gb

)
1 +

→
S

t+1

v
(
xt+1, yt+1, bt+1, gx, gy, gb

)

PBCt+1
t =

[
1+
→
S

G

v (xt ,yt ,bt ,gx ,gy ,gb)
]

[
1+
→
S

t

v(xt ,yt ,bt ,gx ,gy ,gb)
]

[
1+
→
S

G

v (xt+1,yt+1,bt+1,gx ,gy ,gb)
]

[
1+
→
S

t+1

v (xt+1,yt+1,bt+1,gx ,gy ,gb)
]

(7)

The GML index indicated the change in the t + 1 period relative to period t. If the
index was greater than 1, the GML had increased; if the index was less than 1, the GML
had decreased; if the index was equal to 1, the GML was considered to be in a stable state.
This also applied to the EC and PBC indices.

3.3.3. Kernel Density Estimation Method

Kernel density estimation analysis is an important tool for studying spatially unbal-
anced distributions and can also portray an object’s evolutionary trends and patterns by
comparing the distribution curve position, shape, extension, and polarization degrees in
different periods [20]. The Gaussian kernel function used in previous studies was chosen
to determine the AEE’s dynamic evolutionary trends in China from 2005 to 2020, for which
the following equation was used:

f (x) =
1

Nh ∑N
i=1 K

(
xi − x

h

)

K(x) =
1√
2π

exp
(
−x2

2

)
(8)

where f (x) was the kernel density function, K(x) was the kernel function, N denoted
the number of observations, xi stood for the independently and identically distributed
observations, x was the mean value, and h was the bandwidth.
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3.3.4. Spatial Autocorrelation Analysis

Spatial autocorrelation reflects the correlations between the spatial unit attribute value
and the same attribute on a neighboring unit [4] and includes a global spatial autocorrelation
and a local spatial autocorrelation [64], which were respectively expressed using the global
Moran index (I) and the local Moran index (Ii).

I =
n

∑n
i=1(xi − x)2 ×

∑n
i=1 ∑n

j=1 wij(xi − x)
(
xj − x

)
∑n

i=1 ∑n
j=1 wij

(9)

Ii =
(n− 1)(xi − x)∑n

j=1,j 6=i wij
(
xj − x

)
∑n

j=1,j 6=i
(
xj − x

)2 (10)

In Equations (9) and (10), n was the number of spatial units, xi and xj were the
respective attribute values for unit i and unit j, and wij was the spatial weight matrix. The
matrix used in this paper was the inverse distance weight matrix.

3.3.5. Convergence Analysis

The equations for the absolute β convergence (Equation (11)) and the conditional β
convergence (Equation (12)) were as follows:

ln
(

AEEi,t+1

AEEi,t

)
= α+ β lnAEEi,t + εi,t (11)

ln
(

AEEi,t+1

AEEi,t

)
= α+ β lnAEEi,t + γXi,t + εi,t (12)

where AEEi,t+1 and AEEi,t were the AEE at year t and t + 1, α was the constant intercept
term, β was the coefficient term, Xi,t was the vector for the control variables, and γ was the
vector for the regression coefficients.

Absolute β convergence means that, under strict assumptions, the AEE in all provinces
should converge to the same level over time. Conditional β convergence seeks to verify
whether the spatial AEE differences gradually shrink as the control variables are introduced,
that is, whether there is a “catch-up effect” in the lagging regions. Therefore, compared to
absolute convergence, conditional β convergence has extra control variables.

4. Results
4.1. Static AEE Evaluation

Based on the above methods, the 2005 to 2020 AEEs in 31 Chinese provinces (cities)
were calculated using MATLAB software, the results of which are shown in Table 3.

From 2005 to 2020, the provincial AEE in China ranged from 0.2839 to 1.1741 and had
large time and regional dimensional differences. The eco-efficiency distribution in each
region is shown in Figure 2.

China’s AEE first decreased and then increased, with the inflection point occurring in
2010, that is, the AEE development was U-shaped.

During the 11th Five-Year Plan period (2006–2010), as the dominant agricultural devel-
opment philosophy in this period was aimed toward improving agricultural productivity
and value-added capacity, the agricultural output-per-unit area and the intensification
degree were low. During the 12th (2010–2015) and the 13th Five-Year Plans (2016–2020),
the AEE was in an upward phase and grew faster in the latter five years. The AEE rise
from 2011 to 2015 was mainly due to comprehensive rural environmental improvements,
agricultural nonpoint source pollution prevention projects, and scientific guidance on the
use of fertilizers and pesticides, all of which effectively promoted agricultural development,
environmental protection, and energy conservation. During the 13th Five-Year Plan period,
zero-growth fertilizer and pesticide-use actions and recycling agriculture combined with
planting and raising projects were also implemented.
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Table 3. The static evaluation results of agricultural eco-efficiency in China’s 31 provinces during
2005–2020.

