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Abstract: Municipal solid waste management (MSWM) is a critical administrative, environmental
and financial issue in low-income countries, such as Pakistan, where waste collection efficiency is less
than 75% in all urban areas, except Lahore. Therefore, it is pertinent to develop practical decision-
making tools to enhance waste collection efficiency by local municipalities and waste management
companies (WMCs). A tool/calculator, holistically measure analyze forecast honestly (HMAFH), is
proposed for waste collection in urban areas based on the lessons learned. The tool was developed
considering local conditions, i.e., business environment, socio-economic and cultural dynamics, city
infrastructure and stakeholders’ desires. It is flexible to various proposed waste collection modes,
with heterogeneous fleet choices, and it presents an opportunity to integrate collection with a material
recovery facility (MRF) or direct haulage to the disposal site. The HMAFH was tested successfully in
the Lahore district. Based on the proposed scenarios, the result shows a material recovery of up to 33%
by defining dedicated waste collection streams with a 26% saving on fuel. The proposed interventions
can prove to be a defining step toward building a circular economy (CE) that allows the integration of
treatment options with economic potential to account for 35% of the current operating expenditures
and a reduction in greenhouse gases (GHGs) emission, i.e., 1,604,019 tons of CO2-eq./annum.

Keywords: novel SWM model; Lahore waste management; waste and circular economy; HMAFH

1. Introduction

Solid waste management (SWM) is essential in cleaning up the environment if man-
aged technically, efficiently and smartly in synch with local market trends. Technical inno-
vation in the SWM sector can perform a pivotal role in improving the efficiency of services
and environmental sustainability by assisting the local municipalities, waste management
companies (WMCs), relevant stakeholders and citizens toward the quality of life [1]. Vari-
ous models are being practiced in the SWM sector considered as decision-making tools, i.e.,
the cost–benefit analysis (CBA), life cycle analysis (LCA) perspective, geographic informa-
tion system (GIS) in combination with the technique for order of preference by similarity to
ideal solution (TOPSIS) [2] and multi-criteria decision making (MCDM). A multi-objective
optimization model was implemented in the southeastern part of Tehran city. The result
showed a 27% lower environmental impact, particularly in terms of recycling and waste-to-
energy (WtE) technologies [3]. The integrated solid waste management (ISWM) approach
effectively streamlines and integrates different waste components, i.e., transfer, recycling,
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treatment and final disposal [4]. The ISWM model for Tehran (Iran) was developed by
applying the mixed-integer linear programing (MILP) technique to minimize the waste
haulage cost [5]. The route optimization model for bulk waste collection, i.e., construction
and demolition (C&D), was designed based on a simheuristic approach, which guides
policymakers to allocate, haul and recycle C&D waste accurately [6]. The coordinated
solid waste management (CSWM) multiple objective functions approach can be applied for
sustainable vehicle route optimization. The adaptive memory social engineering optimizer
(AMSEO) application is more effective for route optimization as compared to simulated
annealing (SA) and social engineering optimizer (SEO) [7]. A multi-objective mathemat-
ical model is a decision-making tool, which guides the integration location, fleet route
and inventory control. This tool improves the overall waste management structure by
minimizing the impacts of hazardous waste handling [8]. Most models meet the criteria
of sustainability’s three dimensions, i.e., environmental responsibility, economic perfor-
mance and acceptance by the general public/social equity. However, the current models
require fundamental sustainability objectives, including public consultation, stakeholders’
involvement, the informal waste sector and problem identification based on local dynam-
ics [9]. The success of the MSWM model is linked to public education to streamline the
local system, which will facilitate the creation of ownership among citizens. Community
involvement is the key to achieving cost-effective solutions based on local demands, which
sustain the MSWM operations [10]. Integrated SWM with a holistic approach is essential
for the new model’s success in middle and low-income countries. Clustering criteria are
considered a more effective dimension of sustainability for the design of a new model.
Sometimes, multi-sustainability dimensions are applied to obtain the desired results, where
an assessment of the system is not possible under clustering criteria [11].

Developed countries have adopted methodologies for reducing waste generation,
recycling, waste-to-energy and discouraging the landfill site concept [12]. As a result, an
optimal configuration and increase in the degree of recycling/material recovery facility
(MRF), composting and refuse-derived fuel (RDF) production can lead the sector toward
sustainability with an increase in net profit cost in low-income countries [13]. Moreover, the
recovery of recyclable components and composting from an organic proportion of waste
are more suitable treatment options than incineration, waste-to-energy and landfilling
in Asian countries [14]. The primary issue in developing countries is the low waste
collection efficiency and dedication of all efforts to removing waste from central areas
and roads. Normally, it is merely the shifting of waste from residential and commercial
places to any remote site for disposal without considering the waste as a resource [15].
Anthropogenic activities are responsible for about 20% of the CH4 emission globally from
waste disposal facilities. East Asia and the sub-continent countries emit 446–884 and
1328 kg of CH4 per hour according to the estimates [16]. Cleaning services are legally
essential, while local municipalities and WMCs are bound to provide regular SWM services.
However, its implementation can improve if financial constraints and technical capacity
improve in low-income countries. Cities in low-income countries consume about 20%
to 50% of their municipal budget on solid waste handling [17]. The engagement of the
private sector/public–private partnership (PPP) for outsourcing some components of SWM
services can provide local solutions. Still, local municipalities’ technical and administrative
capacity issues hinder them from performing an active role as “clients”, which impedes the
desired results [18]. Low-income countries can improve the SWM system by adopting the
experience in waste collection and treatment technologies from developed nations [19] by
applying modification based on local conditions.

Pakistan generates an estimated 20 million tons of waste per annum with a 2.4%
annual growth rate. Waste collection services in Pakistan range from 34 to 84% in urban
areas, with no recovery of recyclables at a formal level. The informal waste sector is active
in Karachi, with a 26% recovery of recyclables. The average per ton waste collection cost
for urban areas in the country is PKR 4794 [20]. All metropolitan cities are facing severe
waste concerns, and heaps are found scattered alongside roads and streets due to a lack
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of urban planning, public education and poor infrastructure of SWM. Municipalities in
low-income countries spend 50% of their budget on essential municipal services [21]. The
sustainability of the SWM sector in the country will strengthen the economy in terms of
gaining self-sufficiency in fertilizer and power/energy sectors, i.e., compost and biogas
production from organic waste. The foreign debt of Pakistan has been reported as 39.7%
of the gross domestic product (GDP) and held responsible for downsizing the country’s
economy [22]. Therefore, the SWM sector has the potential to help the government shed
the debt burden on the power/energy and fertilizer sectors, which comprise a significant
component of foreign debt [23]. The debt of Pakistan has surged to USD 130.2 billion.
Therefore, the federal government should explore an innovative approach, i.e., investment
in the waste/climate change sector by declaring it a national instrument to pay off the debt.
Low-income countries, including Pakistan, must focus on the SWM sector from a circular
economy perspective and utilize the opportunity to use the sector’s welfare to pay the
outstanding national foreign debt and explore voluntary transaction programs for future
investment in the industry [24]. This can initiate the country’s sustainable economic growth
by mobilizing domestic spending to protect the common global asset of the “environment”,
which will sustain life on earth [25].

Reviewing the existing literature on solid waste collection, route optimization, related
treatment options and technology helps in designing the model for Pakistan based on
local conditions. Researchers deployed various methodologies with novel interventions
to resolve the constraints to upgrade the MSWM system a step ahead. Different criteria,
including parameters, were used to develop models (Table 1), i.e., spatial multi-criteria
evaluation, multi-echelon logistics network, second-order disjoint factor analysis, Inter-
net of Things (IoT), priority considered green vehicle routing problem (PCGVRP) model,
global positioning system/geographic information system (GPS/GIS) sensitivity analysis,
modified capacitated clustering approach, mixed-integer programing (MIP) model, tech-
niques for order of preference by similarity to the ideal solution with GIS and bi-objective
mixed-integer linear programing (MILP) model. Developing a local tool to address the
issue requires the integration of all aspects (Table 1) together to achieve the desired results.
Therefore, there was a need to integrate all the required 17 aspects/parameters into one
tool for ease of local municipalities/WMCs. After a review of the existing literature, there
was a need to incorporate all the required parameters into a single study, e.g., C&D waste
collection [26], green waste collection, sludge collection, color coding of the heterogeneous
fleet for dedicated streams [27], integration of waste collection modes with other private
entities, working shifts, mechanical sweeping and washing component [28], stakeholders’
input, especially waste scavengers’ business interest, real-world implication, calculation of
equipment and allied staff, i.e., drivers, helpers and workers. Municipalities and WMCs
in Pakistan are responsible for providing all the explained services; therefore, there was a
need for a tool/model to cover all aspects to enhance the local capacity for the assessment
of the required resources.

Table 1. Review of the literature on the subject.

