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Abstract: Fossil-fuel-based power generation leads to higher energy costs and environmental im-
pacts. Solar and wind energy are abundant important renewable energy sources (RES) that make the
largest contribution to replacing fossil-fuel-based energy consumption. However, the uncertain solar
radiation and highly fluctuating weather parameters of solar and wind energy require an accurate
and reliable forecasting mechanism for effective and efficient load management, cost reduction, green
environment, and grid stability. From the existing literature, artificial neural networks (ANN) are
a better means for prediction, but the ANN-based renewable energy forecasting techniques lose
prediction accuracy due to the high uncertainty of input data and random determination of initial
weights among different layers of ANN. Therefore, the objective of this study is to develop a harmony
search algorithm (HSA)-optimized ANN model for reliable and accurate prediction of solar and wind
energy. In this study, we combined ANN with HSA and provided ANN feedback for its weights
adjustment to HSA, instead of ANN. Then, the HSA optimized weights were assigned to the edges of
ANN instead of random weights, and this completes the training of ANN. Extensive simulations were
carried out and our proposed HSA-optimized ANN model for solar irradiation forecast achieved the
values of MSE = 0.04754, MAE = 0.18546, MAPE = 0.32430%, and RMSE = 0.21805, whereas our pro-
posed HSA-optimized ANN model for wind speed prediction achieved the values of MSE = 0.30944,
MAE = 0.47172, MAPE = 0.12896%, and RMSE = 0.55627. Simulation results prove the supremacy
of our proposed HSA-optimized ANN models compared to state-of-the-art solar and wind energy
forecasting techniques.

Keywords: renewable energy; forecasting; machine learning; energy efficiency; sustainability; low
carbon emission

1. Introduction

Increased energy consumption leads to higher fossil fuel consumption. Brown energy
is produced using expensive and environmentally damaging fossil fuels including coal,
natural gas, and oil. On the other hand, green energy is produced by inexpensive and
widely available renewable energy sources (RESs), such as solar and wind energy. When
compared to brown energy sources, RESs have a substantially lower carbon emission rate
(CER) [1]. In this context, governments and the scientific community face major difficulties
related to lowering electricity costs and ensuring environmental sustainability. Due to the
long-term effects of carbon emissions from traditional power plants, some countries have
imposed large taxes on carbon emissions [2–4]. Therefore, the research community has
made tremendous research efforts to reduce electricity costs and carbon emissions [5–8].

State-of-the-art literature recommends integration of RESs with brown energy
sources [9–19] to meet users’ energy demand in an environmental friendly and cost efficient
manner. Solar and wind energy are the abundantly available main sources of renewable
energy. However, both sources are inherently highly variable due to volatile weather
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conditions. Figures 1 and 2 show how intermittent energy is generated from solar and
wind energy sources. Weather data are taken from the measurement and instrumentation
data centre at the national renewable energy laboratory [20], as these data are sufficiently
accurate [21]. The intermittency of solar and wind generation creates significant difficulties
in seamless integration of solar and wind power into the existing power system [22].
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Figure 1. Pattern of solar power generation.
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Figure 2. Pattern of wind power generation.

Meteorological conditions affect the green energy generation, and green energy pro-
duction is different in various time zones [23–27]. Therefore, green energy produced by
RESs is intermittent in nature. That is a big challenge, especially, while utilizing RESs as
the only power source. Consequently, integration of RESs with brown energy is mostly
studied and recommended in the literature to cope up with the intermittent nature of RESs.
As the renewable energy generation is dependent upon wind direction, wind speed, solar
radiance, temperature, humidity, and other weather conditions, it is unreliable [28]. Hence,
accurate forecasting of energy production by RESs is necessary to:

1. Minimize the carbon emission,
2. Decrease operational cost of the grid,
3. Trustworthy and safe operations of the power grid
4. Minimize the gap between electricity demand and supply,
5. Reduce the use of electricity reserves through improved scheduling of generation.
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Given the importance of renewable energy forecasting, DeepMind, a subsidiary of
Alphabet and Google, has chosen machine learning (ML) for 36-h wind energy forecasts to
ensure the availability of clean and carbon-free wind energy [29]. Machine learning, which
encompasses a variety of other areas, such as data mining, image and speech recognition,
optimization, virtual personal assistants, fraud detection, product recommendations, self-
driving cars, and artificial intelligence, can be used to process extensive historical Big
Data to solve data-driven problems [30,31]. During training, machine learning approaches
search for relations between input and output data and make predictions based on the
input data. Model generalisation and feature extraction are two areas where machine
learning outperforms traditional statistical predictive models.

Machine learning can help make smarter, faster, data-driven estimates about how
electricity generation can meet electricity demand [32]. ML can be used for a variety of
energy-related tasks, including demand-side management, energy theft detection, demand
forecasting, energy generation forecasting, energy price forecasting, predictive maintenance
and control, prediction of weather phenomena and optimised energy storage operation that
could impact energy forecasting and build energy management. All forms of renewable
energy, including hydro, marine, wind, solar, geothermal, bio, hydrogen, and hybrid, can
be harnessed with AI models [33].