Province 2005 2010 2015 2016 2017 2018 2019 2020 Mean Rank

Liaoning (N) 0.5544 0.4905 0.6939 1.0020 0.7078 0.6977 1.0019 1.0099 0.6721 14
Jilin (N) 1.0255 0.8079 0.9492 1.0544 1.0035 0.7291 0.9694 1.0054 0.9417 7

Heilongjiang (N) 0.6915 0.7533 1.0035 1.0061 1.0005 1.0065 1.0114 1.0394 0.9229 8

Beijing (E) 1.0595 0.8256 1.0136 1.0368 1.0066 1.0052 1.0221 1.1021 0.9978 1
Tianjin (E) 1.0870 0.6073 0.7034 0.7703 0.7936 0.8967 1.0082 1.0891 0.7866 13
Hebei (E) 0.6801 0.5034 0.6286 0.6964 0.6253 0.6369 0.7011 1.0011 0.6535 15

Shanghai (E) 1.0459 1.0031 0.9169 0.8744 0.7996 1.0225 1.0031 1.0791 0.9959 2
Jiangsu (E) 0.5437 0.4261 0.6160 0.7720 0.8178 0.8514 0.9374 1.0096 0.6167 18

Zhejiang (E) 0.3086 0.2993 0.4192 0.4776 0.5249 0.5809 0.7493 1.0511 0.4420 30
Fujian (E) 1.0042 0.3913 0.5828 0.7586 0.6583 0.7278 0.8560 1.0421 0.6464 16

Shandong (E) 1.0110 0.6633 0.8060 1.0076 0.8647 0.8880 0.9318 1.0478 0.8692 11
Guangdong (E) 0.4040 0.3689 0.5542 0.6785 0.6709 0.7194 0.8205 1.0465 0.5494 23

Hainan (E) 1.0382 1.0119 1.0068 1.0054 1.0075 0.9111 0.8880 1.0462 0.9927 3

Shanxi (C) 0.4782 0.4724 0.5446 0.6461 0.5993 0.6114 0.6093 0.6735 0.5361 24
Anhui (C) 0.5846 0.4081 0.4724 0.4875 0.4917 0.4972 0.5273 0.5347 0.4800 29
Jiangxi (C) 0.4356 0.3611 0.4361 0.4737 0.4900 0.5016 0.5341 0.5738 0.4376 31
Henan (C) 1.0096 0.7310 0.7694 0.8567 0.8442 1.0032 0.9542 1.0499 0.8734 10
Hubei (C) 1.0228 0.4752 0.6204 0.6214 0.6160 0.6396 0.6723 0.8009 0.6345 17
Hunan (C) 0.4636 0.4386 0.6337 0.6853 0.4879 0.5009 0.5495 1.0084 0.6007 20

Inner Mongolia (W) 0.6449 0.6369 0.7412 1.0078 0.8121 1.0001 1.0027 1.0225 0.8128 12
Guangxi (W) 0.8394 0.8112 0.9141 0.8658 0.8819 1.0046 1.0024 1.0543 0.9520 5

Chongqing (W) 0.5162 0.4284 0.5113 0.5352 0.5634 0.5654 0.6676 0.7704 0.5136 28
Sichuan (W) 0.5035 0.4777 0.5924 0.7375 0.7687 0.8081 0.8910 1.0333 0.6138 19
Guizhou (W) 0.4291 0.3206 0.4541 0.6884 0.7479 0.7934 0.8604 1.0497 0.5137 27
Yunnan (W) 0.4510 0.4282 0.5379 0.5218 0.5305 0.5724 0.6442 1.0103 0.5319 26

Tibet (W) 1.1741 0.8743 0.8347 1.0562 0.7158 1.0531 1.0017 1.0671 0.9493 6
Shaanxi (W) 0.4083 0.3807 0.7018 0.7290 0.7441 0.7538 0.8986 1.0256 0.5882 21
Gansu (W) 0.4763 0.4169 0.5935 0.6570 0.5541 0.5985 0.6902 0.7851 0.5337 25

