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Abstract: Aiming at recognizing small-scale and complex traffic signs in the driving environment,
a traffic sign detection algorithm YOLO-FAM based on YOLOv5 is proposed. Firstly, a new backbone
network, ShuffleNet-v2, is used to reduce the algorithm’s parameters, realize lightweight detection,
and improve detection speed. Secondly, the Bidirectional Feature Pyramid Network (BiFPN) structure
is introduced to capture multi-scale context information, so as to obtain more feature information
and improve detection accuracy. Finally, location information is added to the channel attention
using the Coordinated Attention (CA) mechanism, thus enhancing the feature expression. The
experimental results show that compared with YOLOv5, the mAP value of this method increased by
2.27%. Our approach can be effectively applied to recognizing traffic signs in complex scenes. At
road intersections, traffic planners can better plan traffic and avoid traffic jams.

Keywords: multi-scale context; traffic sign; attention; complex scenes; YOLOv5

1. Introduction

As artificial intelligence and transportation network technology continue to advance,
traffic sign detection is in increasing demand in computer vision algorithms. In autonomous
driving, the Advanced Driver Assistance System (ADAS) [1] has a significant effect. The
ADAS system first collects the road environment during driving and identifies, detects,
and tracks the data. Active safety technology that detects potential dangers as quickly
as possible to attract the driver’s attention and improve safety is also of vital importance.
Two methods for detecting traffic signs in AI applications are color-based and shape-
based [2–5]. For example, HIS, CIElab, HSL [6–8], etc. Traffic signs are essential for safety.
However, their proportion in the image is small and low resolution, so they are not easily
identified. Therefore, there are still some difficulties detecting traffic signs in practical
application scenes.

Recently, target detection and recognition have been successfully applied using deep
convolution neural networks [9–11]. The classic algorithm in the two-stage method, which
is the R-CNN algorithm proposed by Ross Girshich in 2014 [12], uses the R-CNN model
in the candidate regions to extract features and complete the classification in support
vector machines (SVM) [13]. The model creates a bounding-box regression algorithm to
calculate and test the coordinates of the candidate region. When the experimental results
are compared, the average accuracy of the R-CNN algorithm is approximately 20% higher
than that of the non-neural network algorithm.

Typical algorithms in the one-stage approach are yolo only look once (YOLO) and
single shot multiBox detector (SSD) [14,15]. Wang et al. combined the YOLO network with
the faster R-CNN [16] network and proposed the SSD target detection algorithm. The SSD
algorithm generates object bounding boxes of different sizes over the whole image. It uses
non-maximum suppression (NMS) [17] to combine highly overlapping bounding boxes
into one bounding box, turn the candidate region into a regression problem, and locate
the predicted box that is closest to the target. Thus, the calculation speed and accuracy
are improved.
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As scholars continue to improve algorithms, the performance of the YOLO algorithm
series is gradually improving. Recent research [18] proposes a traffic sign detection network
based on YOLOv1, which enhances detection speed and reduces hardware requirements.
Another study [19] suggested a detection network based on YOLOv3, which improved the
detection accuracy, but the real-time detection effect was not very good.

In the natural road environment, the detection of traffic signs is easily influenced by
various factors. The traditional traffic sign detection algorithm has insufficient environmen-
tal adaptability, and the detection effect is inferior. Although many detection algorithms are
highly accurate in the detection process, due to the lack of real-time detection performance,
most algorithms can hardly be applied to practical detection tasks. Furthermore, because of
the current detection algorithm’s extensive framework and many parameters, it is difficult
to deploy on the platform. Therefore, creating a target recognition algorithm with solid
precision and fast response time is essential in the challenging environment where road
signs are located.

Joseph Redmon proposed the YOLO algorithm, which processes images very quickly
and is suitable for real-time processing. However, it has a poor detection effect for traffic
signs and nearby objects, and the positioning is inaccurate. Although the current YOLOv5
algorithm has achieved good detection performance for traffic signs, it is easy to lose
small target feature information in the feature extraction process. The network model is
large and has much parameter information. It also provided the foundation for a single
target detection algorithm, which possesses the properties of high adaptability and rapid
detection speed. The YOLOv5 network selected in this paper is a lightweight version of
YOLOv5, which is more in line with the requirements of real-time detection. The backbone
network, the neck, and the head are the three sections of YOLOv5. The network structure
of YOLOv5 is shown in Figure 1.

Sustainability 2022, 14, x FOR PEER REVIEW 2 of 12 
 

the predicted box that is closest to the target. Thus, the calculation speed and accuracy are 
improved. 