In the literature, a number of ML forecasting methods for renewable energy have been
put forth, and many patents have been registered in this regard. The inventors of US patent
US 2015/0186904 A1 at [34] have invented a system for managing and predicting solar
and wind energy. They have proposed a current–voltage curve of a solar cell, a diagram to
illustrate energy management and use of energy generated by renewable energy sources.
US patent 2005/0039787 A1 [35] presents a tool to help grid operators plan and allocate
generation resources in a power grid with solar generation capacity on an hourly basis
and a week in advance. Tools are also provided to help entities involved in the generation,
distribution, and sale of electric energy.

Another invention, patent WO 2011/124226 A1 at [36], discloses a forecasting tech-
nique for wind power generation. The invention discusses establishment of a forecasting
site at a given location and collecting power generation data from a series of wind turbines,
with the first wind turbine at a first location and the second wind turbine at a second
location. The estimation is based on the performance data of the group of wind turbines
extrapolated into the future or used in conjunction with the location of the forecast site.

Artificial neural networks (ANN) and time series methods, such as autoregressive
integrated moving average (ARIMA), are among the most popular ML-based forecasting
techniques [37]. The authors of [38] found that time series techniques such as ARIMA lose
accuracy when dealing with noisy data and are less accurate than ML techniques. However,
ANN may also lose its prediction accuracy due to the high uncertainty of the input data
and the random determination of the initial weights between different layers [38].

In this study, we consider reliable and accurate forecasting of solar and wind energy.
Previously, the weights to the edges of ANNs were randomly assigned for solar and wind
energy forecasting, while in this study we use a meta-heuristic optimization algorithm
called harmony search algorithm (HSA) [39] for optimal weights assignment to the edges
of ANN for improved forecasting. The main contributions of this study are given below.

• We summarize the state-of-the-art literature on solar and wind energy forecasting.
• During the literature review, we find out that artificial neural networks lose prediction

accuracy when dealing with highly intermittent data, such as solar irradiance and
wind speed.

• We propose a reliable solar irradiance and wind speed forecasting algorithm named
HSA-optimized ANN.

• In our proposed forecasting model, we use HSA for assignment of optimized weights
to the edges of ANN.

The rest of the article is organized as follows. State-of-the-art literature review is
presented in Section 2. Motivation and problem statement are described in Section 3, and
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Section 4 provides a thorough description of an artificial neural network, the harmony
search algorithm, and our proposed system model. The simulation setup and methodology
for this study are covered in Section 5, while Section 6 presents the simulation findings and
pertinent discussions. The study is finally concluded along with future research directions
in Section 7.

2. Literature Review

Prominent machine learning based solar and wind energy forecasting models [40–48]
and [49–58] are briefly explained in Sections 2.1 and 2.2, respectively. The summary of the
literature review on solar and wind energy forecasting studies is given in Tables 1 and 2,
respectively.

2.1. State-of-the-Art Literature on Solar Energy Forecasting

An efficient and effective building energy management system (EMS) can be developed
with a reliable energy supply system. Photovoltaic (PV) generation is intermittent; hence,
its reliable and accurate forecasting is very important in the development of an efficient
EMS. Authors of [40] have proposed a probabilistic day-ahead PV generation forecasting
model. A clear sky model is transformed into temperature and shading, and then its
deviation is used to train a bagging regression tree for point forecasting of PV energy. A
proposed probabilistic forecast model was tested for one year in Munich, Germany, and
results proved its accuracy in point forecasting for energy management system applications.

The paper [41] developed and evaluated a daily global solar radiation model from the
European centre for medium range weather forecasting by using an ANN-based machine
learning model. They compared the ANN model with other models, namely support vector
regression, genetic programming, and gaussian process machine learning. Mean absolute
error (MAE) and root mean square error (RMSE) were implemented for benchmarking.
Results concluded that the ANN-based prediction model was better than other data-driven
prediction models.

Solar irradiance is affected by meteorological factors, such as temperature, humidity,
cloud cover, dust in desert locations, and sunshine intensity. As a result, solar output
varies. Authors of [42] used aerosol optical depth and angstrom data for an hour-ahead
solar irradiance forecasting. The proposed forecasting model was compared with different
data-driven forecasting models, namely k nearest neighbors, multilayer perception, and
support vector regression model. The proposed model was tested on Saudi Arabia data,
and it was concluded that it is superior to compared forecasting models, especially for
desert areas.

Photovoltaic cells produce electric power when exposed to sun rays. The relationship
between energy supply and demand needs to be optimized by reliable solar energy fore-
casting. The authors of [43] proposed a multi-variant neural network ensemble framework
trained on meteorological data. After combining the results with Bayesian model averaging,
the proposed technique was compared with real-time solar PV data from the University of
Queensland. Validation of the proposed framework was performed by one-day ahead fore-
casting. Results prove that the proposed multi-variant neural network ensemble framework
helps improve the accuracy of PV power output.

Hourly solar irradiation for the following day was predicted by the authors of [44]
using LSTM. Inputs include data from the weather forecast for the following day, which
includes information on temperature, humidity, sky coverage, wind speed, and precipita-
tion. The model was trained with data from multiple locations of Korea Meteorological
Administration. It was found that the proposed model had strong forecasting capabilities
with RMSE of 30 W/m2.
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Table 1. Summary of literature on solar energy forecasting.