Studies DWS HFS CC MW AW CDW GW CM WS AS SI TS P/S TTD F TE Im

[7] -
√

-
√

- - - - - -
√

- -
√ √

-
[29]

√
- -

√
- - -

√
- - - -

√
-

√
- -

[30]
√

- -
√

- - -
√

- - -
√ √ √

- - -
[31] - - -

√
- - -

√
-

√
- -

√ √ √
-

√

[32]
√

- - - - - -
√

- - -
√ √ √ √ √ √

[33]
√

- -
√

- - -
√

- - -
√ √ √ √

- -
[34]

√ √
-

√
- - -

√
- - -

√ √ √ √
- -

[35] -
√

-
√

- - -
√

- - - - -
√ √ √ √

[36] - - -
√

- - - - - - -
√ √ √ √

-
√

[2] - - - - - - - - - -
√ √ √ √ √ √ √

[5] -
√

- - - - - - - - -
√ √ √ √

- -
[37]

√ √
-

√
- -

√ √ √ √
-

√ √ √ √ √ √
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Abbreviations used in Table 1 are described/explained in Table 2.

Table 2. Abbreviation and description of reviewed literature (reference Table 1).

Abbreviation Description Abbreviation Description

DWS Dedicated Waste
Streams AS Allied Staff, including

City Broom Crew

HFS Heterogeneous Fleet
Specification SI Stakeholder Input

CC Color Coding TS Transfer Station

MW Municipal Waste P/S Primary and
Secondary Collection

AW Animal Waste/Dung TTD Trips/Travel/Time
and Distance

CDW Construction and
Demolition Waste F Fuel Averages per

Vehicle

GW Green Waste TE Transportation
Emissions

CM Collection Mode Im Implication
WS Working Shifts - -

Therefore, there was a need to design a tool locally to integrate all aspects of MSWM,
as depicted in Figure 1, as the dynamics of local waste handling are very different from
other developing and developed countries. The idea of a novel MSWM tool/model was
perceived from a literature review of the existing waste collection and haulage models.
Therefore, there was a need for a hybrid/MCDM approach, i.e., a waste collection model
based on local practical experience and waste treatment options based on technically
advanced and environmentally friendly/green technologies from developed countries. The
model will provide a base for the sector’s sustainability [38] with sound technical solutions
to enhance the capacity of local municipalities [39] and WMCs. Therefore, policymakers,
relevant stakeholders, national and foreign lenders should lead the sector’s sustainability
by executing the proposed model in developing countries, such as Pakistan. In addition,
dedicated waste collection streams will recover good quality recyclables [40] and reduce
operational costs, including landfill [41], with a favorable climate impact, i.e., reduction
in GHGs emissions. The model will also guide the politicians to invest and focus on local
capacity building of municipalities [17] rather than outsourcing waste collection services as
a lesson learned from international outsourcing of SWM services in Lahore, Rawalpindi
and Karachi. The local market’s capacity has now developed to provide the appropriate
equipment and machinery required to perform waste collection and haulage services [20].
Therefore, involving the private sector in waste treatment and disposal functions based
on the PPP modality is more relevant for enhancing the local capacity for environmental
sustainability [42,43]. These interventions will also help upgrade the linear waste economy
to a circular economy in the country [44].

Even the local municipalities in Pakistan regard solid waste collection as a liability.
The study’s primary objective (Figure 1) is to increase the waste collection efficiency of the
MSW collection system in the country by proposing a tool that will help local municipal-
ities and WMCs assess the required resources accurately based on local conditions and
wisdom. A heterogeneous fleet with dedicated waste collection streams, i.e., residential,
commercial, private entities and bulk material, will help deploy resources efficiently and
recover recyclables by initiating the circular economy concept in waste management. It
will help in effective waste collection with proposed interventions [45]/dedicated waste
streams to save fuel and assist in the recovery of recyclables. This study will also prove
that “waste is an asset and resource” [46] and can play an essential role in the sustainability
of the sector in the context of a circular economy.
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Pakistan has observed the worst flooding during the latest monsoon due to negative
climatic impacts, which caused damage to humans, property, agriculture and the native
ecosystem [47]. Moreover, it is a fact that developing countries, such as Pakistan, are most
dependent on foreign debt to gain economic stability to meet internal development goals.
The sector has an excellent potential to strengthen the economy of Pakistan by focusing
on waste treatment and its scientific disposal to produce energy and alternative fertilizers,
i.e., WtE, biogas and compost, respectively. Developed nations and multilateral lenders
can guide low-income countries, such as Pakistan, to upgrade the sector toward a circular
economy by achieving GHGs emission reduction targets through voluntary transaction
with a transfer of green technology according to the climate change agenda.

2. Materials and Methods

The existing literature on the subject was studied in detail to define the criteria for the
proposed model. The data suggested that the available SWM models are more suitable for
developed countries and require some modification for replication in developing countries
due to local conditions, including financial, industrial capacity and practicability constraints.
Furthermore, the waste treatment options and technologies should be compatible with
allied stakeholders’ interests. Therefore, the proposed model is based on a solid desire
to present such design/tool, which covers the aspects of local socio-economic, cultural,
environmental and stakeholder consultation and acceptance by the community. The data on
current SWM practice, i.e., waste characteristics, generation rate, fleet quantity and working
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methodology, were collected from the Lahore Waste Management Company (LWMC) [48]
and allied departments. Subsequently, after a detailed data analysis, a new model was
designed and translated into a calculator named the holistically measure analyze forecast
honestly (HMAFH) to help enhance the capacity of local municipalities and WMCs by
perceiving ideas from the tri-echelon logistics network and transportation system [4,5].
A multi-sustainability dimensional [2]/hybrid approach was applied to develop a novel
model for the urban areas of Pakistan.

The generated waste is categorized into two main components, i.e., municipal waste
and bulk waste. Municipal waste is further categorized into residential, commercial and
private entities, i.e., residential housing societies, including institutes [49]. Two modes of
waste collection with heterogeneous fleet options are proposed for waste collection from
the identified waste streams. It is proposed that the collected waste be hauled at the transfer
station or MRF. The nature of bulk waste differs from municipal waste [50]. A relevant
compatible fleet is proposed to collect waste from the source for further haulage to the
transfer station with the option for direct haulage to the landfill site. Dumper vehicles
and trailers are proposed for collecting waste from the transfer stations and MRF (residual
waste) and hauling it to the landfill site for final disposal. A systemic flow chart for an
overview of the waste collection model is depicted in Figure 2.

Sustainability 2022, 14, x FOR PEER REVIEW 7 of 42 
 

 

Figure 2. Systemic flow chart of waste collection and haulage model/tool for urban areas of Paki-

stan. 

The concept for the parameters and variables used to design the current model/tool 

is perceived from the mathematical model [3] and depicted in Table 3. 

Table 3. Parameters and variables used for designing a waste collection model/tool. 

Solid Waste—Generation, Estimates, Components 

and Categories 
  

SWG solid waste generation (c13m3)% 
quantity of tonnage allocated to 13 m3 com-

pactor 

(kg/d) kilograms per day %(c13m3) area accessibility in % for a 13 m3 compactor 

(t/d) tons per day Qty(c7m3) required quantity of 7 m3 compactors 

P population of study area (c13m3)% 
quantity of tonnage allocated to 7 m3 com-

pactor 

R 
waste generation rate in kilogram/per-

son/day 
%(c7m3) area accessibility in % for a 7 m3 compactor 

%MW 
percentage of municipal solid waste 

component 
Qty(md1m3) required quantity of 1 m3 mini-dumper 

%BW % of bulk waste component (md1m3)% 
quantity of tonnage allocated to 1 m3 mini-

dumper 

Figure 2. Systemic flow chart of waste collection and haulage model/tool for urban areas of Pakistan.

The concept for the parameters and variables used to design the current model/tool is
perceived from the mathematical model [3] and depicted in Table 3.
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Table 3. Parameters and variables used for designing a waste collection model/tool.