Qinghai (W) 1.0050 0.7437 0.8412 0.8663 0.8385 0.8195 0.9145 1.1643 0.9155 9
Ningxia (W) 0.5073 0.5009 0.5762 0.6556 0.6331 0.6902 0.7512 0.7354 0.5738 22
Xinjiang (W) 1.0260 0.8215 0.8301 0.8738 1.0051 1.0058 1.0021 1.0331 0.9558 4

China 0.7235 0.5768 0.6935 0.7776 0.7357 0.7772 0.8411 0.9665 0.7130
Northeast region 0.7571 0.6839 0.8822 1.0208 0.9039 0.8111 0.9942 1.0182 0.8456

Eastern region 0.8182 0.6100 0.7247 0.8078 0.7769 0.8240 0.8918 1.0515 0.7550
Central region 0.6657 0.4811 0.5794 0.6284 0.5882 0.6256 0.6411 0.7735 0.5937
Western region 0.6651 0.5701 0.6774 0.7662 0.7329 0.8054 0.8605 0.9793 0.7045

Of the four major regions, the eco-efficiencies in the northeast fluctuated slightly but
were at the highest overall level, followed by the eastern region. The western region had
more synchronized and slightly lower growth dynamics than the eastern region, and the
AEE in the central region was the lowest, which was similar to the findings in [8,15].

The northeast region had an inherent resource advantage because of its fertile black
soil. China’s grain production in 2021 was 685.58 billion tons, 21.2% of which was produced
in the northeast [65], implying that this region had a high carbon sink for crops returned to
the land. The large-scale agricultural intensification in the northeast also improved output
efficiency. However, as agricultural production is relatively sensitive to climate, policy, and
economic conditions, the northeast AEE fluctuated widely [5].

The eastern region is the most economically developed in China, with a high degree
of industrialization and a more serious occupation of agricultural land resources. However,
according to Table A3, the east had higher agricultural machinery power, irrigation area,
and power usage redundancy ratio and a higher undesirable output redundancy ratio
of carbon emissions and nonpoint source pollution. Therefore, its resource utilization
was inefficient, which resulted in excessive carbon emissions and agricultural pollution.
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Therefore, the economic resource advantages of the eastern region were not fully reflected
in its green agricultural development.
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Figure 2. Average agricultural eco-efficiency of China’s four regions from 2005 to 2020.

The western region’s efficiency had similar redundancies to the eastern region. How-
ever, it had the highest labor and crops-sown area redundancy ratio of the four regions
(see Table A3), primarily related to its economic, geographic, and population backgrounds.
Although the western region covers a large area, the agricultural farming conditions in
the west are poorer than in other regions. Mechanization is low and labor is an important
production factor, all of which contributed to the higher workforce and land redundancies.

Aside from rural electricity consumption, labor input, land input, and total agricultural
output, the central region’s input and undesirable output redundancy rates were the
highest of the four regions (see Table A3), indicating that the central region had significant
agricultural materials, water, and land inefficiencies [8]. Additionally, its carbon sink
insufficient rate was also the highest, indicating that a high carbonization of agricultural
development was evident.

For a more intuitive reflection of the comparative AEEs in different regions and their
respective development trends, a hierarchical map (Figure 3) was drawn using ArcGIS.

When the mean efficiencies in each province were ranked, the five highest AEE
provinces were Beijing (E), Shanghai (E), Hainan (E), Xinjiang (W), and Inner Mongolia
(W), and the five lowest were Jiangxi (C), Zhejiang (E), Anhui (C), Chongqing (W), and
Guizhou (W). The best- and worst-performing regions did not show agglomeration, which
indicated that there were large intra-regional variations.

Zhejiang Province had the highest average annual growth rate (8.51%). Before 2017,
Zhejiang province had inefficient energy utility, excessive carbon emissions, and a low
carbon sink value. However, after the optimization of these aspects, an effective state
was attained in 2020. In contrast, the lowest average growth rate was in Hubei province
(−1.62%), primarily because of the lack of improvements in its agricultural input and
output structures.
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4.2. Dynamic AEE Evaluation
4.2.1. Dynamic AEE Growth Rate

The dynamic AEE changes in the 31 provinces were evaluated and analyzed using the
GML index. Due to the growth calculations involved, only 15 periods were evaluated over
the 16 years, the results for which are shown in Tables 4 and 5.

Table 4. The results of GML, EC, and PBC indices for China in the years 2006–2020.

Period GML EC PBC

2005–2006 0.9849 0.9358 1.0525
2006–2007 0.8896 1.0161 0.8755
2007–2008 1.0489 1.0528 0.9963
2008–2009 0.8885 0.9588 0.9266
2009–2010 0.9907 1.0192 0.9721
2010–2011 1.1071 0.9918 1.1162
2011–2012 1.0444 1.0196 1.0243
2012–2013 1.0502 1.0107 1.0391
2013–2014 1.0345 1.0100 1.0242
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Table 4. Cont.