As scholars continue to improve algorithms, the performance of the YOLO algorithm 
series is gradually improving. Recent research [18] proposes a traffic sign detection net-
work based on YOLOv1, which enhances detection speed and reduces hardware require-
ments. Another study [19] suggested a detection network based on YOLOv3, which im-
proved the detection accuracy, but the real-time detection effect was not very good. 

In the natural road environment, the detection of traffic signs is easily influenced by 
various factors. The traditional traffic sign detection algorithm has insufficient environ-
mental adaptability, and the detection effect is inferior. Although many detection algo-
rithms are highly accurate in the detection process, due to the lack of real-time detection 
performance, most algorithms can hardly be applied to practical detection tasks. Further-
more, because of the current detection algorithm’s extensive framework and many pa-
rameters, it is difficult to deploy on the platform. Therefore, creating a target recognition 
algorithm with solid precision and fast response time is essential in the challenging envi-
ronment where road signs are located. 

Joseph Redmon proposed the YOLO algorithm, which processes images very quickly 
and is suitable for real-time processing. However, it has a poor detection effect for traffic 
signs and nearby objects, and the positioning is inaccurate. Although the current YOLOv5 
algorithm has achieved good detection performance for traffic signs, it is easy to lose small 
target feature information in the feature extraction process. The network model is large 
and has much parameter information. It also provided the foundation for a single target 
detection algorithm, which possesses the properties of high adaptability and rapid detec-
tion speed. The YOLOv5 network selected in this paper is a lightweight version of 
YOLOv5, which is more in line with the requirements of real-time detection. The backbone 
network, the neck, and the head are the three sections of YOLOv5. The network structure 
of YOLOv5 is shown in Figure 1. 

 
Figure 1. YOLOv5 network structure. 

The YOLOv5 network draws on the design ideas of a cross-stage partial network 
(CSPNet), designs a C3 module containing multiple standard convolutional layers and 
multiple bottlenecks, and applies it to the backbone layer and the neck layer. Among 
them, the C3 module of the neck layer mainly learns the residual features while reducing 
the number of network parameters based on unchanged accuracy. The spatial pyramid 
pooling-fast (SPPF) module reduces the network layer based on the spatial pyramid 

Figure 1. YOLOv5 network structure.

The YOLOv5 network draws on the design ideas of a cross-stage partial network
(CSPNet), designs a C3 module containing multiple standard convolutional layers and
multiple bottlenecks, and applies it to the backbone layer and the neck layer. Among
them, the C3 module of the neck layer mainly learns the residual features while reducing
the number of network parameters based on unchanged accuracy. The spatial pyramid
pooling-fast (SPPF) module reduces the network layer based on the spatial pyramid pooling
(SPP) module, removes redundant calculations, and performs feature fusion at a faster
speed. In the neck layer, YOLOv5 uses feature pyramid network (FPN) + perceptual



Sustainability 2022, 14, 16491 3 of 12

adversarial network (PAN) for fusion. Among them, FPN fuses the obtained features in
a top-down manner to bring predicted feature maps of various scales. The PAN layer
consists of a bottom-up path added after the FPN layer. The two structures are combined,
the features of the lower layer are passed up, and the parameters of the feature layer are
aggregated from different backbone layers. Finally, the network makes predictions at the
head layer.

In this paper, the YOLO-FAM algorithm is proposed, which improves the accuracy
and speed of traffic sign recognition. The main contributions are as follows:

(1) We combined the YOLOv5 network with ShuffleNet-v2, BIFPN, and CA mechanisms
to propose the YOLO-FAM network, which solved the problem of traffic sign recogni-
tion in complex environments.

(2) We conduct experimental evaluations to demonstrate the performance of the algo-
rithm. Experimental results show that our algorithm performs close to optimality and
outperforms many algorithms in realistic scenes.

This paper is organized as follows: Section 2 presents our approach. Section 3 presents
the dataset setup. Section 4 presents the experimental results. Section 5 is dedicated to
the conclusion.

