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Abstract: At higher ammonium concentrations, nitritation can be easily attained by picking out the
inhibitor. In low-concentrated reactors, nitrite accumulation without using any chemical inhibitor is
a challenging process. In this study, two continuous stirred-tank reactors (CSTR) with biofilm and
without biofilm were operated with total ammonium nitrogen feed concentrations of ~50 mg/L and
~30 mg/L and effluent concentrations of ~1 mg/L. A CSTR without biofilm was operated in three
phases. In phase 1, a substrate-shock concentration of 1 to 2000 mg total ammonium nitrogen (TAN)/L
was tested. It was found that the shock concentration was not successful in long-term operations
because nitrite-oxidizing bacteria (NOB) recovered rapidly. In phases 2 and 3, the sludge-treatment
method was applied, and a high nitrite accumulation efficiency was achieved (~98%). In a CSTR with
biofilm, the free ammonia shock concentration was ~91.7 mg/L, and a nitrite accumulation efficiency
of ~90% was achieved.

Keywords: substrate shocks; sludge treatment; nitrite accumulation efficiency; partial nitrification;
ammonium-oxidizing bacteria (AOB)

1. Introduction

A shortcut for the biological nitrogen removal process utilizes the direct conversion
of ammonium to nitrite to nitrogen gas [1]. Nitrite-oxidizing bacteria (NOB) are believed
to be rate-limiting under conventional operating conditions [2,3]. For example, at higher
ammonium concentrations, nitritation can be easily attained by picking out the inhibitor,
such as free ammonia (FA), free nitrous acid (FNA), and dissolved oxygen (DO) [4–6], and
temperatures greater than 25 ◦C, because ammonium-oxidizing bacteria (AOB) exhibit
higher growth rates at higher temperatures [7].

As NOB are sensitive to FA concentrations [8], the inhibition of NOB begins at
0.1–1 mg FA/L. For NOB inhibition, the FA concentration range should be 1–10 mg FA/L [1].
The free nitrous acid (FNA) concentration threshold value to suppress NOB is ~0.02 mg
HNO2-N/L [4,9]. NOB suppression can also be achieved using an intermittent supply of
DO combined with an anaerobic ammonium oxidation process [10], although selective
chemicals such as hydroxylamine (NH2OH) [11], sodium azide (NaN3) [8,12], sulfides,
salts, heavy metals, chlorate, cyanate, halide, hydrazine, and organic chemicals [13,14]
have also been used. Tests with toxic compounds found that NOB were more affected than
AOB at an azide concentration of 0.3µm/L, and nickel and copper were equal or more
toxic to Nitrosomonas sp. than to Nitrobacter sp. However, the inhibitors also reduced the
performance of AOB. The uptake rate of AOB reportedly decreased from 90% to 75% due to
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NH2OH [15]. The addition of chemicals for NOB suppression required a costly supplemen-
tary treatment method to eliminate chemicals hazardous to organisms from wastewater.
Inhibitors such as NH2OH [15], copper(II) and arsenic(III) [16], zinc oxide nanoparticles
(ZnO NPs) [17], chromium(III) and Cr(IV) [18], and FA and FNA concentrations [19] not
only suppressed NOB but also reduced the performance of AOB to some extent.

In a sludge-treatment method introduced by Wang et al. (2017) in which an FA
concentration of 210 mg FA/L was used, 22% of activated sludge from a sequencing batch
reactor (SBR) was taken and treated on a daily basis on the sidestream [20]. However,
Wang et al.’s method has two drawbacks. First, daily sludge treatment may not be required
until and unless NOB is activated in the reactor. Second, sludge treatment requires an
additional batch reactor to suppress NOB.

In this study, two reactors were operated: a continuous stirrer-tank reactor (CSTR) and
a continuous stirrer-tank biofilm reactor (CSTBR). The CSTR was used to determine how
long NOB can be suppressed after a single treatment and shock concentration. The CSTBR
was used to reduce operational costs because sludge in a CSTR is treated in a separate batch
reactor, while NOB in a CSTBR is suppressed within the reactor and no additional batch
reactor is required.