Solid Waste—Generation, Estimates, Components and Categories

SWG solid waste generation (c13m3)% quantity of tonnage allocated to 13 m3

compactor
(kg/d) kilograms per day %(c13m3) area accessibility in % for a 13 m3 compactor
(t/d) tons per day Qty(c7m3) required quantity of 7 m3 compactors

P population of study area (c13m3)% quantity of tonnage allocated to 7 m3

compactor
R waste generation rate in kilogram/person/day %(c7m3) area accessibility in % for a 7 m3 compactor

%MW percentage of municipal solid waste
component Qty(md1m3) required quantity of 1 m3 mini-dumper

%BW % of bulk waste component (md1m3)% quantity of tonnage allocated to 1 m3

mini-dumper
N(entity) number of commercial markets in area %(md1m3) area accessibility in % for a 1 m3 mini-dumper

S(sm)
number of shops in a small market with range
of 1-50, and the default value for waste
generation is 0.3 ton/day

Qty(md2.5m3) required quantity for 2.5 m3 mini-dumper

S(mm)
number of shops in a medium-size market
with a range of 51-150, and the default value
for waste generation is 1 ton/day

(md2.5m3)% quantity of tonnage allocated to 2.5 m3

mini-dumper

S(lm)
number of shops in a large-size market with a
range of 151-300, and the default value for
waste generation is 2.3 tons/day

%(md2.5m3) area accessibility in % for a 2.5 m3

mini-dumper

S(xlm)
number of shops in an extra-large-size market
with more than 300, and the default value for
waste generation is 4 tons/day

Qty(car5m3) required quantity of 5 m3 chain arm rolls

HH(hs)(∑n) the sum of household number of each society
in area (car5m3)% quantity of tonnage allocated to 5 m3 chain

arm roll

HH(hs)(sz) household size is number of people per
household as per the census report %(car5m3) area accessibility in % for a 5 m3 chain arm roll

%DtD area percentage requires door to door (DtD)
collection services Qty(tl) required quantity of tractor loaders

%CBC area percentage requires container based
collection (CBC)/curbside services Qty(wsc0.8m3) required quantity of 0.8 m3 waste storage

containers

Waste Collection & Haulage Modes And Resources Qty(wsc5m3) required quantity of 5 m3 waste
storage containers

DtD door to door collection Qty(d5m3) required quantity of 5 m3 dumpers
cbc container-based collection (d5m3)% quantity of tonnage allocated to 5 m3 dumper

vc capacity of vehicle in tons %(d5m3) the percentage for a 5 m3 dumper out of total
fleet for bulk waste

cw commercial area Qty(d10m3) required quantity of 10 m3 dumpers
hs housing society (d10m3)% quantity of tonnage allocated to 10 m3 dumper

bw bulk waste %(d10m3) the percentage for a 10 m3 dumper out of total
fleet for bulk waste

ts transfer station Qty(tt5m3) required quantity of 5 m3 trolleys
mw municipal waste (tt5m3)% quantity of tonnage allocated to 5 m3 trolley

bw bulk waste %(tt5m3) % for a 5 m3 trolley out of the total fleet for
bulk waste

trips number of complete trips by vehicle (+/+)
any desired value from 1 to 9 that will help
obtain the required value of a machine, i.e.,
tractor loader for CBC

c(wsc) waste storage capacity in tons for container Ss(+/+)
any desired value from 1 to 9 that will help
obtain the required value of a machine, i.e.,
tractor loader, front-end loader and excavator

DtD(m) door-to-door collection mode
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÷ ⟨≞ |𝑢𝑛𝑐𝑒𝑟𝑡. ⟩ 
(61) 

• Model for Waste Haulage from Transfer Station/Facility to Landfill Site 

𝑄𝑡𝑦(𝑑25𝑚3)𝑚𝑤(𝑡𝑠) = 𝑀𝑊(𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡) (
𝑡

𝑑
) ÷ (𝑣𝑐 × 𝑡𝑟𝑖𝑝𝑠) (62) 

𝑄𝑡𝑦(𝑑25𝑚3)𝑏𝑤(𝑡𝑠) = 𝐵𝑊(𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡) (
𝑡

𝑑
) ÷ (𝑣𝑐 × 𝑡𝑟𝑖𝑝𝑠) (63) 

𝑄𝑡𝑦(𝑒𝑥𝑐𝑣)𝑡𝑠 = ⟮𝑄𝑡𝑦(𝑑25𝑚3)𝑚𝑤(𝑡𝑠) + 𝑑(25𝑚3)𝑏𝑤(𝑡𝑠)〕 ÷ ∫ +/+ (64) 

𝑄𝑡𝑦(𝑓𝑛𝑙)𝑡𝑠 = ⟮𝑄𝑡𝑦(𝑑25𝑚3)𝑚𝑤(𝑡𝑠) + 𝑄𝑡𝑦(𝑑25𝑚3)𝑏𝑤(𝑡𝑠)〕 ÷ ∫ +/+ (65) 

2.3. Mechanical Sweeping and Washing 

Mechanical sweeping and washing are essential aspects of cleanliness in urban areas. 

The vacuum/mechanical sweeping function will help to collect the dust along road divid-

ers/medians and footpaths, and washing monuments will improve the city's aesthetics.  

𝑄𝑡𝑦(𝑣𝑠4𝑚3)𝑚𝑠 = %(𝑣𝑠4𝑚3)𝑚𝑠 × 𝑚𝑠 − 𝑣𝑠4𝑚3(
𝑣𝑐

𝑠
) (66) 

𝑄𝑡𝑦(𝑣𝑠6𝑚3)𝑚𝑠 = %(𝑣𝑠6𝑚3)𝑚𝑠 × 𝑚𝑠𝑣𝑠6𝑚3 (
𝑣𝑐

𝑠
) (67) 

|uncert.
any desired value from 1 to 9 that will help
obtain the required value of a machine under
uncertain condition

cbc(m) container-based collection mode Qty(vs4m3) required quantity of 4 m3 vacuum sweepers

ms mechanical sweeping %(vs4m3) % of sweeping length for a 4 m3

vacuum sweeper
mw mechanical washing Qty(vs6m3) required quantity of 6 m3 vacuum sweepers

vc/s vehicle sweeping/washing capacity per shift
in kilometers %(vs6m3) % of sweeping length for a 6 m3

vacuum sweeper

vs vacuum sweeper machine Qty(wv4500l) required quantity of mechanical washers with
4500 L tanker capacity

wv washer vehicle %(wv4500l) % of washing length for a 4500 L washer
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Table 3. Cont.

Solid Waste—Generation, Estimates, Components and Categories

Qty(c25 m3) required quantity for 25 m3 compactor Qty(wv8000l) required quantity for mechanical washer with
8000 L tanker capacity

(c25 m3)% quantity of tonnage allocated to 25 m3

compactor
%(wv8000l) % of washing length for a 8000 L washer

%(c25 m3) area accessibility in % for a 25 m3 compactor Qty(ms-mw)mw required quantity of “dedicated” mechanical
sweepers to support washing operation

Qty(c13 m3) required quantity of 13 m3 compactors mw-(target/d) mechanical washing target per day

The equations used to create the MSW collection and haulage model are explained
and converted into a calculator/tool. The design parameters and variables are flexible [3]
to adjust for the future needs of the cities accordingly. The equations used to develop the
waste collection and haulage model are as follows.

2.1. Solid Waste Generation Estimates

The waste generation of the area is calculated in kilograms per day [51] and tons per
day [52,53].

SWG
(

kg
d

)
= P× R (1)

SWG
(

t
d

)
=

P× R
1000

(2)

where SWG(t/d) is the solid waste generation in tons per day.

2.2. Major Components of Solid Waste

Solid waste generation is divided into two main components: municipal waste and
bulk waste [54].

MW(component)
(

t
d

)
= SWG

(
t
d

)
×%MW (3)

BW(component)
(

t
d

)
= SWG

(
t
d

)
×%BW (4)

• Waste Generation Estimates for Commercial Areas

CW
(

t
d

)
= CW(sm) + CW(mm) + CW(lm) + CW(xlm) (5)

CW(sm) = N(entity)× S(sm) (6)

CW(mm) = N(entity)× S(mm) (7)

CW(lm) = N(entity)× S(lm) (8)

CW(xlm) = N(entity)× S(xlm) (9)

• Waste Generation Estimates for Housing Societies

HS
(

t
d

)
= HH(hs)(∑ n)× HH(hs)(sz)× (R×%MW) (10)

• Waste Generation Estimates for Residential Municipal Solid Waste [55]
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R(MW)

(
t
d

)
= MW(component)

(
t
d

)
−
(

CW
(

t
d

)
+ HS

(
t
d

))
(11)

• Door-to-Door Waste Collection and Container-Based Collection [56,57]

DtD
(

t
d

)
= %DtD× R(MW)

(
t
d

)
(12)

CBC
(

t
d

)
= %CBC× R(MW)

(
t
d

)
(13)

• Model for Door-to-Door and Container-Based Collection

Qty
(

c25m3
)

DtD = DtD
(

c25m3
)

%÷ (vc× trips) (14)

DtD
(

c25m3
)

% = DtD(m)×%
(

c25m3
)

DtD (15)

Qty
(

c13m3
)

DtD = DtD
(

c13m3
)

%÷ (vc× trips) (16)

DtD
(

c13m3
)

% = DtD(m)×%
(

c13m3
)

DtD (17)

Qty
(

c7m3
)

DtD = DtD
(

c7m3
)

%÷ (vc× trips) (18)

DtD
(

c7m3
)

% = DtD(m)×%
(

c7m3
)

DtD (19)

Qty
(

md1m3
)

DtD = DtD
(

md1m3
)

%÷ (vc× trips) (20)

DtD
(

md1m3
)

% = DtD(m)×%
(

md1m3
)

DtD (21)

Qty
(

md2.5m3
)
= DtD

(
md2.5m3

)
%÷ (vc× trips) (22)

DtD
(

md2.5m3
)

% = DtD(m)×%
(

md2.5m3
)

DtD (23)

Qty
(

c7m3
)

cbc = cbc
(

c7m3
)

%÷ (vc× trips) (24)

cbc
(

c7m3
)

% = cbc(m)×%
(

c7m3
)

cbc (25)

Qty
(

c13m3
)

cbc = cbc
(

c13m3
)

%÷ vc× trips (26)

cbc
(

c13m3
)

% = cbc(m)×%
(

c13m3
)

cbc (27)

Qty
(

car5m3
)

cbc = cbc
(

car5m3
)

%÷ vc× trips (28)

cbc
(

car5m3
)

% = cbc(m)×%
(

car5m3
)

cbc (29)

Qty(tl)cbc = Qty
(

car5m3
)

cbc÷ (+/+) (30)
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The idea to calculate the number of containers was perceived from integer variables [56,58].