2. Methodology

This paper proposes the YOLOv5-FAM algorithm. The YOLOv5-FAM algorithm uses
the ShuffleNetv2 network instead of the original backbone network. It introduces the
channel shuffle operation without increasing the amount of calculation and increases the
effect of traffic sign feature extraction. It uses the BIFPN model instead of the original
PANet model. It enhances the feature fusion and obtains more features. The CA attention
mechanism is embedded into the feature fusion network, using the captured location
information to capture the target area more accurately. The loss function of YOLOv5
hinders the model from effectively optimizing the similarity, so changing the loss function
to EIOU loss makes convergence faster. Figure 2 depicts the improved YOLO-FAM network
structure in this paper.
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2.1. ShuffleNet v2 Network Structure

The YOLOv5 initial model easily loses traffic sign feature information during the
feature extraction process. The network model is large and has much parameter information.
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The detection effect of traffic signs is low, and there are specific difficulties in the deployment
process in this paper. ShuffleNet v2 [20] is used to replace the backbone network of YOLOv5,
reducing parameters and realizing lightweight detection.

Figure 3 describes the ShuffleNet v2, which introduces the channel shuffle operation.
While not increasing the amount of computation, the effect of feature extraction on traffic
signs is enhanced. The ShuffleNet v2 network is divided into two units. In Unit 1, the
feature channels are divided into two groups. To reduce the model’s fragmentation, the
network does nothing on the left side after performing a series of convolutions, BN, and
Relu operations on the right side. Then, the network connects the output features of the
left branch with the output features of the right and shuffles channels. In Unit 2, both the
left and right components are downsampled, and a series of convolutions, BN, and Relu
operations are carried out. Then, the network performs concreting and channel shuffling.
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2.2. Bi-FPN Network Structure

YOLOv5s adopts the PANet [21] structure for feature fusion. The PANet network
introduces a bottom-up path, and low-level information is more easily passed on to the top
of the high level. It then performs bottom-up feature fusion. However, to further strengthen
the feature fusion method and obtain a better detection effect on traffic signs, we use the
BIFPN network instead of the PANet network. The BiFPN network is shown in Figure 4.
The BiFPN network enables simple and quick multi-scale feature fusion, adds an extra
channel, integrates more features without increasing the cost, and obtains more feature
information. BiFPN adopts a fast normalized fusion strategy. Each normalized weight
takes a value between 0 and 1. The weighted fusion method is shown in Equation (1).

O = ∑
i

ωi
ε + ∑j ωj

× Ii (1)



Sustainability 2022, 14, 16491 5 of 12

where ε = 0.0001 is added to the denominator to avoid numerical instability, Ii is the input
feature map, and ωi and ωj are the learnable weights of the input feature map, which can
use the Relu activation function to ensure that its value is greater than 0.
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The BiFPN network integrates bidirectional cross-scale connections and normalized
fusion. As a specific example, this paper describes the feature fusion of BiFPN shown in
Figure 4b at the P4 layer.

Ptd
4 = Conv

(
ω1Pin

4 + ω2Resize
(

Pin
5
)

ω1 + ω2 + ε

)
(2)

Pout
4 = Conv

(
ω′1Pin

4 + ω′2Ptd
4 + ω′3Resize

(
Pout

3
)

ω′1 + ω′2 + ω′3 + ε

)
(3)

where Ptd
4 is the intermediate feature of the P4 layer, and Pout

4 is the output feature of the
P4 layer. Resize is used for resolution matching of sampling operations. Conv is generally
a convolution operation for feature processing.

2.3. CA Attention Mechanism

In detecting traffic signs, there is a problem of insufficient attention to the target in
the salient area of the occluded target. Therefore, we add a CA attention mechanism to the
feature fusion network. The CA attention mechanism is shown in Figure 5. It takes full
advantage of the captured location information, captures the target area more accurately,
and can effectively capture the relationship between channels. We encode horizontal
and vertical position information into channel attention, conduct feature transformation
by cascade fusion, and initiate 1 × 1 convolution Transform Function F. Then, we use
two other 1 × 1 convolution transformation functions, Fh and Fw, to output tensor through
the sigmoid activation function. After feature integration, salient attention regions yc
are obtained.

f = β
(

F
([

zh, zω
]))

(4)

gh = δ
(

Fh

(
f h
))

(5)

gω = δ(Fω( f ω)) (6)

yc(i, j) = xc(i, j)× gh
c (i)× gω

c (j) (7)

where f is the feature map mapping, β is the activation function, zh, zω are the vertical and
horizontal location information, gh and gω represent feature maps with the same quantity
of output channels by sigmoid, and xc is feature information on skip connections.
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2.4. YOLOv5 Loss Function Improvement

The YOLOv5′s loss function consists of three parts: bounding box regression score,
object score, and class probability score. In the bounding box regression score, complete
intersection over union loss (CIOU Loss) is used to achieve prediction.