Paper Energy Source RES Forecasting Implementation
Strategy Objective(s) Dataset Type Performance/Result

[40] Solar energy Yes Probabilistic day
ahead PV forecast

PV energy
forecasting Historical

Continuous ranked
probability skill
score = 90.94%

[41] Solar energy Yes Global solar
radiance prediction

Daily global solar
radiance Historical ANN RMSE = 1.613,

ANN MAE = 1.146

[42] Solar energy Yes

Aerosol optical
depth (AOD) and
angstrom data for
solar irradiance

forecasting

One hour solar
irradiance
prediction

Historical MLP RMSE = 32.75
(W/m2)

[43] Solar energy Yes
Multivariate neural
network ensemble

framework

PV output power
forecast Historical MAPE = 3.1

[44] Solar energy Yes
LSTM model for
solar irradiance

forecasting

Accurate forecast of
solar irradiance Historical RMSE = 30 W/m2

[45] Solar energy Yes
LSTM model for
solar irradiance

forecasting

Forecasting of solar
irradiance Historical

3.2% improvement
in nRMSE over the

SVR model

[46] Solar energy Yes FFNN and LSTM Accurate forecast of
solar irradiance Historical

Combination of
MM and MO

performed better

[47] Solar energy Yes
Image-based

dataset and LSTM
model

Solar irradiance
forecasting Historical

Pearson
Product-Moment

Correlation
Coefficient (PCCs)

is used in this study

[48] Solar energy Yes GRU, LSTM, RNN,
SVR, and FFNN

Accurate forecast of
solar irradiance Historical GRU is better than

LSTM

Using an LSTM model, the authors of [45] predicted hourly solar radiation for the city
of Johannesburg. Solar radiation, temperature, daylight hours and relative humidity were
used as training inputs for the LSTM network. Model was build using solar radiation data
of National Oceanic and Atmospheric Administration from 2009 to 2019. The simulation
results showed that the proposed LSTM network had a 3.2% improvement in normalised
RMSE over the SVR model.

To anticipate solar radiation over a multilevel horizon in northern Italy, the authors
of [46] used two different neural network types, FFNN and LSTM. The proposed models
used a variety of methods, including multi-model (MM) and multi-output (MO), to build
their predictive models. Six years of weather data from 2014 to 2019 was collected from the
Italian weather station used in this study. Historical solar radiation data were used to train
the model. Comparative results of the study proved that the proposed models performed
better by combining the techniques of MM and MO.

The authors of [47] proposed a new method of solar irradiance prediction using an
image-based dataset and LSTM model. The developed model can predict solar radiation
up to 60 min in advance. The LSTM model was introduced with two different methods
based on the input variables. Prediction results of the second model were better. Authors
of [48] used the historical data from Korea Department of Meteorological Administration
SURFRA system to analyze different deep learning and machine learning solar irradiance
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prediction algorithms. Simulation results showed that performance of deep learning models
was better.

2.2. State-of-the-Art Literature on Wind Energy Forecasting

Due to its wide availability and limitless supply, wind energy is a particularly pop-
ular source of energy. Production of wind energy is hampered by uncertainty of air
flow/pressure, among other things. The authors of [49] performed probabilistic wind
speed forecasting through an ensemble model. The proposed ensemble model is composed
of a recurrent neural network, wavelet threshold de-noising (WTD), and an adaptive neu-
ral fuzzy inference system (ANFIS). Sub-model variance is used to calculate wind speed
forecasting, which is then confirmed for one hour wind speed prediction. Accuracy of the
proposed model over its counterparts was proved by simulation results.

Wind energy is highly dependent on wind speed, wind direction, weather temperature,
and weather pressure that make it unpredictable, hence unreliable. In [50], the authors
exploited ANN to measure different local meteorological conditions that affect wind flow.
In order to predict the wind speed, MAE and RMSE were determined. Reliable wind
speed forecasting is needed to plan, develop, and monitor an intelligent power system.
As the wind energy relies upon wind speed, pressure, temperature, and wind direction,
its forecasting mechanism was proposed by the authors of [51]. Raw data is decomposed
using an empirical wavelet transformation in a deep-learning-based hybrid wind speed
forecasting model. The proposed model was validated in a way that simulation results
show highly accurate wind speed prediction.

The authors of [52] stated that wind energy generation, conversion, and optimal
control are dependent on reliable wind speed prediction. They proposed EnsembleLSTM
using non-linear learning to predict the wind speed. Long short-term memory (LSTM)
neural network neurons and numerous hidden layers are used in the suggested method to
help reliable wind speed prediction. Later on, the wind speed forecasting process involves
the usage of support vector regression machines and external optimization methods. The
proposed method was compared with two cases of Inner Mongolia, China, for 10 min
ahead and one hour ahead forecasting. Results proved the efficacy of the proposed method.

Wind energy has economical and environmental advantages, so it has garnered much
attention of policy makers and the research community. However, uncertainty in wind
power generation is unacceptable and a challenging task to overcome. A deep-learning-
based ensemble solution was proposed by the authors of [53] for probabilistic wind power
forecasting. In order to deal with uncertainties, this study proposed an enhanced point
forecasting technique based on wavelet processing and convolutional neural networks
(CNN) for wind energy forecasting. The non-linearity of each frequency also increased
predicting accuracy. Results show that the suggested technique outperforms its competitors.