2. Material and Methods
2.1. Cells Cultures and Mineral Media

The AOB species for the continuous stirred-tank reactor model (CSTR) were obtained
from a reactor operated in our laboratory (R1) [21,22]. The inoculum contained both AOB
(0.67%) and NOB (0.64%). A total of 2 L of liquid from R1 was fed directly into the model
CSTR. The influent feed was initiated instantly, pH was kept at 8 ± 0.1 throughout the
process, the temperature was kept at ~30 ◦C, and enough DO was supplied through an air
diffusor. The feed was composed of NH4HCO3, MgSO47H2O, FeSO47H2O, CaCl2, KCl,
MnSO4H2O, and KH2PO4 minerals. For the CSTBR, 2.5 L of inoculum was obtained from
the model CSTR and the same operational parameters (influent feed, effluent, and mineral
medium) were used.

2.2. Reactor Operation

The model CSTR cell recycled 5 L of liquid with ~50 mg of total ammonium nitrogen
(TAN)/L and ~30 mg TAN/L of influent feed and 1 mg TAN/L of effluent for 205 days.
Nitritation was achieved within a few days of operation. The substrate shocks were
performed during the first of three phases of operation, and sludge treatment was tested in
phases 2 and 3. The CSTBR chemostat handled 2.5 L with ~50 mg TAN/L influent feed and
1 mg TAN/L effluent concentration for 105 days, with nitritation achieved within a few
days of operation. Substrate shocks were tested within the reactor.

2.3. Experimental Details
2.3.1. Model Continuous-Stirred Tank Reactor

The model CSTR with cell recycling was fabricated in the laboratory. The influent
feed was pumped and the cells were recycled continuously. After successful nitritation,
the cells were subjected to a substrate shock within the reactor, and sludge was treated in
separate batch reactors. After sludge treatment in the batch reactor, the cells were rinsed
three times and retained in the model CSTR at the same operational conditions used to
achieve nitrification (Figure 1).
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Figure 1. Schematic diagram of CSTR. Part 1: CSTR operation in which cells are recycled. Part 2:
settled cells are pumped into a batch reactor where they are treated using TAN concentrations of
5000 mg/L, with substrate-shock cells rinsed and returned to the CSTR.

2.3.2. Continuous Stirrer-Tank Biofilm Reactor

The CSTBR chemostat with a 2.5 L volume was fabricated in the laboratory. Square-
shaped spunches were put in the reactor to develop a biofilm, and DO was supplied
through an air diffuser. Influent was pumped in continuously and complete nitrititation
was achieved within a few days of operation. After complete nitritation, the substrate shock
was tested within the reactor for nitrite accumulation (Figure 2).

2.4. Substrate Shocks for NOB Suppression
2.4.1. Substrate Shocks during Steady-State Operation

A known quantity of ammonium bicarbonate (NH4HCO3) in powder form was in-
jected into the CSTR for 65 operational days to verify the inhibition of NOB (Table 1).
The operating conditions remained constant throughout the process. In the CSTBR, the
liquid was drawn from the bottom of the reactor, a known concentration of ammonium
was diluted in the liquid, and the resulting mixtures were returned to the reactor for 24 h.
The shock liquid was then drawn through the bottom of the reactor, the influent feed was
initiated, and nitrite, nitrate, and ammonium concentrations were measured to determine
the effect of the shock on NOB.
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Figure 2. Schematic diagram of CSTBR. Spunches were added in the reactor for the development of
biofilm and sufficient DO was supplied via an air diffuser.

Table 1. Substrate shocks and nitrite accumulation.

Sr. NO Operational
Day

Shock
(mg TAN/L) *

Shock
(mg FAN/L) *

NO2
(mg/L)

NO3
(mg/L)

TANinf
(mg/L)

TANeff
(mg/L) **

CSTR

1 65.0 ~5 0.45 11 37 ~50 ~1
2 66.0 ~5 0.45 – – ~50 ~1
3 67.0 ~5 0.45 – – ~50 ~1
4 68.0 ~5 0.45 – – ~50 ~1
5 69.0 ~5 0.45 – – ~50 ~1
6 70.0 ~20 1.81 16.1 32.6 ~50 ~1
7 71.5 ~20 1.81 ~50 ~1
8 73.0 ~50 4.54 17.7 30.6 ~50 ~1
9 80.0 ~100 9.07 21.2 29.3 ~50 ~1