Qty
(

wsc0.8m3
)

cbc = cbc
(

t
d

)
×
[
%
(

c13m3
)

cbc + %
(

c7m3
)

cbc)
]
× 1000÷ c(wsc) (31)

Qty
(

wsc5m3
)

cbc = cbc
(

t
d

)
×%

(
car5m3

)
cbc× 1000÷ c(wsc) (32)

• Model for Commercial Waste Collection

Qty
(

car5m3
)

cw = cw
(

car5m3
)

%÷ (vc× trips) (33)

cw
(

car5m3
)

% = CW
(

t
d

)
×%

(
car5m3

)
cw (34)

Qty
(

c25m3
)

cw = cw
(

c25m3
)

%÷ (vc× trips) (35)

cw
(

c25m3
)

% = CW
(

t
d

)
×%

(
c25m3

)
cw (36)

Qty
(

c13m3
)

cw = cw
(

c13m3
)

%÷ (vc× trips) (37)

cw
(

c13m3
)

% = CW
(

t
d

)
×%

(
c13m3

)
cw (38)

Qty
(

c7m3
)

cw = cw
(

c7m3
)

%÷ (vc× trips) (39)

cw
(

c7m3
)

% = CW
(

t
d

)
×%

(
c7m3

)
cw (40)

Qty
(

wsc5m3
)

cw = cw
(

t
d

)
×%

(
car5m3

)
cw× 1000÷ c(wsc) (41)

Qty
(
wsc0.8m3)cw

= cw
( t

d
)
× [%

(
c7m3)cw + %(c13m3)cw

+%(c25m3)cw]× 1000÷ c(wsc)
(42)

• Model for Waste Collection from Housing Societies

Qty
(

c25m3
)

hs = hs
(

c25m3
)

%÷ (vc× trips) (43)

hs
(

c25m3
)

% = HS
(

t
d

)
×%

(
c25m3

)
hs (44)

Qty
(

c13m3
)

hs = hs
(

c13m3
)

%÷ (vc× trips) (45)

hs
(

c13m3
)

% = HS
(

t
d

)
×%

(
c13m3

)
hs (46)

Qty
(

c7m3
)

hs = hs
(

c7m3
)

%÷ (vc× trips) (47)

hs
(

c7m3
)

% = HS
(

t
d

)
×%

(
c7m3

)
hs (48)

Qty
(

wsc0.8m3
)

hs = hs
(

wsc0.8m3
)

%÷ c(wsc) (49)
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hs
(

wsc0.8m3
)

% =

(
HS
(

t
d

)
× 1000

)
×%

(
wsc0.8m3

)
(50)

Qty
(

wsc5m3
)

hs = hs
(

wsc5m3
)

%÷ c(wsc) (51)

where Qty(wsc5m3)hs is the quantity of the 5 m3 waste storage containers for housing societies.

hs
(

wsc5m3
)

% =

(
HS
(

t
d

)
× 1000

)
×%

(
wsc5m3

)
(52)

• Model for Bulk Waste Collection

Qty
(

d5m3
)

bw = bw
(

d5m3
)

%÷ (vc× trips) (53)

bw
(

d5m3
)

% = BW(component)
(

t
d

)
×%

(
d5m3

)
bw (54)

Qty
(

d10m3
)

bw = bw
(

d10m3
)

%÷ (vc× trips) (55)

bw
(

d10m3
)

% = BW(component)
(

t
d

)
×%

(
d10m3

)
bw (56)

Qty
(

tt5m3
)

bw = bw
(

tt5m3
)

%÷ (vc× trips) (57)

bw
(

tt5m3
)

% = BW(component)
(

t
d

)
×%

(
tt5m3

)
bw (58)

Qty(tl)bw =
[

Qty
(

d5m3
)

bw + (Qty
(

d10m3
)

bw +
(

Qty
(

tt5m3
)

bw
)]
÷
∫

+/+ (59)

Qty(excv)bw = [Qty(d25m3)bw + Qty(d10m3)bw + Qty(tt5m3)bw]÷ 〈
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• Model for Waste Haulage from Transfer Station/Facility to Landfill Site

Qty
(

d25m3
)

mw(ts) = MW(Component)
(

t
d

)
÷ (vc× trips) (62)

Qty
(

d25m3
)

bw(ts) = BW(Component)
(

t
d

)
÷ (vc× trips) (63)

Qty(excv)ts =
[

Qty
(

d25m3
)

mw(ts) + d
(

25m3
)

bw(ts)
]
÷
∫

+/+ (64)

Qty( f nl)ts =
[

Qty
(

d25m3
)

mw(ts) + Qty
(

d25m3
)

bw(ts)
]
÷
∫

+/+ (65)

2.3. Mechanical Sweeping and Washing

Mechanical sweeping and washing are essential aspects of cleanliness in urban areas.
The vacuum/mechanical sweeping function will help to collect the dust along road di-
viders/medians and footpaths, and washing monuments will improve the city’s aesthetics.

Qty
(

vs4m3
)

ms = %
(

vs4m3
)

ms×ms− vs4m3
(vc

s

)
(66)
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Qty
(

vs6m3
)

ms = %
(

vs6m3
)

ms×msvs6m3
(vc

s

)
(67)

Qty(wv4500l)mw = %(wv4500l)mw×mw− wv4500l
(vc

s

)
(68)

Qty(wv8000l)mw = %(wv8000l)mw×mw−mv8000l
(vc

s

)
(69)

Qty(ms−mw)mw = mw−
(

target
d

)
/
∫

+/+ (70)

2.4. Environmental Modeling and Analysis of BAU and Proposed Scenarios

The assessment of greenhouse gases (GHGs) and short-lived climate pollutants (SLCPs)
was performed by using the Emission Qualification Tool (EQT) developed by the Insti-
tute for Global Environmental Strategies (IGES), Japan [59]. The tool facilitated a rapid
assessment of GHGs emissions and black carbon associated with solid waste for in-built
features, i.e., business-as-usual (BAU), and offered alternative scenarios. In addition, an
environmental analysis of transportation, composting, anaerobic digestion (AD), recycling,
uncollected garbage, mixed waste landfilling and open burning was performed using the
tool, as depicted in Figure 3. The basic functional unit for emissions estimation is kg of
CO2-eq./ton; however, the global warming potential (GWP) also uses estimates from yearly
collected waste in tons of CO2-eq. for assessment.
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2.5. Economic Modeling and Analysis of Proposed Scenarios

The objective of the economic modeling [60] of the proposed municipal waste treat-
ment options is to determine the cost of the establishment of the facility, its operations,
related revenue from the sale of products and environmental benefits in terms of monetary
value. The MRF will assist in revenue generation and the associated environmental benefits
by diverting waste into three streams, i.e., compost [61], biogas and recovery of recyclables.
Methane recovery at a landfill site will also help with the monetary benefit. The proposed
interventions will ensure sustainability and serve as a step toward integrating the waste
sector into the circular economy [62] (Figure 4).
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Figure 4. Economic model and circular economy concept of waste.

The economic analysis of the proposed waste treatment options is performed in
Pakistani Rupees (PKR) per ton by considering Equations (1)–(7) described in the economic
modeling [20]. The economic value of biogas generation from anaerobic digestion (AD)
is determined via Equation (71). Equations (72)–(74) and (75)–(78) assist in assessing the
value of performing the cost–benefit analysis (CBA) and economic potential (EP) analysis,
respectively. The parameters and variables used to design the economic model [63] are
depicted in Table 4.
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Table 4. Parameters and variables for the economic model.