Loss = λ1Lcls + λ2Lobj + λ3Lloc (8)

where λ1, λ2, λ3 is the balance factor.
The loss function of YOLOv5 considers the overlapping area of bounding box re-

gression, center point distance, and aspect ratio, but the formula reflects the difference
in aspect ratio. As a result, the model cannot effectively optimize the similarity. For this
problem, this paper adopts the better performance of the efficient intersection over union
loss (EIOU Loss). Overlap loss, center distance loss, and width and height loss are the three
components of the EIOU loss function. In the bounding box regression score, EIOU loss’s
width and height loss have a faster convergence speed and higher accuracy. It is better than
the original network’s CIOU loss.

LEIOU = LIOU + Ldis + Lasp

= 1− IOU +
ρ2(b,bgt)

c2 +
ρ2(ω,ωgt)

C2
ω

+
ρ2(h,hgt)

C2
h

(9)

where cω and ch are the width and height of the smallest bounding box covering the
predicted and real boxes, ρ is the Euclidean distance between b and bgt, ω, ωgt represent the
width of the prediction box and the real box, respectively, and h, hgt represent the height of
the prediction box and the real box, respectively.

3. Dataset and Experiment Setup
3.1. Image Dataset

This paper adopts the Chinese traffic sign database CTSDB [22]. As shown in Figure 6,
China’s traffic signs are divided into 64 categories, and data are divided into mandatory,
prohibitory, and warning. The dataset includes realistic traffic scenarios recorded in various
weather conditions. The total number of images used for training was 10,000. It should
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be noted that for the case where some picture samples in the dataset are too few, pictures
with less than 100 occurrences will be omitted. The images from the dataset are enhanced
in this paper, as shown in Figure 7. In order to verify the effectiveness of the YOLO-FAM
algorithm, the training set was 7000 and the test set was 3000.
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3.2. Hardware Environment

In the experiment, Intel (R) Core (TM) i9-10700 CPU @ 3.70 GHz processor (Intel,
Mountain View, CA, USA), 32 GRAM, and Nvidia GTX 2080 (NVIDIA, Santa Clara, CA,
USA) were selected. All experiments were carried out in the environment of PyTorch 1.8,
Cuda 10.0, Cudnn 7.6, Python 3.7, and Win 10.

3.3. Evaluation Indicators

In this paper, various types of experiments were carried out to verify and analyze
actual performance. The purpose of this was to test the effectiveness of the proposed
improved YOLO-FAM algorithm. We used several evaluation indicators to compare the
performance of our method in both accuracy and real-time and compare it with other
models with better performance.

The YOLO-FAM algorithm is mainly evaluated through parameters such as Recall
rate, Precision, mAP, etc. FPS is the number of pictures processed per second. TP stands for
true positives, FN stands for false negatives, and FP stands for false positives. Therefore,
Precision and Recall were as follows:

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

AP =

1∫
0

P(R) (12)

mAP =
1
c

c

∑
j=1

APj (13)

where AP stands for comprehensive evaluation of a particular category, mAP is obtained by
averaging the mean precision (AP) across all classes, and c is a single class.

4. Experimental Results
4.1. Dataset Detection Results

To show the detection results of the YOLO-FAM algorithm for traffic signs, pictures of
different environments were randomly selected from the CTSDB test set for detection.

This paper uses the YOLO-FAM algorithm, which uses multiple convolutional neu-
ral networks, to recognize traffic sign images. Then, various network structures were
used to achieve feature fusion of different scales, and finally, target detection in different
environments was realized.

Figure 8 depicts the experimental results under various environments. In comparison
with the YOLO algorithm, the detection results were improved in multiple environments,
proving that the YOLO-FAM algorithm recommended in this paper can easily complete
the detection tasks in different environments.

4.2. Performance Comparison

To test the efficacy of the YOLO-FAM algorithm in traffic sign detection in this paper,
the model was compared with the better performance models Faster-RCNN, YOLOv3,
YOLOv4, YOLOv3-Tiny, YOLOv4-Tiny, and SSD algorithms. Table 1 shows the comparison.
It can be seen from the table, as a large-scale network, Faster-RCNN has the advantage
of high detection accuracy, with an average detection rate of 89.16%, but the high model
complexity makes it difficult to deploy to mobile terminals with limited computing power.
The accuracy of the improved YOLO-FAM model reaches 88.52%, which is only 0.64%
behind compared with Faster-RCNN. The mAP values of YOLO-FAM increased by 21.31%
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and 15.09%, respectively, compared with YOLOv3-Tiny and YOLOv4-Tiny.YOLO-FAM is
more accurate and meets the real-time detection standard.
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Table 1. Experimental results comparison.