Period GML EC PBC

2014–2015 0.9841 1.0128 0.9717
2015–2016 1.1249 1.0083 1.1157
2016–2017 0.9491 0.9698 0.9787
2017–2018 1.0548 0.9999 1.0549
2018–2019 1.0897 1.0046 1.0846
2019–2020 1.1539 1.0111 1.1412

2006–2010 (11th
Five-Year Plan) 0.9585 0.9956 0.9627

2011–2015 (12th
Five-Year Plan) 1.0433 1.0090 1.0341

2016–2020 (13th
Five-Year Plan) 1.0720 0.9986 1.0735

2006–2020 (all
periods) 1.0235 1.0010 1.0224

Table 5. The results of GML, EC, and PBC indices for 31 provinces in China during 2006–2020.

Province GML EC PBC Rank

Liaoning (N) 1.0408 0.9984 1.0425 9
Jilin (N) 0.9987 0.9965 1.0021 28

Heilongjiang (N) 1.0275 1.0131 1.0142 12

Beijing (E) 1.0026 1.0408 0.9633 20
Tianjin (E) 1.0001 1.0119 0.9884 27
Hebei (E) 1.0261 1.0238 1.0023 14

Shanghai (E) 1.0021 0.9859 1.0165 24
Jiangsu (E) 1.0421 0.9976 1.0446 8

Zhejiang (E) 1.0851 1.0005 1.0846 1
Fujian (E) 1.0025 1.0012 1.0013 22

Shandong (E) 1.0024 0.9996 1.0028 23
Guangdong (E) 1.0655 0.9987 1.0669 2

Hainan (E) 1.0005 0.9931 1.0075 25

Shanxi (C) 1.0231 0.9746 1.0497 16
Anhui (C) 0.9941 0.9862 1.008 29
Jiangxi (C) 1.0185 0.9964 1.0222 17
Henan (C) 1.0026 0.9949 1.0077 21
Hubei (C) 0.9838 0.9816 1.0023 31
Hunan (C) 1.0532 0.9992 1.054 6

Inner Mongolia
(W) 1.0312 1.0018 1.0294 11

Guangxi (W) 1.0153 1.0026 1.0127 18
Chongqing (W) 1.0271 0.9961 1.0311 13

Sichuan (W) 1.0491 1.0007 1.0484 7
Guizhou (W) 1.0615 1.0064 1.0548 4
Yunnan (W) 1.0552 1.0268 1.0277 5

Tibet (W) 0.9937 0.9594 1.0357 30
Shaanxi (W) 1.0633 1.0029 1.0603 3
Gansu (W) 1.0339 0.9815 1.0534 10

Qinghai (W) 1.0099 1.0244 0.9858 19

Ningxia (W) 1.0251 1.0426 0.9832 15
Xinjiang (W) 1.0005 0.998 1.0024 26

Northeast region 1.0222 1.0027 1.0195
Eastern region 1.0225 1.0052 1.0172
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Table 5. Cont.

Province GML EC PBC Rank

Central region 1.0123 0.9888 1.0238
Western region 1.0302 1.0034 1.0268

China 1.0235 1.0010 1.0224

GML index phase characteristics and component changes.
From 2005 to 2020, the average annual growth in the GML, PBC, and EC indices was

2.35%, 2.24%, and 0.1%, respectively. After a decline of 4.15% during the 11th Five-Year
Plan period, annual GML index growth in the 12th and the 13th Five-Year Plan periods
was 4.33% and 7.20%, respectively.

The main driving force for the AEE changes was technological progress. The Chi-
nese government has always attached importance to developing agricultural science and
technology [66]. Before 2010, government-led agricultural information technology guided
production through information dissemination. After 2010, “internet plus agriculture”
became dominant, and technologies such as agricultural e-commerce, the agricultural
Internet of Things, and agricultural traceability were oriented toward market transactions
and broadened agricultural product sales. More recently, artificial intelligence has been
gradually applied to agriculture, such as seed detection, intelligent planting, crop mon-
itoring, and soil irrigation, to improve agricultural production efficiencies and reduce
costs. Statistically, mechanized farming has advanced significantly to 69.1%, and the rural
internet penetration rate had improved from 0 to 38.4% by 2018. During the 13th Five-Year
Plan period, the agricultural science and technology contribution rate exceeded 60% [67].
However, China’s agricultural digital technology has only been applied in a few fields, so
there is significant room for improvement.