Wind power generation is economical and environment friendly; however, irregular
wind power generation leads to peak load pressure and frequency regulation issues at grid
stations. Wind power forecasting can make its supply steady. Therefore, for accurate wind
power prediction, the authors of [54] suggested a long short-term memory improved forget
gate network model. Results demonstrate significant improvement in prediction accuracy
and speed up in the convergence process.

The authors of [55] presented the SSA-EMD-CNNSVM model, which uses singular
spectrum analysis (SSA) for noise reduction and trend extraction from actual data. Time
empirical mode decomposition (EMD), as the name suggests, is used to separate time series
of wind speed into sublayers. Following that, a convolutional support vector machine
(CSVM) is used to forecast wind speed. The proposed prediction model was compared
with other wind speed prediction models, including the CNNSVM, EMD-BP, SVM, and
EMD-Elman models. Results demonstrated the superiority of the proposed model.
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Table 2. Summary of literature on wind energy forecasting.

Paper Energy Source RES Forecasting Implementation
Strategy Objective(s) Dataset Type Performance/Result

[49] Wind energy Yes
WTD–RNN–ANFIS

based ensemble
model

Reliable wind speed
forecasting Historical

MAE ANN = 0.929,
MAE SVM = 0.963,

RMSE ANN = 1.293,
RMSE SVM = 1.349

[50] Wind energy Yes
Wind speed

forecasting through
ANN

Forecasting of wind
speed Historical RMSE = 0.675,

MAE = 0.536

[51] Wind energy Yes

Wind speed
prediction through

wavelet
transformation and

recurrent neural
networks

Wind speed is
predicted Historical

Wind speed series 1,
MAPE

ARIMA = 7.17,
MAE ARIMS = 0.93,

RMSE
ARIMA = 1.21

[52] Wind energy Yes

Ensemble LSTM
using non-linear

learning to predict
the wind energy

Wind speed
forecasting Historical

MAE EnsemL-
STM = 0.574, RMSE

EnsemL-
STM = 0.755, MAPE
EnsemLSTM = 5.41

[53] Wind energy Yes

Deep learning
based ensemble

approach for
probabilistic wind
power forecasting

Wind power
forecasting Historical

Performance
improvemney by

48.42%, 45.02%, and
45.10% as compared
to three benchmarks

[54] Wind energy Yes

Long short-term
memory enhanced
forget gate network
model for reliable

wind power
prediction

Wind power
forecasting Historical 18.3% rise in

accuracy

[55] Wind energy Yes

Convolutional
support vector

machine
(CNNSVM)

Wind speed
forecasting Historical

RMSE = 39.25%,
MAE = 39.21% ,
MAPE = 42.85%

[56] Wind energy Yes
SVM-based

prediction and MLP
are used

Wind speed
forecasting Historical MSE SVM = 0.78%,

MSE MLP = 0.9%

[57] Wind energy Yes Wavelet transform Wind speed
forecasting Historical

MAPE increased
from 14.79% to

22.64%

[58] Wind energy Yes ARIMA and ANN Wind speed
forecasting Historical MAPE = 6.97%

The support vector machine method is used in [56] for wind prediction. The regression
analysis is performed after mapping the time series data for any variable into a higher
dimensional space (e.g., Hilbert space), according to the procedure. In addition, the results
of SVM-based prediction and multilayer perceptron (MLP) models were compared. MSE
and RMSE were the performance measures used in [56]. Since the SVM had a mean square
error of 0.78% compared to the MLP of 0.9%, it was found that the SVM performed better
than the MLP.

Using a wavelet transform, the authors of [57] deconstructed a wind series. The
selection of input parameters for the SVM was supported by the genetic algorithm approach.
The input must be improved to select the best forecast candidates. According to the results,
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persistence increased MAPE from 14.79% to 22.64%, while WT-SVM-GA did not. The
NNWT technique, in which the prediction for the next three hours is made using the
historical data of the last twelve hours, was compared with ARIMA (1,2,1) and NN by [58].
The MAPE value was found to be 6.97% using the NNWT technique.

The authors of [59] discussed the benefits and limitations of solar energy in detail. A
brief description along with benefits and limitations of solar energy and wind energy are
briefly described in Table 3.

Table 3. Short description and merits/limitations of solar energy and wind energy.

Type Short Description Benefits Limitations

Solar energy
Energy of sunrays is
transformed into electricity
with the help of PV cells

• Inexhaustible energy source
• Pollution-free energy
• Directly exploitable and

widely available
• Renewable energy
• Being labor intensive industry,

improves job opportunities
• Reduces electricity cost

• Huge initial installation cost
• Dependent over climate

and weather
• Intermittent in nature
• Performance issues of batteries

and inverters, etc.
• Shortage of skilled manpower

Wind energy
Produced by kinetic energy
caused by flow of air on the
surface of Earth

• Clean energy
• Carbon free generation
• Minimizes dependence over

fossil fuels

• Intermittent in nature
• Dependent over air dynamics

such air flow, pressure,
direction, humidity etc.