Parameters and Variables for the Economic Model

Pton per ton CBA cost–benefit analysis
Bg biogas avg/t average per ton
Rev revenue from biogas S1 scenario 1
Qty. quantity benefit environmental/carbon benefit
m3 cubic meter Fc facility cost
t ton S2 scenario 2
prod production/produce lfg landfill gas
SP selling price d day
R recyclables dw waste diverted/accepted at landfill
Oc organic compost S3 scenario 3

The equations used for economic modeling are as follows:

Pton(Bg)Rev = Qty.m3/t(Bg)prod× SP(Bg)/m3 (71)

TPton(R&Oc&Bg)Rev = Pton(R)Rev + Pton(Oc)Rev + Pton(Bg)Rev (72)

CBA
( avg

t

)
S1 = [{Pton(R)Rev + Pton(Oc)Re + Pton(C)Oc&R(bene f it)} ÷ 3]− Pton(Fc) (73)

CBA
( avg

t

)
S2 = [{Pton(R)Rev + Pton(Oc)Rev + Pton(Bg)Rev + Pton(C)Oc&R&Bg(bene f it)} ÷ 4]− Pton(Fc) (74)

l f g(env. bene f it/d) =
{

Pton(C)l f g(bene f it)×Qty.
(

t
d

)
dw(l f s)

}
(75)

EP.
(

S1
d

)
=

{
CBA

( avg
t

)
S1×Qty.

(
t
d

)
Oc&R

}
(76)

EP
(

S2
d

)
=

{
CBA

( avg
t

)
S2×Qty.

(
t
d

)
Oc&R&Bg

}
(77)

EP
(

S3
d

)
=

{
CBA

( avg
t

)
S2×Qty.

(
t
d

)
Oc&R&Bg

}
+ l f g(bene f it/d) (78)

3. Results
3.1. Background

The Lahore district stretches over an area of 1772 km2, including the area jurisdiction
of Lahore Cantonment Board (LCB) and Walton Cantonment Board (WCB) [64]. Lahore
is the second largest city in Pakistan after Karachi, with a population of approximately
12 million and a population density of 6275 persons/km2 [65]. The city’s population
increased from 6.3 million in 1998 to 11.1 million in 2017. The city’s urban area has
increased by 68% since 1972, and more than 200 housing societies have been approved
to meet the growing population’s demand. The built-up area has also increased, and
more than 250 villages have been merged with the urban infrastructure. A recent city
expansion has been observed in the southern and southwestern directions to accommodate
the inhabitants [66]. Legally, the Metropolitan Corporation Lahore (MCL) is responsible for
providing cleaning services, including manual sweeping, waste collection and treatment,
along with its final disposal under the mandate and supervision of the Local Government
and Community Development (LG&CD) department (Government of the Punjab). The
MCL further entrusted the MSWM functions to the LWMC under the Services and Assets
Management Agreement (SAAMA) signed on 25 June 2011. The LWMC further outsourced
waste collection and its haulage services to two Turkish companies in November 2011
for seven (07) years at a cost of USD 320 million [48]. The LWMC is now performing the
primary waste collection and haulage functions after terminating the previous contracts
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on 31 December 2020. Secondary waste collection services, i.e., collection and haulage of
waste from the transfer station to the disposal facility, are outsourced locally to enhance the
collection efficiency of the system (Figure 5).
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3.2. Basic Information of City

Lahore city is divided administratively into nine towns with two cantonments (Figure 6a)
and five revenue tehsils (Figure 6b). The city’s current population is approximately 12 million,
with 291 miniature administrative setups, i.e., 274 union councils (UCs), 7 sectors and
10 wards [64]. Zone-1 to Zone-3 comprise three towns, each with 249 UCs. The Lahore
district’s peripheral areas include Zone-4 with 25 UCs. Zone-5 and Zone-6 comprise the
Cantonment Board areas based on area jurisdiction (Table 5).



Sustainability 2022, 14, 16234 16 of 39Sustainability 2022, 14, x FOR PEER REVIEW 17 of 42 
 

 
(a) 

 

(b) 

Figure 6. Lahore district description: (a) Map of the district showing nine administrative towns and 

two cantonments; (b) Map of the district showing five tehsils. 

It is proposed to divide the city into six zones for efficient waste collection and haul-

age to the temporary collection points (TCPs)/transfer stations, with final disposal at a 

designated landfill site (LFS). The zoning of the city was proposed based on contiguous 

features, infrastructure, local socio-economic conditions and area jurisdiction, i.e., Zone-1 

to Zone-4 are under MCL and LWMC, while Zones-5 and 6 are under the area jurisdiction 

of the Cantonment Boards (Figure 7). The proposed zoning will also help monitor and 

decentralize services for the system’s sustainability. 

Table 5. Basic facts of Lahore district used to perform the modeling. 

Zones Towns UCs Population 

Zone-1 Iqbal, Nishtar, Gulberg 80 3,134,696 

Zone-2 
Samanabad, Data Gunj 

Bukh, Ravi 
98 4,118,513 

Zone-3 
Shalimar, Aziz Bhatti, 

Wagha 
71 2,843,550 

Zone-4 Periphery area 25 1,029,526 

Zone-5 WCB (Sector) 7 509,025 

Zone-6 LCB (Wards) 10 227,112 

Total 291 11,862,422 
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Table 5. Basic facts of Lahore district used to perform the modeling.

Zones Towns UCs Population

Zone-1 Iqbal, Nishtar, Gulberg 80 3,134,696

Zone-2 Samanabad, Data Gunj Bukh,
Ravi 98 4,118,513

Zone-3 Shalimar, Aziz Bhatti, Wagha 71 2,843,550
Zone-4 Periphery area 25 1,029,526
Zone-5 WCB (Sector) 7 509,025
Zone-6 LCB (Wards) 10 227,112

Total 291 11,862,422

It is proposed to divide the city into six zones for efficient waste collection and
haulage to the temporary collection points (TCPs)/transfer stations, with final disposal at a
designated landfill site (LFS). The zoning of the city was proposed based on contiguous
features, infrastructure, local socio-economic conditions and area jurisdiction, i.e., Zone-1
to Zone-4 are under MCL and LWMC, while Zones-5 and 6 are under the area jurisdiction
of the Cantonment Boards (Figure 7). The proposed zoning will also help monitor and
decentralize services for the system’s sustainability.
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3.3. Waste Collection and Haulage Model

The steps for designing a city waste collection and haulage model are explained
as follows:

• City basic information, i.e., town, zone, area, ward/union council and population of
the area concerned.

• City solid waste is further categorized into two main components, i.e., municipal and
bulk waste components, and separate waste collection arrangements are proposed.

• The collection of the municipal waste component is further sub-categorized into three
collection streams, i.e., residential areas, commercial entities and private housing
societies, with a dedicated heterogeneous fleet.

• For the city of Lahore, two modes are proposed for residential waste collection, i.e.,
DtD and CBC.

• The CBC mode with an option for semi-underground containers is proposed for
commercial entities and housing societies of the city.

• All waste collection streams will collect and haul the waste to the transfer station or
MRF for further handling, i.e., segregation into recyclables and organic waste or direct
haulage for waste disposal depending on the scenario.

The steps involved in the design of the proposed MSWM model are illustrated in
Figure 8.
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Figure 8. Steps for designing the waste collection and haulage model.

The solid waste generated by Lahore city is 6407 tons per day, with a waste generation
rate of 0.54 kg/c/d [48]. The generated waste is categorized into two major components,
i.e., municipal waste (71%) and bulk waste (29%). Municipal waste is further divided into
three streams, i.e., commercial (14% of 71% municipal waste), housing societies (13% of
71% municipal waste) and residential (73% of 71% municipal waste). Residential waste
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collection is proposed via two modes, i.e., CBC (73% of 73% residential waste) and DtD
waste collection (27% of 73% residential waste) (Figure 9).
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Now, it is time to strengthen and sustain the SWM sector in Pakistan by adopting
methodologies compatible with the local market and citizens’ desires. However, unfortu-
nately, the waste collection efficiency was below 75% in almost all cities in Pakistan, except
Lahore [20], where the nature of the waste collected is heterogeneous, without any separate
arrangements for collection streams.

3.3.1. Municipal and Bulk Waste Components

The waste components are categorized into municipal and bulk waste [48] (Table 6).
Bulk waste, i.e., non-combustible, animal waste/dung, construction and demolition (C&D)
and green waste, is often mixed with municipal waste due to the non-availability of
dedicated separate waste collection arrangements in the urban areas of low-income coun-
tries [67]. In addition, weak enforcement and lack of public education are also responsible
for mixing both types of waste.

Table 6. Municipal and bulk waste components.

SN Waste Components Municipal Waste Bulk Waste

1 Combustibles
√

-
2 Diaper

√
-

3 Electro.
√

-
4 Glass

√
-

5 Hazardous *
√

-
6 Kitchen waste

√
-

7 Metals
√

-

8 Non-combustible, i.e., dust, dirt,
ashes, stones, bricks, sludge, etc. -

√

9 Paper–cardboard
√

-
10 PET

√
-

11 Nylon
√

-
12 Plastics

√
-

13 Tetrapak
√

-
14 Textile

√
-

15 Wood, leaves, straw, green waste -
√

16 Animal waste/dung -
√

* Not desired in municipal waste.