Interregional GML index characteristics and its component changes.
The average annual eco-efficiency growth rates in the northeast, eastern, central, and

western regions were 2.22%, 2.25%, 1.23%, and 3.02%, respectively, of which the PBC
contributed 1.95%, 1.72%, 2.38%, and 2.68%, respectively, and the EC contributed less
than 0.6%. The EC in the central region reduced by 1.2%, indicating that the input factor
coordination was not high, and its technical potential was not yet realized.

The Chinese provinces were classified into three categories based on reasons for the
eco-efficiency changes. The first category included provinces in which technical efficiency
played a major role: Beijing, Tianjin, Hebei, Qinghai, and Ningxia. These four provinces
had an average EC greater than 1 but a PBC of less than 1. The second category comprised
provinces in which both technical efficiency and technological progress played joint roles,
Heilongjiang, Fujian, and Yunnan, and both EC and PBC positively contributed and had
similar effects on the eco-efficiency dynamics. The third category involved provinces where
technological progress played a dominant role, with all the remaining 23 provinces falling
into this category. While the AEE drivers were found to vary in the Chinese provinces,
technological progress was the predominant driver, indicating that the technical efficiency
drivers played relatively minor roles and existing resource allocation and coordination
approaches need to be urgently optimized to enhance resource utilization efficiencies.

4.2.2. Kernel Density Estimation of AEE

Figure 4a shows the results for the kernel density AEE estimations. From the density
function center (the value corresponding to the horizontal coordinate), the kernel value in
2020 was the largest, indicating that the average AEE in 2020 was the highest in four years.
Aside from that of 2010, the kernel density distribution curves all showed a flattening trend
to the right, revealing an AEE trend from decline to rise. The peak density center value
in 2020 was more prominent and had a longer tail on the left side, showing that more
provinces were nearer to the average value and there were greater efficiency variations
in the provinces below the mean. There was only one evident peak in 2020, but in 2005,



Sustainability 2022, 14, 16509 15 of 24

2010, and 2015, there were double peaks and the curves were flatter. Therefore, the AEE
distribution was characterized by an overall dispersion and concentration in individual
years.
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Figure 4b–d show the GML, EC, and PBC distributions. The GML and the PBC index
kernel density curves were similar, the overall distribution was more concentrated in 2005,
2010, and 2015, and the density function center shifted significantly to the right in 2020,
indicating that both the GML and PBC indices increased significantly in 2020. The GML
and PBC indices showed significant single-wave crest conditions at 1 in 2006, 2010, and
2015, that is, their mean values were concentrated around 1. However, in 2020, there was a
clear single-wave peak with a long right tail, which suggested that more provinces were
concentrated near the mean and the eco-efficiency differences in the provinces above the
mean were widening.

The technical efficiency (EC) kernel density distribution curve was concentrated
around 1 and had little variation over the years. All four years had significant single-wave
peak conditions, with the wave height increasing each year, which illustrated that the
technical efficiency distribution concentration was increasing and there were few inter-
regional variations.

In summary, there were more obvious eco-efficiency growth trends, with the eco-
efficiency moving from being decentralized to being centralized. The growth rate for the
AEE (GML) and technical progress (PBC) moved from being centralized to being dispersed
and the regional differences were enhanced, with the technical progress being more evident
in some provinces. The technical efficiency (EC) distribution was more concentrated, and
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the change magnitude was small. Therefore, the kernel density estimation once again
verified that the main contribution to the AEE changes was related to the increase in
technical progress.

4.3. Spatial Distribution Characteristics of AEE

The exploratory spatial data analysis (ESDA) focused on the spatial autocorrelation
of the AEE. The global Moran index (Table 6), the local Moran scatterplot (Figure 5), and
the local indicators of spatial association (LISA Figure 6) for AEE from 2005 to 2020 were
determined using ArcGIS.

Table 6. The results of Moran’s I of agricultural eco-efficiency in China from 2005 to 2020.