10 84.0 ~200 18.1 34.2 23.3 ~50 ~1
11 86.0 ~200 18.1 – – ~50 ~1
12 88.0 ~200 18.1 – – ~50 ~1
13 90.0 ~200 18.1 – – ~50 ~1
14 92.0 ~200 18.1 – – ~50 ~1
15 95.0 ~500 45.4 56.3 4.0 ~50 ~1
16 98.0 ~500 45.4 – – ~50 ~1
17 100 ~500 45.4 – – ~50 ~1
18 103 ~500 45.4 – – ~50 ~1
19 106 ~1000 90.7 55.7 3 ~50 ~1
20 110 ~2000 181.4 65.7 2 ~50 ~1

CSTBR

1 62 ~1000 90.7 *** 44.4 5.2 ~50 ~1
2 76 ~1000 90.7 45.2 4.6 ~50 ~1
3 90 ~1000 90.7 45.5 4.62 ~50 ~1

– Concentrations remain the same as above. * Shock concentration fixed once in the CSTR. ** Concentration
measured before the shock. *** Shock concentration maintained for 24 h.

2.4.2. Sludge Treatment

The influent feed concentration was stopped, and the cell suspension was transferred
into 5 L jugs and centrifuged to separate the cells from the suspension. After centrifuging,
the cells were rinsed three times and resuspended in a batch reactor. A known concen-
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tration of ammonia bicarbonate (NH4 HCO3) was added to make the required ammonia
concentrations (3000 and 5000 mgTAN/L). Operational parameters such as temperature
were controlled at ~30 ◦C, DO was ≥4 mg/L, and the pH was set to ~8. The substrate shock
continued for 12 h in treatment 1 and for 24 h in the remaining treatments. Water with a
pH < 4 was circulated with a flow rate of 10 mL/min in all treatments (except treatment 1)
in the CSTR to remove any NOB attached to silicon tubes or walls of the reactor to improve
the efficiency of nitrite accumulation. After the 24 h shock, the CSTR was washed and
the cells were rinsed three times and resuspended in 10 L of mineral medium to maintain
the environmental conditions for the AOB at those before sludge treatment before being
transferred to the CSTR. The influent feed was initiated and TAN, nitrite, nitrate, and
mixed liquor-suspended solids concentrations were recorded once a day. However, due to
substrate shock during the sludge treatment, the ammonium concentration rose only by
6–10% above the steady-state concentration.

2.4.3. Sampling and Analysis

The TAN effluent and influent concentration, nitrite, and nitrate concentrations were
measured through a standard method [17]. The FA and FNA concentrations were measured
by Equations (1) and (2) [13,18].

FA =
STAN·10pH

e(
6344

273+0C
)+10pH (1)

FNA =
STNN(

e(
−2300

273+0C
)·10pH

)
+ 1

(2)

3. Results and Discussion
3.1. Substrate Shocks and Nitrite Accumulation

The stability of biological reactors can be changed temporarily by substrate shock and
returned to an original steady-state condition within a few days of operation [11,23–27].
The experimental results showed that NOB are more sensitive to FA concentrations [19].

We investigated the effect of substrate shock on NOB performance at lower influent
and effluent concentrations. The CSTR began operating at an influent feed concentration
of ~50 mg TAN/L and the reactor was stabilized after 33 operational days. Furthermore,
the reactor was allowed to remain in a steady state for 65 days to achieve nitritation and
sufficient sludge accumulation for the substrate shocks. The FA (0.45 to 181.4 mg/L)
was initially added several times during the steady-state operation (Table 1). Substrate
shocks ranging from 0.45 to 4.54 mg/L did not affect NOB performance, possibly due to a
lower hydraulic retention time and shock concentrations diluted with influent feed. The
NOB suppression began at 9.07 mg FA/L and increased as the FA shock rose. Similar
results have been reported by Chung et al. (2012) [25]. At a higher shock concentration
(181.4 mg FA/L), complete NOB suppression was achieved, but NOB recovered to the
original steady-state position, and the mass balance was disturbed due to the conversion
of some shock concentrations to nitrite (Figure 3). A concentration of 210 mg FAN/L was
used in the batch tests to suppress NOB [15]. Suppression of NOB with a substrate shock
was not as effective as long-term nitrification due to dilution of the shock concentration
and mass-balance disturbance.