Dedicated waste collection arrangements can offer a more suitable choice, and the
methodologies for both types of waste, i.e., municipal and bulk, are considered in the
modeling to increase the system’s efficiency. The city’s historical data show the percentage
of municipal and bulk waste components (Table 7). The quantity of bulk waste is reasonably
high due to the presence of animal dung, C&D waste, green waste and sludge, as desilted
by the local municipality.
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Table 7. Solid waste generation (tons/day) estimates and categorization into municipal and bulk
waste components.

Zones SWG (kg/d) * SWG (t/d) ** %MW %BW MW (ton/Day)
***

BW (ton/Day)
****

Zone-1 1,692,736 1693 0.65 0.35 1100 593
Zone-2 2,223,997 2224 0.80 0.20 1779 445
Zone-3 1,535,517 1536 0.70 0.30 1075 461
Zone-4 555,944 556 0.55 0.45 306 250
Zone-5 274,874 275 0.8 0.2 220 55
Zone-6 122,640 123 0.8 0.2 98 25
Total 6,405,708 6407 - - 4578 1829

* Equation (1); ** Equation (2); *** Equation (3); **** Equation (4).

3.3.2. Door-to-Door and Container-Based Collection

Three waste streams, i.e., residential, commercial/institutes and housing societies,
are proposed for collecting municipal waste by considering local conditions. The model
presents the collection methodology for residential waste through DtD and CBC modes
(Figure 9). Considering the public acceptance, informal sector activities and local city
infrastructure, DtD waste collection is proposed for 25% of the residential area and CBC for
the remaining, i.e., 75%, of the area. (Table 8). The cantonment areas fall in the planned
infrastructure category and have a well-defined enforcement mechanism; therefore, a 50%
DtD and 50% CBC mode is a suitable option for collection.

Table 8. Residential waste generation (tons/day) estimates and waste quantities for DtD and
CBC modes.

Zones R(MW) t/d * %DtD %CBC DtD (t/d) ** CBC (t/d) ***

Zone-1 591 0.25 0.75 148 443
Zone-2 1432 0.25 0.75 358 1074
Zone-3 859 0.25 0.75 215 644
Zone-4 222 0.25 0.75 56 167
Zone-5 166 0.5 0.5 83 83
Zone-6 59 0.5 0.5 29 29
Total 3329 - - 888 2440

* Equation (7); ** Equation (12); *** Equation (13).

The DtD waste collection mode is required based on the city infrastructure, acceptance
by the residents and significant stakeholders, i.e., the informal waste sector/scavengers’
business in the area [68]. About 888 tons of household waste will be collected by the DTD
mode regularly. Therefore, waste collection via the DtD mode will ensure the availability of
recyclable material for the proposed treatment facilities. The local fleet market survey shows
the availability of different fleets based on area accessibility to perform DtD collection.
The fleet resources calculated to perform the DtD collection function are depicted in
Figure 10—for example, compactor vehicles of 25 m3 and 13m3 on one trip/day, compactors
of 7 m3 on two trips/day and mini-dumpers of 1 m3 and 2.5 m3 on three and two trips,
respectively. Therefore, the resources suggest bearing in mind the local conditions, the
desire of citizens and the bureaucratic and political opinion to clean the city by 10 am daily.

The CBC mode is more convenient for municipalities due to the deployment of com-
munal storage bins/containers, which are accessible for citizens to dump waste. About
2440 tons of municipal waste, predominantly household waste, will be collected by the
CBC mode on a daily basis. Citizens and the municipality’s crew will be responsible for
transporting the garbage to the waste storage containers. In addition, the informal sector,
i.e., scavengers, also segregates maximum recyclables from the containers. Therefore, this
mode of waste collection is more cost effective than DtD for the municipalities and vice
versa from an environmental aspect.
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Figure 10. Fleet resources calculated for DtD waste collection mode: (a) Three types of compactor vehi-
cles, i.e., 7 m3—Equation (18), 13 m3—Equation (16) and 25 m3—Equation (14), are proposed based on
area dynamics; (b) Two types of mini-dumpers, i.e., 1 m3—Equation (20) and 2.5 m3—Equation (22),
are proposed based on area accessibility.

A heterogeneous fleet is proposed for the CBC mode, i.e., compactors with on-site
container emptying and chain arm roll with hauled container system, based on the waste
generation trend of the locality. The resources calculated to perform the CBC mode are
depicted in Figure 11. Compactor vehicles, i.e., 7 m3, 13 m3 and 5 m3 chain arm roll vehicles,
are proposed for three, two and five trips, respectively. The scheme of the CBC mode is
depicted in Figure 12b.
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Figure 11. Fleet resources calculated for CBC mode: (a) Four types of vehicles, i.e., compactor
7 m3—Equation (24), compactor 13 m3—Equation (26), chain arm roll 5 m3—Equation (28) and
tractor loader (4 × 4)—Equation (30), are proposed based on area requirement and local wisdom;
(b) Two types of waste storage containers, i.e., 0.8 m3—Equation (31) and 5 m3—Equation (32), are
proposed based on waste generation quantum.
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The scheme of the DtD waste collection mode is depicted in Figure 12a.

3.3.3. Waste Collection from Commercial Entities

The city has 690 commercial entities [64] generating 640 tons/day of waste, as depicted
in Figure 13a. The resources calculated for collecting waste from commercial areas are
depicted in Figures 13b and 13c. Compactor vehicles, i.e., 7 m3, 13 m3, 25 m3 and 5 m3

chain arm roll vehicles, are proposed for two, one, one and five trips, respectively. The
scheme of commercial waste collection is depicted in Figure 13d.
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Figure 13. Details of waste generation, proposed fleet and equipment for commercial entities:
(a) Zone-wise waste generation from small markets—Equation (6), medium markets—Equation (7),
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large markets—Equation (8) and extra-large markets—Equation (9); (b) Four types of fleet, i.e.,
chain arm roll—Equation (33), compactor 7 m3—Equation (39), compactor 13m3—Equation (37)
and compactor 25 m3—Equation (35), proposed for collection of waste from commercial entities
of the city based on area accessibility; (c) Two types of containers, i.e., 5 m3—Equation (41) and
0.8 m3—Equation (42), proposed for storage of waste in commercial entities of the city; (d) Scheme of
commercial waste collection.

3.3.4. Waste Collection from Private Entities

There are 265,374 households in private/cooperative housing societies in Lahore
generating 609 tons of waste per day, as depicted in Figure 14a. Compactor vehicles, i.e.,
13 m3 and 25 m3, are proposed for two and one trips, respectively. The quantity of the
proposed fleet and waste storage containers for private entities’ waste collection mode is
depicted in Figure 14b. Scheme of waste collection from housing societies is explained in
Figure 14c.
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Figure 14. Details of waste generation, housing units, proposed fleet and equipment for pri-
vate/cooperative housing societies: (a) Town-wise household size of residential societies and waste
generation—Equation (10); (b) Calculated/proposed quantity of compactor vehicles, i.e., 13 m3—
Equation (42) and 25 m3—Equation (43), and waste storage containers, i.e., 0.8 m3—Equation (49)
and 5 m3—Equation (51); (c) Scheme of housing societies waste collection.
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Zone-wise areas are identified for DtD collection, CBC, and commercial and pri-
vate entities of the city, as depicted in Figure 15a. The zone-wise proposed location of
TCPs/transfer stations with centralized MRF is depicted in Figure 15b.
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3.3.5. Bulk Waste Collection

The other component of MSWM is bulk waste. Bulk waste is part of municipal
waste in low-income countries, and there is a need to devise dedicated arrangements for
1829 tons/day of waste collection with a specialized fleet (Figure 16a).
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Figure 16. Scheme for bulk and secondary waste collection: (a) Specialized resources for bulk waste
collection; (b) Scheme for secondary waste collection.

The resources calculated for bulk waste collection are depicted in Figure 17a. Hydraulic
dumper vehicles of 5 m3, 10 m3, and a tractor trolley of 5 m3 can undertake four trips by
each dumper and three visits by trolley per day.
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Figure 17. Resources calculated/proposed for bulk waste collection based on waste generation
trends in low-income countries and proposed transfer station resources: (a) Heterogeneous fleet for
bulk waste collection include dumper 5 m3—Equation (53), dumper 10 m3—Equation (55), tractor
trolley—Equation (57), tractor loader—Equation (59), excavator—Equation (60) and front-end loader—
Equation (61); (b) Separate dumpers/trailers and allied equipment, i.e., dumper 25 m3 for municipal
waste—Equation (62), dumper 25 m3 for bulk waste—Equation (63), excavator—Equation (64) and
front-end loader—Equation (65), as proposed/calculated for collection and haulage of waste from
transfer station/MRF (residual waste) to designated landfill site.