Year Moran’s I z p Year Moran’s I z p

2005 0.1574 2.2450 0.0180 2013 0.0943 1.5816 0.0590
2006 0.1566 2.2590 0.0200 2014 0.1045 1.8089 0.0460
2007 0.1519 2.1258 0.0190 2015 0.1640 2.4439 0.0140
2008 0.1963 2.7319 0.0070 2016 0.2994 3.8808 0.0020
2009 0.1828 2.8050 0.0070 2017 0.0936 1.5866 0.0540
2010 0.1572 2.3736 0.0160 2018 0.0839 1.4615 0.0720
2011 0.1887 2.7365 0.0090 2019 0.1432 2.1319 0.0190
2012 0.1610 2.4314 0.0120 2020 0.0291 0.6919 0.1900
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Table 6 shows that the global Moran index for China’s AEE from 2005 to 2019 ranged
from 0.0839 to 0.2994, all of which were significant at least at the 10% level. Although the
degree of spatial correlation varied, there were always significant spatial effects, which
indicated that the Chinese provincial AEEs had significant positive spatial correlations. The
eco-efficiency was possibly influenced by spatial spillovers from neighboring provinces,
that is, there was a demonstration effect. However, the Moran’s I for 2020 was insignificant,
meaning there were no significant spatial autocorrelations.

To clarify the association characteristics of each province to its neighboring provinces,
a Moran scatter plot and a LISA agglomeration plot were constructed to reveal the local
association patterns. Figure 5 shows that China’s AEE was mainly concentrated in the first
quadrant (H-H clustering), the third quadrant (L-L clustering), and the fourth quadrant
(H-L clustering).

According to Figure 6, in 2005, the main distribution features were H-H clustering
(Xinjiang) and L-L clustering (Sichuan and Chongqing), both in the western region. These
patterns illustrated that the agricultural technology and the input-output structures in neigh-
boring provinces gradually converged, meaning there were fewer spatial differences [4].
Hebei had L-H clustering, probably because the unidirectional flow of Hebei’s resources to
Beijing and Tianjin led to a lack of technical and agricultural talent development support,
which regressed the ecological efficiency.

In 2010, the L-L and H-L agglomerations were significant. Compared with 2005, the
L-L zone expanded and formed a contiguous trend to span three regions from the east to
the west, including Shaanxi, Chongqing, Hunan, Hubei, Jiangxi, and Fujian. This outcome
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indicated that, because rapid urbanization had reduced the availability of high-quality
arable land, agricultural development became more focused on yield but neglected sus-
tainable development. The H-L agglomeration was mainly distributed in Guangxi, Henan,
and Shanghai, indicating that the high center region AEE had exerted a siphoning effect
on the surrounding disadvantaged areas, which widened the gaps with the neighboring
provinces.

In 2015, Shaanxi Province shifted from an L-L to an H-L agglomeration, Jilin and
Liaoning showed significant H-H agglomeration, Sichuan Province returned to a significant
L-L clustering, and Hebei Province moved away from an L-L agglomeration. The possible
reasons for these changes were that Shaanxi Province, with the help of western develop-
ment and the Belt and Road Strategy, had policy advantages and had prioritized green
transformation; however, Sichuan and its neighboring provinces had less collaborative
capacity and had not realized any complementary agricultural production advantages.
In contrast, the Beijing-Tianjin-Hebei region’s strategy that was focused on collaborative
pollution control had enhanced overall low-carbon agricultural development.

In 2020, the AEE distribution was mainly dominated by H-H, H-L, and L-L clustering.
As Tibet (H-H clustering) is an important ecological security barrier in China, the govern-
ment has attached importance to its ecological construction. Consequently, to keep Tibet
one of the best ecological regions in the world, a good green agricultural development
foundation has been built. H-L clustering was found mainly in Shaanxi and Henan, but
Hubei province still had an L-L agglomeration.

4.4. Convergence Analysis of AEE

δ convergence was measured using the coefficient of variation, the results of which
are shown in Figure 7. The AEE coefficient of variation fluctuated and decreased from 2005
to 2020, which indicated that the AEE differences between the provinces were narrowing.
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Table 7 shows that the initial AEE for the β absolute convergence model was significant
at a 5% confidence level, and the AEE coefficient was less than 0.

The control variables, rural household per capita disposable income (dpi), total me-
chanical power per unit area (mech), the percentage of area affected by natural disasters
(haz), and digital concern (digit), were applied in the conditional β convergence model,
with the dpi being adjusted using the agricultural product price index, and the dpi, mech,
and digit being logarized. Similarly, the initial AEE for the conditional β convergence
model was significantly negative at the 1% level, and the convergence rate was acceler-
ated (0.3490 > 0.2078), which demonstrated that the AEE in the Chinese provinces was
converging to the same level and there was a catch-up effect.
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Table 7. The results of absolute and conditional β convergence for agricultural eco-efficiency in China.