In the CSTR, the substrate shock disturbed the mass balance, and an additional batch
reactor was required to treat the sludge. The CSTBR was operated to reduce the operational
cost and avoid mass imbalance, and an FA concentration of ~90.7 mg/L was used to
suppress NOB for 24 h. After the shock, AOB performance was reduced, but it recovered
rapidly without the need to alter the operational conditions, and a nitrite accumulation of
90% was achieved. After 16 days of nitrite accumulation, the same shock was repeated
three times, and a nitrite concentration of 90% accumulated in the main stream (Figure 4).
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Figure 3. CSTR performance at different substrate shocks and after sludge treatment (Sludge treat-
ment stages: 1, 2, 3, 4, and 5).

Figure 4. CSTBR performance before and after shocks (substrate shock during operational days 62,
76 and 94).
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3.2. Sludge Treatment and Nitrite Accumulation

A separate batch reactor was prepared for the substrate shocks. The cells were ex-
tracted from the CSTR on day 119 and resuspended in a batch reactor: 272 mg/L of FAN
was added in treatment 1, and 453 mg/L was added in treatments 3, 4, and 5, with the
same operational conditions maintained for 12 h (as in the CSTR). Next, the cells were
resuspended in the CSTR, the influent feed was initiated, and nitrite accumulation reached
61% ± 7% over eight days. On day 128, the procedure was repeated and cells were shocked
for 24 h to enhance the efficiency of the pH < 4 process water circulated in the CSTR to
remove cells attached to silicon tubes or walls of the reactors. These measures increased
the process efficiency to ~98% ± 2%, and the conditions were maintained for 10 days. On
day 11 of the substrate shock, efficiency decreased to ~50%, and on day 12 it rose to 60%.
On day 141, a similar procedure with a similar shock concentration was applied and an
efficiency of ~98% ± 2% was achieved. This was maintained for 18 days and again nitrite
accumulation decreased by ~40% on day 19 and 60% on day 20. On day 167, the cells
were subjected to the same substrate shocks, but the influent concentration decreased to
35 mg TAN/L. As a result, the nitrite accumulation rate was maintained at ~98% ± 2% for
14 days (Figure 5).

Figure 5. Nitrite accumulation efficiency (%). (a) The NO2 accumulation efficiency of the CSTR after
sludge treatment. The numbers from 1 to 5 show the number of sludge treatments tested after NOB
recovery. (b) The NO2 accumulation efficiency after substrate shocks. The numbers from 1 to 3 show
the number of shocks tested after NOB recovery.

The first time sludge treatment using FA shock was investigated [20], a nitrite accumu-
lation efficiency greater than 90% was achieved. In that study, a portion of the activated
sludge from the mainstream reactor or the sludge return line was transferred daily to the
FA treatment unit, requiring additional cost and labor. In this study, the sludge was not
treated on a daily schedule but at eight-day intervals in the first shock (sludge treatment
1), 10-day intervals in the second shock (sludge treatment 2), 18-day intervals in the third
shock (sludge treatment 3), 14-day intervals in the fourth shock (sludge treatment 4), and
19-day intervals in the fifth shock (sludge treatment 5). Compared with Wang et al. (2014,
2017) in this study, the system was more efficient, did not require sludge treatment on a
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daily basis, and no external nitrogen source was required, indicating that the system can
reduce WWTP costs. Compared with the CSTR, no batch reactor was required in the CSTBR
and 90% efficiency was achieved in the mainstream, further reducing the cost of operation.

Wang et al. (2014) used an FNA shock to increase nitrite accumulation efficiency in
the SBR [28]. However, for the FNA shock experiment, nitrogen proved to be an important
source to shock the NOB. This was only possible in a high-concentration reactor or two
separate reactors, one high-concentration and one low-concentration (sidestream treatment),
which allowed NO2 to be recycled. Nitrite accumulation efficiency was low with FNA
treatment (80%) [28]. In contrast to FNA treatment, the efficiency of NOB suppression with
FA treatment was high, and nitrite accumulation reached 98% ± 2% (Table 2).