3.3.6. Secondary Waste Collection (from Transfer Station/TCPs/Treatment Facility to
Designated Disposal Site

Secondary collection, i.e., haulage of waste/residual waste after treatment, etc., is
required for final disposal at the designated site. The scheme of the secondary waste
collection mode is depicted in Figure 16b. The resources needed to collect and haul waste
from TCPs/transfer station/treatment facility to the final disposal site are calculated and
illustrated in Figure 17b. A hydraulic dumper of 25 m3 for three to six trips per day is an
effective vehicle for waste haulage from the waste treatment facility based on the distance
from the transfer station to a designated dumpsite. The quantity of excavator and front-end
loader vehicles is proposed for an eight-hour working day.

3.3.7. Mechanical Sweeping and Washing (MS&MW)

The road mechanical sweeping and washing function is essential for cleaning services
in megacities/urban areas. The road length is calculated to perform the operation depicted
in Figure 18a. Its demand is high in metropolitan areas of low-income countries due to
frequent littering of sand/soil on roads during the transportation of building materials
for renovation/construction of buildings and city infrastructure—the resources required
to perform that function, as depicted in Figure 18b. The roads identified to perform a
mechanical sweeping and washing function are displayed on the city map (Figure 19).
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Figure 18. Mechanical sweeping and washing details: (a) Mechanical sweeping and washing lengths
based on city road infrastructure; (b) Resources calculated to perform mechanical sweeping, including
mechanical sweeper 4 m3—Equation (66) and mechanical sweeper 6 m3—Equation (67), and washer
4500 L capacity—Equation (68) and washer 8000 L capacity—Equation (69), achieve the sweeping
and washing targets.
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Figure 19. Roads identified for MS&MW operations: (a) Proposed mechanical sweeping; (b) Proposed
mechanical washing.

3.4. Environmental and Economic Model

The integration of the waste treatment aspect [69] needs to be included in the existing
scenario of SWM in the country, which will provide a step forward to achieving the desired
goals. Therefore, dedicated waste collection streams are defined, i.e., residential, housing
societies, commercial and bulk waste, to be integrated with the centralized material recovery
facility (MRF) [13] for the sector’s sustainability. Based on the proposal, residential waste
collection is performed via two modes, i.e., DtD and CBC, as the DtD mode is directly
integrated with MRF, while CBC is integrated with LFS [70]. This methodology is proposed
bearing in mind the business interest of the informal waste sector, which mainly depends
on a communal waste storage system for picking/segregating recyclables. As suggested,
the mixed waste collection methodology is favorable initially for residential areas based on
public behavior, education level, waste perception, responsibility, ownership and the legal
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framework. Bulk waste haulage will be directed to a LFS, except for green waste, which is
linked to improving the compost product quality. The proposed waste collection modes are
integrated with MRF to recover recyclables and separate organic waste for its utilization
at the compost and anaerobic digestion plant. The flow chart also depicts the potential
market for material recovery and product use (Figure 20).
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The proposed model [58] is based on local conditions, wisdom and practical experience
in the SWM sector. Furthermore, the defined scenarios will allow executing the model
in a phased manner within timelines to achieve the NDC targets. The centralized MRF
will receive 1000 tons of mixed waste per day in Scenario-1 (Phase-A, Year 2024), and an
extension of the facility will receive up to 2000 tons of waste per day in Scenarios-2 and 3
in Phases-B (Year 2025) and C (Year 2026), respectively (Figure 21).

3.4.1. Climate Impact of Existing and Proposed Models/Scenarios

Waste treatment options based on environmental aspects are discussed in three sce-
narios to propose a viable solution to strengthen the sector in Pakistan. Currently, waste is
being collected and disposed of openly without any treatment as BAU. Based on the pro-
posed treatment options, Scenario-3 is a more feasible choice for the city with composting,
AD, recycling and landfill gas (LFG) recovery. It has the lowest net GHGs emissions, i.e.,
methane (CH4), black carbon (BC), carbon dioxide (CO2), nitrogen dioxide (N2O) and other
SLCPs, as depicted in Figure 22. Therefore, Scenario-3 seems to be the most appropriate
choice from an environmental perspective compared to Scenario-1 and Scenario-2.
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Figure 22. Comparison of climate impact of various scenarios: (a) Climate impact of GHGs emis-
sions/ton of collected waste (kg of CO2-eq./ton) and yearly collected waste (tons of CO2-eq.);
(b) GHGs/SLCPs emissions/ton of collected waste (kg/ton); (c) BC emissions/ton of collected waste
(kg/ton) and yearly collected waste (tons); (d) Net climate impact of GHGs from waste disposal
landfill (kg of CO2-eq./ton).
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3.4.2. Economic Modeling of Proposed Scenarios

A centralized MRF will facilitate the segregation of organic waste for composting
and anaerobic digestion and will also help recover the recyclables, i.e., plastic, paper and
cardboard, glass and metal. The detail of the costs (PKR) of operating the facility per day
and ton [20] is depicted in Figure 23a,b, respectively, and the same summary is given in
Figure 24a.
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Figure 23. Capital and operational expenses of operating the facility (MRF): (a) Cost (PKR) per day of
operating the facility under different scenarios; (b) Cost (PKR) per ton of operating the facility under
different scenarios.
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Figure 24. Cost of the facility and related revenue, including carbon benefit, for different scenarios:
(a) Summary of per day and ton cost of the MRF; (b) Revenue from sale and related environmental
benefit per ton for different scenarios—Equations (72)–(74).

The revenue streams for economic analysis based on sales revenue and the environ-
mental benefit/carbon credit from compost products, recyclables [20] and biogas for the
proposed scenarios are depicted in Table 9.
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Table 9. Scenario details used to perform the economic analysis.

Revenue Streams Scenario-1 Scenario-2 Scenario-3

Sale of compost
√ √ √

Sale of recyclables
√ √ √

Sale of biogas -
√ √

Environmental benefit—compost
√ √ √

Environmental
benefit—recyclables

√ √ √

Environmental benefit—biogas -
√ √

Environmental benefit—LFG - -
√

The expected revenue from the sale of compost and recyclables (Scenario-1), compost,
recyclables and biogas (Scenario-2 and Scenario-3), and related environmental benefit cost
(PKR) per ton are depicted in Figure 24b.

The revenue cost, including environmental benefit, i.e., savings in emission reduction,
is compared with the current operational price for BAU by translating it into potential
economic cost per ton (Figure 25a). Therefore, based on the analysis, Scenario-3 is more
economical and can provide 35% of the current operating expenditures of LWMC compared
to Scenario-1 and Scenario-2, i.e., 33% and 31%, respectively (Figure 25b).
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Figure 25. Economic potential of three scenarios to sustain the current operational cost: (a) Economic
potential of different scenarios in ton and operational cost per ton for BAU; (b) Annual economic
potential of proposed scenarios to account for operational cost of BAU—Equations (76)–(78).

The environmental benefit cost per ton increases from Scenario-1 to Scenario-3 with
the increase in capital investment cost/ton of the facility. The analysis of capital investment
and related environmental benefit cost per ton shows that Scenario-3 is a more economical
and environmentally friendly choice for the city (Figure 26).
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4. Discussion

The fundamental issue related to MSWM in Pakistan is the gap in the professional
capacity to design a practicable model and system for the municipal corporation, divisional,
district and tehsil headquarters, even for rural settlements. Therefore, a comprehensive
waste collection and haulage model will help the government replicate it in other urban
areas of the country. The model was tested in Lahore based on local conditions and
professional wisdom. The result shows that 33% (2138 tons/day) of total generated waste
(6407 tons/day) or 42% of residential, commercial and society streams, excluding bulk
waste, is available for MRF. Dedicated waste collection streams with a heterogenous fleet
will ensure raw material availability for MRF to further segregate waste for compost,
anaerobic digestion and recycling. The proposed intervention will allow a transition from a
linear to a circular economy and the sustainability of the sector in Pakistan. The remaining
waste will be hauled to the landfill site for final disposal (Figure 27).