Model mAP FPS FLOPs (G)

Faster-RCNN 89.16 17 535.7
YOLOv3 83.76 29.6 66.5
YOLOv4 88.24 41.2 60.2
YOLOv5 86.25 94.2 9.5

YOLOv3-Tiny 67.21 79 6.1
YOLOv4-Tiny 73.43 95 6.9
YOLO-FAM 88.52 83.3 8.2

4.3. Ablation Experiment

The training performance evaluation was carried out based on the YOLOv5 algorithm,
combined with different innovative strategies. The algorithm’s recognition accuracy has
been improved based on the assumption of ensuring real-time performance. Firstly, The
ShuffleNet-v2 network replaced the c3 module. Since the c3 module has many parameters,
the detection speed was slower. The ShuffleNet-v2 network is more convenient, which
increases the detection speed of the algorithm, and the number of parameters is small.
As shown in Table 2, mAP increased by 0.2%, FPS increased by 3.5%, and the number of
parameters also decreased. Secondly, we joined the BIFPN network, introduced a simple
and efficient weighted feature fusion mechanism, fused the effective information from
the network’s backbone, reduced interference to background information, and improved
detection accuracy. Then, mAP was enhanced by 0.8%, and the identification speed also
increased. Then, the CA attention mechanism was added. When detecting traffic signs, it
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can identify channel information in the network structure and sense a range of direction
and location information, helping YOLO-FAM locate and identify traffic sign information
accurately. Finally, we used EIOU loss to accelerate convergence and improve regression
accuracy. The four improved modules were added to the YOLOv5 algorithm, which
increased the accuracy by 2.6%.

Table 2. Ablation Experiment Results.

Methods mAP (%) FPS (f/s) FLOPs (G)

YOLOv5 89.2 95.0 12.5
YOLOv5 + ShuffleNet-v2 89.4 98.5 10.5

YOLOv5 + ShuffleNet-v2 + BIFPN 90.2 99.5 9.2
YOLOv5 + ShuffleNet-v2 + BIFPN + CA 92.4 100.1 8.5

YOLOv5 + ShuffleNet-v2 + BIFPN + CA + EIOU 92.5 95.5 8.9

4.4. GTSDB Dataset Experimental Results

To further test the improved YOLO-FAM model’s detection effect on other traffic signs,
the GTSDB [23] dataset was used for the experiments. Table 3 displays the experimental
results. YOLOv5′s anchor boxes were automatically learned from the training set, whereas
YOLOv4′s were not. Therefore, the identification accuracy and speed of YOLOv5 are
superior to those of YOLOv4. YOLOv4-Tiny, although it adopts a lightweight backbone
network, its target recognition accuracy is not very good. Compared with YOLOv5, the
YOLO-FAM improves the backbone network and BIFPN network and locates traffic signs
faster. The accuracy is significantly improved, as is the computational efficiency. Table 3
compares the detection results, and the YOLO-FAM algorithm achieves 87.82% mAP in the
GTSDB dataset.

Table 3. Experiment results.

Methods mAP (%) FPS (f/s)

YOLOv4 83.75 65.5
YOLOv5 84.68 98.6

YOLOv4-Tiny 61.45 80.2
YOLO-FAM 87.82 89.2

5. Conclusions

In this paper, we proposed a YOLO-FAM method for traffic sign detection and applied
it to the driving system. This method offers an improved image detection algorithm, YOLO-
FAM, by improving the backbone network, adding the BiFPN network structure, adding
an attention mechanism, and changing the loss function. Extensive experiments on the
dataset show that the YOLO-FAM algorithm’s mAP value in the CTSDB dataset is already
improved by 2.27%. Finally, the YOLO-FAM algorithm’s recognition results on the GTSDB
dataset also have good results. The experiments demonstrate that the method YOLO-FAM
can detect traffic signs effectively and quickly. We can apply the method proposed in this
paper to the ADAS system, which can recognize traffic signs during driving. According to
the information provided by the system, the driver can better make a series of responses to
the traffic signs to better avoid traffic accidents.

Although the algorithm’s accuracy has greatly improved, in general, the identification
accuracy is still lower than that of large networks. There is still room for a significant
improvement in practical applications. This article only classifies and recognizes traffic
signs in China, but there are traffic signs that are not used in various countries at present,
and the database needs to be improved to explore the classification and recognition of more
types of traffic signs. At the same time, we also hope to develop a complete system for
application in ADAS and better application in vehicles.
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