Table 2. Comparison of reactor configurations: NOB suppression techniques, nitrite accumulation ra-
tio, AOB%, NOB%, SRT, temperature, effluent ammonium concentrations, and influent concentration.

Reactor
NOB

Suppression
Technique

Nitrite
Accumula-
tion Ratio

(%)

AOB
(%)

NOB
(%)

SRT
(d)

TANin

(mgTAN/L)

TANeff

(mgTAN/L)

T
(◦C) Reference

1 SBR Real-time aeration
control >90% 8.3 ± 1.1 0 30 ~50 ~5 12–25 [29]

2

SBR
containing

immobi-
lized
cells

FA inhibition and
insufficient DO and
chemical inhibitor

Over 97% N/R N/R N/R ~30 ~1 11–30 [5]

3 SBR FNA treatment 80% N/R N/R N/R N/R ~0.2 [23]

4
Anaerobic

aerobic
anoxic SBR

Real-time control, low
DO concentration and
sludge fermentation

products

99% 1.32 0 15 ~60 ~20 25 [30,31]

5 SBR Sludge fermentation,
anoxic, acid 81.8–98.7% N/R N/R 13 35 N/R 21 [32]

6 SBR Low DO, FA 90.8% N/R N/R N/R 450 200 25 [33]

7 SBR Aerobic starvation and
short SRT >95 96.21 3.79 15 N/R 30 29 [26]

8 SBR Sludge treatment
using FA >90% 7.6 0.2 15 <20 ~0.1 22 [20]

9 SBR Aeration duration
control 59–97% N/R N/R N/T ~49.4 ~4 30 [34]

10 SBR Intermittent aeration 0.16 1 50 ~70 ~40 32 [35]

11 SBR Humic acid and fulvic
acid Above 95% 2.31 0 Above 40 ~60 ~20 15–30 [36]

12

CSTR
granular
(phases 1

and 2)

DO, short HRT 80% 24.34 1.30 N/R ~120 ~10 28 [37]

13 CSTR
DO control/NOB

inhibited sludge from
SBR

85% N/R N/R 12 ~60 ~5 25 ± 1 [38]

12 CSTR cell
recycle

Sludge-treatment
method ≥98% 5.28 1.01

All cells
were

recycled *
~35 and ~50 ~1 30 This study

13 CSTBR Substrate shock ~90% ~50 ~1 30 This study

* N/R = Not reported.

4. Conclusions

Ammonia removal through the nitrite pathway can reduce DO demand by 25%, de-
crease COD by 40%, and reduce sludge production. Different techniques have been used
to remove ammonia through the nitrite pathway. In this research, substrate-shock and
sludge-treatment techniques were applied. A substrate shock of 90.7 mg FA/L concentra-
tion was tested in a CSTBR, with ~90% nitrite accumulating in the mainstream. The shock
concentration was repeated three times after 16 days, achieving the same efficiency. Sludge
treatment proved successful for long-term nitrite accumulation in the mainstream, with
nitrite accumulation reaching ~98% in a CSTR. In sludge treatment 1, 61% ± 7% nitrite
accumulated, and in treatments 2, 3, 4, and 5, ~98% ± 2% efficiency was achieved. The
efficiency for sludge treatments 1, 2, and 4 was sustained for 8–12 days, and for sludge
treatments 3 and 4, efficiency was sustained for 18 days. The CSTBR offered advantages



Sustainability 2022, 14, 16449 9 of 10

over the CSTR; a separate batch reactor was required for CSTR sludge treatment but an
extra batch reactor was not required when sludge was shocked in the same reactor.
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CSTR continuous stirred-tank reactor
CSTBR continuous stirred-tank biofilm reactor
SBR sequencing batch reactor
WWTPs wastewater treatment plants
SRT sludge retention time
NAR nitrite accumulation ratio
AOB ammonium-oxidizing bacteria
NOB nitrite-oxidizing bacteria
TAN total ammonium nitrogen
TANin tan influent concentration
TANeff tan effluent concentration
FA free ammonia
FNA free nitrous acid
DO dissolved oxygen
BOD biological oxygen demand
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