3. Motivation and the Problem Statement
3.1. Motivation

Many researchers have considered the energy optimization and environmental im-
plications caused by excessive brown energy usage. A few have proposed using both
energy sources, while some have recommended using RESs only. Recent research articles
cited at [40–58] have focused on solar energy and wind energy forecasting, respectively.
The literature review motivated us towards accurate and reliable RES forecasting because
it is very important for effective and efficient grid management. Moreover, it is helpful
in minimizing user energy cost, reducing carbon emissions, overcoming energy imbal-
ances, decreasing dependence upon electricity reserves, and better scheduling of different
energy sources.

3.2. Problem Statement

Accurate renewable energy forecasting is important for the minimization of user
energy cost and carbon emission. ANN-based renewable energy forecasting techniques
lose prediction accuracy due to uncertainty of input data and random determination of
initial weights between different layers of the ANN. Therefore, the objective of this work
is to develop “a harmony search algorithm optimized artificial neural network model for
reliable and accurate solar and wind energy forecasting”.

4. Proposed System Model
4.1. Artificial Neural Network

A collection of linked nodes referred to as artificial neurons makes up an artificial
neural network, which functions similarly to the human nervous system. Artificial neural
nodes are connected to each other through edges, and the edges carry signal or output to
the next artificial neuron where some logical action is performed [37]. This signal is possibly
sent to the next neuron for further processing or final output. ANN may have a single
hidden layer or multiple hidden layers, and each layer may have a different number of
nodes. The quantity of hidden layers, learning rate, and iterations are the main governing
factors of an ANN. The activation functions that have an impact on ANN processing
include softmax, sigmoid, gaussian error linear units, exponential linear units and swish,
among others. Figure 3 depicts the basic architecture of ANN.
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Output layer

Hidden layer 2 

(f2)

Hidden layer 1

(f1)

Input layer

Input

[N,3]

Input layer Output layerHidden layer

Figure 3. Basic architecture of artificial neural network.

4.2. Harmony Search Algorithm

Harmony search algorithm (HSA) is a nature inspired evolutionary meta-heuristic
optimization algorithm [39], proposed by Zong Wo Geem et al. [60] in 2001. Harmony
improvisation is the term used to describe the process by which artists apply this algorithm
to enhance their harmony. Every time a musical band where each performer plays a
different instrument completes the harmony improvisation process. Each member of the
musical ensemble serves as a decision variable in this situation, and each musical instrument
has a different pitch. Successful musical harmony is achieved throughout the process
of improvising harmony, and this successful harmony is then updated in the harmony
memory (HM). HM contains the top solution vectors. The HSA process is illustrated in
Figure 4, and Table 4 displays manually chosen HSA control parameters in the context of
Equations (1)–(5). According to Table 4, HMS, NI, HMCR, PAR, PAPmax, and PAImax stand
for harmony memory size, number of iterations, harmony memory consideration rate, pitch
adjustment rate, maximum pitch adjustment proportion (used for continuous variables),
and maximum pitch adjustment index (used for discrete variables), respectively.
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Start

New harmony 

computation

Update HM

Stop

Modify HM by 

new harmony

Stop criterion

Yes

Yes

No

No

Yes

Variables 

initialization

Harmony memory

initialization

Initialization phase

HMCR selection PAR selection

Improvisation phase

No

Figure 4. Procedural steps of harmony search algorithm.

Table 4. HSA control parameters.

Control Parameter Value

HMS 3
NI 10

HMCR 0.9
PAR 0.5

PAPmax 0.25
PAImax 2

A brief description of each procedural step of HSA is given in the following.

1. Variables initialization
Values limit of different variables used in HSA are defined during this step.

• Upper and lower limit of variables

xL
i ≤ xi ≤ xU

i (1)

• Harmony memory size (HMS)

10 ≤ HMS ≤ 3 (2)

• Harmony memory consideration rate (HMCR)

0.0 ≤ HMCR ≤ 1.0 (3)

• Pitch adjustment rate (PAR)

0.0 ≤ PAR ≤ 1.0 (4)

• Maximum number of iterations (NI), i.e., stopping criteria

0 ≤ NI ≤ 10 (5)
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2. HM initialization
The harmony memory matrix is randomly initialized during the HM initialization
step using following equation.

x(i,j) = lj + rand().Uj − lj (6)

The jth element of the initial harmony memory in Equation (6) is indicated by x(i,j),
whereas the rand() function is used to generate random values between zero and one.
Uj and lj in Equation (6) represent upper and lower bounds of variables, respectively.

3. HMCR selection
A random number between zero and one is created during the HMCR selection phase
of the HSA improvisation phase using the rand() function, as indicated in Equation (7).
The value for that specific place is chosen if the randomly generated value is smaller
than the HMCR; otherwise, a new random number is generated.

Vi,j =

{
x(randj) i f randb()is < HMCR
lj + rand().Uj − lj else

(7)

4. PAR selection
PAR selection is another sub-part of the the HSA improvisation phase in which the
memory elements selected during the HMCR step are further improved in the PAR
selection step. The PAR selection step works on the basis of Equation (8); bw in
Equation (8) represents bandwidth which plays an important role in pitch adjustment.