Variable Absolute β Convergence Conditional β Convergence

L.AEE −0.2078 ** −0.3490 ***
(−2.4300) (−4.7000)

lndpi 0.0835 ***
(6.7600)

lnmech −0.1164 ***
(−2.8400)

haz −0.0015 **
(−2.2400)

lndigit 0.0127
(0.5400)

cons 0.1608 ** −0.5028 *
(2.7000) (−1.7600)

N 465 465
Adjusted R2 0.0560 0.2583

F-test 5.8915 23.3408
Model FE FE

Hausman Test 11.71 62.33
(p-value) 0.0006 0.0000

Note: * p < 0.1, ** p < 0.05, *** p < 0.01; L.AEE is the lagged term of AEE; standard errors are in parentheses.

There was a significant positive relationship between rural households’ per capita
disposable income and the AEE changes. Higher disposable income ensures that agri-
cultural producers have access to more agricultural production resources, such as capital
and farming tools, which enhances their agricultural productivity. Higher income also
facilitates agricultural producers to pay greater attention to the production and consump-
tion of green products, which directly or indirectly promotes AEE improvements. The
impacts of agricultural mechanization and the affected area percentage on the AEE were
negative and significant at 1% and 5%. There were several reasons for these results. First,
agricultural machinery inputs amplified diesel and gasoline consumption, which increased
both carbon emissions and agricultural pollutants [13]; an over-reliance on mechanical
power to exploit land potential without incorporating arable land systems, such as fallow
or shifting cultivation, can be detrimental to AEE improvements. Second, any expansion
of the affected agricultural areas could lead to insufficient output, wasted inputs, and a
reduction in AEE [64]. The effect of local governments’ digital technology attention on AEE
was positive but not significant, which suggested that technological attention has not yet
become an important driver of green agricultural production and consumption.

5. Conclusions
5.1. Study Conclusion

This study investigated the static, dynamic, spatial, and convergent characteristics
of AEE in China from 2005 to 2020. Based on the results, the following conclusions were
drawn. First, Chinese AEE showed an overall U-shaped trend, with the inflection point
occurring in 2010. The AEE had a downward trend during the 11th Five-Year Plan and an
upward trend during the 12th and 13th Five-Year Plans. The non-equilibrium distribution
revealed a “northeast > east > west > central” regional pattern. Second, the main driving
factor for the AEE changes was found to be technological progress. Technical efficiency
improvements were only found in some provinces and there was a significant technical
efficiency decline in the central region. Third, the AEE was found to have an evident spatial
autocorrelation, with H-H, L-L, and H-L clustering being the main characteristics. Finally,
the per capita disposable income of rural residents weakened the AEE convergence, the
agricultural mechanization and crop disaster area intensities reduced the eco-efficiencies
and further narrowed the eco-efficiency differences between provinces, and there was an
obvious “catch-up effect” in the lagging provinces.
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5.2. Policy Recommendations

Some policy implications can be derived from our empirical study for the formulation
of agricultural carbon reduction policies: First, it is important to continue promoting the
integration of regional strategies and low-carbon development, such as the rise of cen-
tral China, the western development drive, and the revitalization of northeast China, to
reduce green development differences. Because the eastern region has solid economic
and scientific support, encouraging the east to cooperate with other regions on joint re-
search and development on agricultural emission reduction and carbon sequestration is
critical. Further, a unified national agriculture market is needed to avoid the expansion
of the Matthew effect and the digital agriculture divide, that is, it is essential to develop
agricultural production by promoting coordinated regional and urban-rural development
and to enhance agricultural producers’ incomes through the free flow of factors.

Second, the establishment of a low-carbon technology support system for agriculture
is crucial. As agricultural production relies heavily on energy-consuming industrial prod-
ucts, more attention needs to be paid to the exploration and application of clean energy
and eco-friendly materials. Agricultural production needs to change from input and out-
put quantity orientations to high-quality development and improve resource utilization
efficiency. Certain measures could be adopted to encourage agricultural producers to
implement low-carbon agricultural technologies, such as balanced fertilization, organic
fertilizer application, and straw return. Further, to enhance agricultural disaster resis-
tance and mitigation capabilities and ensure the sustainable and healthy development of
the agricultural industry, a complete agricultural disaster monitoring and early-warning
information system is needed to ensure the stockpiling of production materials.

Third, low-carbon agricultural production and consumption are essential for the
achievement of double carbon goals. Xiamen’s experience should be drawn on to accelerate
the construction of a national agricultural carbon trading center. In conjunction with
this, an inventory of agricultural carbon sources and sinks should be compiled, and the
monitoring, accounting, and reporting system for agricultural carbon emissions data needs
to be improved. Opening of the carbon trading market to facilitate the realization of
agricultural ecological values and guide low-carbon production should be promoted. The
government should urgently develop a carbon labeling system for agricultural products
and formulate corresponding subsidy policies. The establishment of green brands of
agriculture products, the attracting of consumer purchasing power, and the expansion of
market influence with identifiable labels are needed.