Vi,j =

{
V j

i rand().bwj i f rand()is < PAR
V j

i else
(8)

5. Update HM
Upon successful completion of the new harmony selection process, it is updated in
the HM by replacing the already present worst memory there.

6. Checking the stop criteria
The harmony improvisation process terminates at the maximum number of iterations
(NI), i.e., stopping criteria, as shown in Equation (5).

The nature-inspired meta-heuristic algorithm HSA offers perfect stability between
the search process’s exploration and exploitation stages [61]. Moreover, HSA has been
effectively used in a variety of application areas, including image processing, wireless
sensor networks, text clustering, and fuzzy clustering [62]. Therefore, it has high precision,
faster convergence speed, and less complexity. Consequently, we selected HSA for weight
optimization of the ANN edges in this study.

4.3. Proposed System Model

Recent research has focused on the integration of brown energy sources and RESs
(solar and wind) because of low operational cost and carbon-free production of RESs.
However, reliable forecasting of RESs is an important issue and needs keen attention. We
have considered an ANN-based solar and wind energy forecasting model for efficient
solar and wind energy production, thereby efficient supply and demand management, less
energy cost, and less carbon emissions.

The literature review revealed that machine learning techniques are much better than
time series techniques for solar and wind forecasting. The authors of [38] stated that
machine learning techniques, such as, artificial neural network suffer from:

1. Loose precision due to high uncertainty of input data like solar and wind energy
production;

2. Random determination of initial weights between different layers can affect the
performance of an ANN.
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In this study, we propose HSA-optimized ANN for solar and wind energy forecasting
models, where initial weights between different layers of ANN are determined by a meta-
heuristic algorithm named the harmony search algorithm. Our proposed forecasting
model has strengths of machine learning (ANN) and meta-heuristic algorithm (HSA).
Consequently, our proposed forecasting algorithm has high precision, faster convergence
speed, and less complexity. Our proposed forecasting model for reliable solar and wind
energy prediction is shown in Figure 5.

Yes

No

Input data

Initialization of HSA parameters

Random initialization of harmony memory 

Computation of harmony proportion, on
the basis of neural network feedback

Termination

Computation of new harmony, on the 
basis of neural network feedback

Modify harmony 
memory by new 

harmony

Update harmony memory

Yes

No

Finish

Training data

Initialization of neural network parameters 
using HSA generated weights

Training of neural network 

Testing of neural network 

Neural network accuracy evaluation

Training data

Initialization of neural network parameters 
using HSA generated weights

Training of neural network 

Testing of neural network 

Neural network accuracy evaluation

Figure 5. Proposed solar and wind energy forecasting model.

In Figure 5, it is evident that weights at the edges of ANN are being adjusted by the
meta-heuristic algorithm HSA which is very famous for optimization problems. Here, the
optimal weights assignment to the ANN’s edges has a favourable impact on the forecasting
of solar and wind energy. The findings mentioned in Section 6 contain supporting data.

5. Simulation Setup and Methodology
5.1. Simulation Setup

In this section, implementation specifications of our suggested model are described
in terms of their performance indicators. Our model is tested on a system with a core i7,
16 GB of RAM, and a 4.8 GHz processor. Python and the Anaconda IDE environment are
employed. Table 5 describes the simulation settings of our proposed system model.

Overfitting occurs when the model curve becomes too complex and performs too
well on training data but fails or degrades performance on test data. The main cause of
overfitting is that the model has not learned well from the training data. When underfitting
occurs, the model does not perform well even on the training data because the model is
too simple and/or the input features are not very expressive. If the number of epochs
is too high, the model may overfit, and if the number of epochs is very low, the model
may underfit. To avoid overfitting, we used an early stopping criterion in our model. If
the model does not perform better after a certain number of epochs, e.g., between 50 and
60 epochs, it is automatically stopped even if the fixed number of epochs is 100. We tested
our model for different numbers of epochs, i.e., from 100 to 300, and we found 200 to be
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the optimal number of epochs where we obtained good results for training and testing
of the data.

Table 5. Simulation parameters.

Parameter(s) Setting

Neural network Artificial neural network

Number of hidden layers 2

Heuristic algorithm Harmony search algorithm

Optimizer Adam

Loss functions MSE, MAE, MAPE, RMSE

Batch size 4

Number of epoch 200

5.2. Methodology

First, solar and wind energy datasets were downloaded from [63] for the time period
of 1 January 2015 to 1 March 2018. A total of 70% of the total data was utilized for training
purpose whereas, 30% of the data was used for testing the accuracy of the proposed
forecasting model. Pre-processing of solar and wind energy datasets was performed
using standard scalar to improve the training of our proposed model by means of data
standardization. The following four different forecasting models were developed.

1. ANN-based solar irradiance forecasting model without HSA (using random weights
assignment at the edges of ANN layers)

2. ANN-based wind speed forecasting model without HSA (using random weights
assignment at the edges of ANN layers)

3. ANN-based solar irradiance forecasting model with HSA (using HSA optimized
weights assignment at the edges of ANN layers)

4. ANN-based wind speed forecasting model with HSA (using HSA optimized weights
assignment at the edges of ANN layers)

A basic structure of the ANN model with 2 hidden layers was created, and solar and
wind datasets downloaded from [63] were loaded. The model was trained with 70% of the
data ,and performance was measured by means of error criteria, i.e., mean square error
(MSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and root mean
square error (RMSE). Later on, we used the harmony search algorithm for assignment of
optimized weights at the edges of the ANN instead of random weight assignment to the
edges of the ANN. Different weights harmonies were created using the harmony search
algorithm, and this process was repeated in a loop until the number of iterations, i.e., 5 in
our case. During this process, each time a new harmony (weight) was generated it was
fitted to the ANN to obtain a loss value. Loss values of all the harmonies (weights) were
compared and finally, the best harmony (weight) among all was selected and applied to the
edges of the ANN. Tables 6 and 7 show the simulation results.

Table 6. Performance evaluation of solar irradiance forecasting.

Error
Criteria ANN [38] GA Optimized

ANN [38] ANN [41] SVR [41] ANN
(Ours)

HSA Optimized
ANN (Proposed)

MSE 0.53 0.29 — — 0.06354 0.04754

MAE 0.53 0.29 1.146 1.367 0.18520 0.18546

MAPE 7.6% 4.5% — — 0.32430% 0.32475%

RMSE 0.62 0.37 1.613 1.994 0.25208 0.21805
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Table 7. Performance evaluation of wind speed forecasting.

Error
Criteria ANN [49] SVM [49] GRNN [51] EWT-

Elman [51]
ANN
(Ours)

HSA Optimized
ANN (Proposed)

MSE — — — — 0.46358 0.30944

MAE 0.929 0.963 0.89 0.66 0.66419 0.47172

MAPE — — 6.88% 5.08% 0.13988% 0.12896%

RMSE 1.293 1.349 1.27 0.83 0.68087 0.55627

6. Results and Discussions
6.1. Solar Irradiance Forecasting

As mentioned above, we proposed and developed an HSA-optimized ANN model for
solar irradiance forecasting, and we used well-known error value measurement methods
for accurate and reliable analysis of the results. Solar irradiance prediction was carried out
for one week of all seasons, i.e., autumn, spring, summer, and winter.

In Table 6, the solar irradiance forecasting accuracy of our proposed model is compared
with solar irradiance forecasting accuracy of the study at [38]. The authors of [38] developed
two models for solar irradiance forecasting: (1) an ANN model was used with random
determination of weights at its edges (ANN [38]) and (2) a genetic algorithm (GA) was
used for optimized weights assignment at the edges of ANN (GA optimized ANN [38]).
The authors of [41] implemented ANN and SVR models for solar irradiance forecasting.
Instead, we used; (1) an ANN model with random determination of weights at its edges
(ANN (Ours)) and (2) an ANN with HSA-optimized weight assignment at its edges (HSA-
optimized ANN (proposed)). Simulation results prove the supremacy of our proposed
solar irradiance forecasting model.

The results reported in the Table 6 show that the solar irradiance prediction accu-
racy is higher with our proposed HSA-optimized ANN model, achieving MSE = 0.04754,
MAE = 0.18546, MAPE = 0.32430%, and RMSE = 0.21805. On the other hand, the first com-
petitor ANN at [38] achieved the result values of MSE = 0.53, MAE = 0.53, MAPE = 7.6%,
and RMSE = 0.62. Its second competitor, GA-optimized ANN, at [38] achieved results of
MSE = 0.29, MAE = 0.29, MAPE = 4.5%, and RMSE = 0.37. Its third competitor ANN at [41]
achieved results of MAE = 1.146 and RMSE = 1.613, whereas it fourth competitor SVR
at [41] achieved results of MAE = 1.367 and RMSE = 1.994. Results of all the competitors
of our proposed HSA-optimized ANN model are far behind. The authors of [41] did not
consider MSE and MAPE as evaluation criteria in their study. During solar irradiance fore-
casting simulations, the computational time of ANN (Ours) was recorded = 60 s, whereas
the computational time of our proposed HSA-optimized ANN was recorded = 176 s. The
computational time of the HSA-optimized ANN is higher because it involves another
meta-heuristic algorithm (HSA) for optimal weight assignment.

Figure 6 shows the result graph of actual solar irradiance values, ANN-predicted solar
irradiance values without HSA, and ANN-predicted solar irradiance values with HSA
for the whole dataset. The results of the one-week solar irradiance forecast for autumn,
spring, summer, and winter seasons are shown in Figure 7a–d, respectively. The green
lines in these figures represent the actual solar irradiance values, and the blue lines show
the predicted solar irradiance values using ANN without HSA. The red lines, on the other
hand, show the predicted solar irradiance values of the ANN model optimized with HSA,
i.e., our proposed model.
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Figure 6. Actual vs. forecasted solar irradiation.

(a) Autumn season (b) Spring season

(c) Summer season (d) Winter season
Figure 7. Actual vs. forecasted 1-week solar irradiation of different seasons.