5.3. Limitations and Future Research

Although this paper is innovative in its indicator construction, it still had some limita-
tions. First, there are large geographical, meteorological, and economic disparities between
the 31 provinces. Due to the long span of the study, the conversion coefficients of different
periods will be different. The adoption of uniform carbon emission coefficients and carbon
absorption rates may lead to biased results. Second, China’s agricultural development is
closely related to rural areas and farmers, and with the all-round implementation of the
rural revitalization strategy, resources are gathering in rural areas and providing support
for agricultural development. Therefore, more important indicators should be included
in the research system, such as institutional or social factors that affect the agricultural
structure and environment.

Some of the further research opportunities are as follows. First, the calculation of
carbon emission coefficients and carbon absorption coefficients combined with the tempo-
ral and spatial characteristics of Chinese agriculture is a difficult and fundamental task,
which is conducive to the accurate measurement of carbon sinks and carbon emissions.
In this way, the assessment of low-carbon development efficiency will be more in-depth
and can provide clearer guidelines for policy formulation. Second, as China has divided
different functional grain production zones and important agricultural production reserves,
allowing the same type of grain regions as decision-making units can improve the com-
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parability of assessment results. Meanwhile, the index selection can be further optimized.
External indicators such as rural areas and farmers are considered to provide a more com-
prehensive analysis of efficiency differences and low-carbon agricultural development.
Finally, although agricultural carbon trading practices have been carried out successively
in various pilot provinces, systematic research on agricultural carbon trading is lacking.
Future research can combine domestic and international experience to explore how to build
China’s national agricultural carbon trading center. Further, carrying out related policy
evaluation is essential to promoting agricultural low-carbon transition.
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Appendix A

Table A1. Economic coefficient, carbon absorption rate, and moisture content of crops in China [68]
(Unit: %).

Crops Economic Coefficient (Hi) Carbon Absorption Rate (Cf) Moisture Content (Wi)

Rice 45 41 12
Wheat 40 49 12
Corn 40 47 13
Beans 34 45 13
Potato 70 42 70
Cotton 10 45 8
Canola 25 45 10
Peanut 43 45 10

Sugarcane 50 45 50
Beets 70 41 75

Tobacco 55 45 80
Vegetable 60 45 90

Melon 70 90 45

Table A2. Agricultural carbon emission source, coefficient, and reference sources.

Category Carbon Emission Source Coefficient References

Materials

Agricultural fertilizer 0.8956 kg C/kg Oak Ridge National Laboratory of the United
StatesPesticides 4.9341 kg C/kg

Agricultural diesel 0.5927 kg C/kg IPCC United Nations Intergovernmental
Committee of Experts on Climate Change

Agricultural plastic film 5.1800 kg C/kg
Institute of Agricultural Resources and

Ecological Environment of Nanjing
Agricultural University

Irrigation Agricultural irrigation 25.0000 kg C/hm2 [69]
Rice Rice farming 3.1360 g C/(m2-day) [70–72]
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Table A3. Average redundancy and insufficient ratio of agricultural inputs and outputs of four major
regions in China.

Redundancy or Insufficient Ratio Northeast East Central West

Labor force (%) 1.6212 26.8652 32.8355 44.6325
Total crops-sown area (%) 12.5132 16.4746 29.5701 33.9869

Agricultural fiscal expenditure (%) 5.8691 14.3961 21.2435 19.5958
Total power of agricultural machinery (%) 7.7405 25.6820 30.7739 20.8063

Rural electricity consumption (%) 54.0179 56.1256 25.2780 25.3587
Effective irrigation area (%) 12.2323 29.3778 34.4833 21.4976

Gross agricultural output value (%) 3.5448 0.0869 1.3056 0.0138
Agricultural carbon sink value (%) 0.0000 3.2372 5.2825 0.9213
Agricultural carbon emissions (%) 6.4314 25.8045 41.9793 13.1367

Agricultural nonpoint source pollution (%) 7.5210 21.5806 25.5163 21.4308

Note: the input redundancy ratio equals “excessive input/total input”; the undesirable output redundancy rate
equals “excessive undesirable output/total undesirable output”; the insufficient output ratio for desired output
equals “insufficient output/total output”.
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