In Figure 7a–d it can be seen that sometimes the line of actual values (green line) and
the line of predicted values (blue and red lines) cross each other. Ideally, this should not
have happened. As mentioned earlier, whole dataset is split into 70% for training and 30%
for accuracy testing purpose. We tested our models for a one-week solar irradiance forecast
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of four seasons. Each forecast model makes its predictions based on its learning process,
where it learns about trends in changes. However, actual weather is 100% unpredictable,
and we see sudden changes in actual weather parameters such as temperature, solar
irradiance, etc. Therefore, the actual and predicted lines overlap in the results. We will deal
with this issue in our future work.

6.2. Wind Speed Forecasting

Wind energy is less reliable compared to solar energy [22]. Therefore, results accuracy
in the case of wind speed forecasting is less compared to solar energy forecasting. Wind
speed prediction was carried out for one week of all seasons, i.e., autumn, spring, summer
and winter. In Table 7, the wind speed forecasting accuracy of our proposed model is
compared with wind speed forecasting accuracy of the studies at [40,51]. The authors
of [49] discussed different wind speed forecasting models, and we have selected two
representative models which are ANN and SVM. The authors of [51] discussed two models
for wind speed forecasting: (1) a GRNN model and (2) an EWT-Elman model. We used:
(1) an ANN model with random determination of weights at its edges (ANN (Ours))
and (2) an ANN with HSA-optimized weight assignment at the edges of the ANN (HSA-
optimized ANN (proposed)). Simulation results prove the supremacy of our proposed
wind speed forecasting model.

The results reported in the Table 7 show that the wind speed prediction accuracy
is higher with our proposed HSA-optimized ANN model, achieving MSE = 0.30944,
MAE = 0.47172, MAPE = 0.12896%, and RMSE = 0.55627. On the other hand, Its first
competitor ANN at [49] achieved the values of MAE = 0.929 and RMSE = 1.29, whereas
it second competitor SVM at [49] achieved the values of MAE = 0.963 and RMSE = 1.349.
Its third competitor, GRNN, at [51] achieved the values MAE = 0.89, MAPE = 6.88%,
and RMSE = 1.27, and the fourth competitor, EWT-Elman, at [51] achieved the values of
MAE = 0.66, MAPE = 5.08%, and RMSE = 0.83. Results of all competitors of our proposed
HSA-optimized ANN model were far behind. MSE was not considered by the authors
of [49,51]. The authors pf [49] also did not consider MAPE in their study. However, we
considered MSE as well in our proposed model, and its result values are shown in Table 7.
During wind speed forecasting simulations, the computational time of ANN (Ours) was
recorded = 60 s, whereas the computational time of our proposed HSA-optimized ANN
was recorded = 323 s. Computational time of HSA-optimized ANN was higher because it
involved another meta-heuristic algorithm (HSA) for optimal weight assignment.

Figure 8 shows the resuls graph of actual wind speed values, ANN predicted wind
speed values without HSA, and ANN predicted wind speed values with HSA for the whole
dataset. The results of the one-week wind speed forecast for autumn, spring, summer, and
winter seasons are shown in Figure 9a–d, respectively. The green lines in these figures
represent the actual wind speed values, and the blue lines show the predicted wind speed
values using ANN without HSA. The red lines, on the other hand, show the predicted
wind speed values of the ANN model optimized with HSA, i.e., our proposed model.

In Figure 9a–d it can be seen that sometimes the line of actual values (green line) and
the line of predicted values (blue and red lines) cross each other. Ideally, this should not
have happened. As mentioned earlier, whole dataset is split into 70% for training and 30%
for accuracy testing purpose. We tested our models for a one-week wind speed forecast of
four seasons. Each forecast model makes its predictions based on its learning process, where
it learns about trends in changes. However, actual weather is 100% unpredictable and
we see sudden changes in actual weather parameters such as wind speed, wind direction,
temperature, wind pressure, etc. Therefore, the actual and predicted lines sometimes
overlap each other in the results. However, we will try our best to deal with this problem
in our future work.
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Figure 8. Actual vs. forecasted wind speed.

(a) Autumn season (b) Spring season

(c) Summer season (d) Winter season
Figure 9. Actual vs. forecasted 1-week wind speed of different seasons.

7. Conclusions and Future Work

Fossil fuel generated electric power leads to higher energy cost and environmental
pollution. To deal with higher electricity costs and environmental implications, solar and
wind energy are abundantly available renewable energy sources being used for green
environment and low cost energy. As solar and wind energy are highly intermittent in
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nature, in this study we have proposed HSA-optimized ANN solar irradiance and wind
speed forecasting models. We have assigned HSA-optimized weights at the edges of ANN
layers, and simulation results prove the accuracy of our proposed forecasting models. Our
proposed HSA-optimized ANN model for solar irradiation forecast achieved the values
of MSE = 0.04754, MAE = 0.18546, MAPE = 0.32430(%), and RMSE = 0.21805, whereas
our proposed HSA-optimized ANN model for wind speed prediction achieved the values
of MSE = 0.30944, MAE = 0.47172, MAPE = 0.12896(%), and RMSE = 0.55627. Result
accuracy of our proposed wind speed forecasting model is less compared to our proposed
solar irradiance forecasting model. Accuracy enhancement of our proposed wind speed
forecasting model is our future work. Furthermore, identifying the causes of the volatile
character of wind speed and solar irradiance is also essential since doing so enables the
adaptation or even mitigation of the intermittent nature of wind and solar energy.
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