The model’s parameters and variables rely on the local market and professional wis-
dom. For example, the volumetric capacity of the fleet and fuel average per kilometer were
verified through a time and motion study [50] because local waste characteristics differ from
developed countries based on socio-economic and cultural aspects [71]. Fuel consumption,
volumetric fleet capacity, waste characteristics and generation rate are essential parameters
for designing a new waste collection and haulage model. Therefore, the current waste
generation rate and time and motion studies verify the design’s assumptions; a pictorial
representation of the studies is shown in Figure 28. The fuel average of each vehicle per
kilometer and the volumetric capacity (in tons) of the proposed fleet and storage containers
are depicted in Figure 29.
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The total GHGs emissions in Pakistan were 421.6 million tons of CO2-eq., as reported
in 2018 [72]. The country is committed to reducing the projected GHGs emissions from BAU
by up to 50%, i.e., 15% with in-house interventions and 35% with international support,
by 2030 [73]. In the proposed model, three waste collection streams, i.e., DtD, commercial
and societies, are linked with MRF, excluding the CBC mode, bearing in mind the interest
of existing informal sector business. In the proposed model, scavengers can recover the
recyclables from containers placed in the residential area for CBC, as per the BAU scenario.
The MRF will support the formal transformation of the sector toward environmental and
economic sustainability [74]/circular economy and provide a step toward integrating
the informal sector with the formal one. Scenario-3 is a more feasible option from an
environmental perspective, as it has the lowest net GHGs emissions based on technological
choice. The model is intended for a phased-manner implementation by the country’s urban
areas, i.e., executing Scenario-1 and then moving toward Scenario-2 and Scenario-3, to
achieve the GHGs emission reduction targets. The proposed waste collection mode will
save 7.7 kg of CO2-eq./ton emissions of GHGs compared to the BAU scenario. Composting,
anaerobic digestion, recycling and LFG flaring have a net climate impact on GHGs of
192 kg of CO2-eq./ton, −238 kg of CO2-eq./ton, −796 kg of CO2-eq./ton and 474 kg of
CO2-eq./ton, respectively. Open burning incidents at Lakhodair LFS and uncollected waste
(12%) in the BAU scenario contribute 289 kg of CO2-eq./ton and 454 kg CO2-eq./ton net
climate impact. Incineration in terms of Waste to Energy is not a suitable option [75] based
on the characteristics of the MSW. Furthermore, highly calorific material from waste can
be used as RDF. There is an excellent opportunity to utilize the raw material as a coal fuel
substitute in the cement industry because importing coal will be banned in the future to
achieve the targets defined in NDCs and Sustainable Development Goals (SDGs).
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Figure 28. Pictures of field studies to confirm the assumptions used in modeling: (a,b) Time and
motion study conducted in six towns of Lahore; (c,d) Waste generation rate study conducted based
on income groups.
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Figure 29. Results of Time and Motion Study: (a) Average fuel consumption per kilometer or hour;
(b) Volumetric capacity of fleet in tons.
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Currently, fuel consumption is reported as 39,920 L per day (Figure 30a) for performing
primary and secondary waste collection by LWMC and the cantonments under BAU.
However, based on the field studies, fuel consumption for a new model is calculated
as 29,384 L per day (Figure 30b), with a 15% increase in tonnage compared to the BAU
scenario. Therefore, the proposed MSWM model will save 26% on fuel expenditures (PKR
923 million/annum), with an opportunity to invest in establishing an MRF facility in
the city.
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Figure 30. Fuel detail for city waste collection: (a) Fuel consumption (L per day) for waste collection
(BAU); (b) Proposed fuel allocated/collected for various waste streams (L per day).

The facility’s net operational cost per ton is directly proportional to waste process-
ing/handling quantity. It increases from PKR 1223 to 1681 per ton with the increase in
waste quantity from 1000 to 2000 tons per day for Scenario-1 to Scenario-3. There is no
drastic increase in revenue from the sale of compost, recyclables and biogas, as estimated
in the scenarios, i.e., PKR 95,530 to 96,900 per ton for Scenario-1 to Scenario-3. However,
there is a swift increase in the environmental benefit cost from PKR 84 to 397 per ton
for Scenario-1 to Scenario-3; landfill methane capturing in Scenario-3 seems to be a more
environmentally friendly option. The economic potential analysis shows that Scenario-3 is
the most appropriate choice for the city. It can contribute 35%, i.e., PKR 1934 per ton, to the
current operational cost of LWMC; it will help reduce the operating cost of LWMC from
PKR 5609 to 3675 per ton, with an overall benefit of PKR 4 billion per annum.

Capital investment in the waste sector is possible by exploring the various innovative
financial instruments for climate finance that are available for funding [76] in order to
establish SWM-related infrastructure in low-income countries, such as Pakistan (Table 10).

Table 10. Relevant donors/modes for climate finance [77] in the SWM sector.

Donors/Modes for Climate Finance Potential Priority Areas for SWM Sector

Green Climate Fund It invests in low-income countries more affected by climate change,
such as Pakistan

Pay For Success It provides independent private funding in the form of capital
investment for proposed interventions

New Resilience and Sustainability Trust Debt-free finance for coping with the climate emergency via
long-term structural challenges
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Table 10. Cont.

Donors/Modes for Climate Finance Potential Priority Areas for SWM Sector

Asian Pacific Climate Finance Fund It invests in the climate sector and mobilizes sources of private
funding for climate

Urban Climate Change Resilience Trust Fund It supports urban infrastructure, policies and
capacity-building funding

Japan International Cooperation Agency It invests in the technical corporations in the sector

German Aid Agencies They provide financial and technical support for
climate-change-related initiatives

German Corporation for International Cooperation It supports sustainable infrastructure and climate change funding
The Small Grant Program of the Global Environmental

Facility Prioritized grants are available for the waste sector

World Bank Group It will align its finances to meet the goals of the Paris Accord from
next year, which will help the sector gain funds for sustainability

Climate Investment Fund It provides funding for renewable energy solutions
United Kingdom Donor Agencies It provides funding for low-carbon development

European Union Institutions It provides funding for sanitation and clean development mechanism
Asian Development Bank Technical assistance and investment in climate change fund
Asian Development Fund Investment in environmentally sustainable development

Clean Energy Financing Partnership Facility (under the
partnership with ACEF, CCFPS and CEF)

It promotes clean energies, improves private climate finance and
adaptation to climate mitigation

Urban Environmental Infrastructure Fund It invests in sanitation and climate change mitigation and adaptation
Federal Ministry for Economic Cooperation and

Development It supports NDCs, cities and climate finance

Global Partnership for Social Accountability Invests in climate policies
Islamic Development Bank Mainstream climate action by investing in the sanitation sector

Governments of low-income countries may design climate finance funding as part of
a debt management strategy and integrate it with future strategic negotiations in the long
run for debt treatment [25].

5. Implication

Currently, local municipalities and WMCs focus on manual sweeping and waste
collection without considering it a resource. Therefore, there is an urgent need to allocate
and deploy resources based on waste generation trends and city dynamics. However, due
to capacity issues, local municipalities need help in translating practical experience into a
plan/design. For example, sanitary inspectors (SI) and chief sanitary inspectors (CSI) have a
fair knowledge of area/ward-wise waste generation quantum and peak waste hours. They
are also familiar with the local area/accessibility and can prioritize the operational tasks in
their minds. However, the SI/CSI cannot calculate the required resources mathematically.
Therefore, the HMAFH tool will act as a bridge and provide a platform for translating the
practical knowledge to design and allocate resources for dedicated waste collection streams
and their haulage based on local conditions.

For the sustainability of the waste sector in Pakistan, an HMAFH calculator/tool will
support the local municipalities and WMCs in assessing the resources for various waste
collection streams. HMAFH will act as a strategic tool for policymakers to initiate the
sector’s transformation toward sustainability [13]. The calculator is easy to understand
and operate. It comprises different excel sheets, i.e., basic city information with waste
generation and components, municipal and bulk waste proportion. Further, it will assist
in integrating the commercial/institutional entities’ and housing societies’ waste into the
main waste collection streams. This arrangement will help in minimizing illegal waste
disposal incidents.

The flexible design of the calculator will allow and guide the users to develop an
MSWM system based on the city’s needs with various waste collection options, i.e., com-
plete DtD or CBC, or hybrid, compatible with the local market, i.e., heterogeneous fleet.
The HMAFH calculator provides the solution for bulk waste collection, transfer station
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to landfill site (LFS) collection mode and MS&MW for the main roads. Furthermore, the
summary sheet will allow adding the drivers’ and helpers’ data along with vehicle travel
distance for comparison against fuel averages to calculate the daily, monthly and yearly
operational expenditures. Therefore, the availability of the calculator is open and accessible
for the ease of municipalities/WMCs in Pakistan to enhance their technical capacity. To
summarize, HMAFH will enable cities to design systems, i.e., DtD or CBC, or a hybrid, with
the option to integrate all residential and commercial entities with dedicated resources for
bulk waste collection and its haulage to a treatment or disposal facility with heterogeneous
fleet options (Figure 31).
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The tool will allow its users to design/calculate the resources based on the desired
time of city cleaning. For example, the political government in Lahore may want the city to
be cleaned once a day at 10 am, whereas in Faisalabad/Gujranwala, the desired time may
be 2 pm; however, this decision has operational cost implications. The stakeholders’ aspect
(formal and informal) is incorporated into the tool to distinguish and ensure its practicability
in the real world. The tool was tested in Lahore and Gujrat cities, with populations of
11.8 million and 0.44 million, respectively. The tool was developed for urban areas of
the country with limited use for rural/village waste planning, as rural entities require
different types of methodology, fleet and equipment, with different frequencies. Future
research is needed to convert the HMAFH tool into a computer application/software by
incorporating the default values of all Pakistani cities. This would include country census
reports, waste characteristics, treatment options and related GHGs emission values for the
ease of municipalities/WMCs to strengthen the MSWM sector in the country in line with
NDCs targets.

6. Conclusions

The proposed waste collection and haulage interventions will help the local municipal-
ities and WMCs obtain better results with improved service delivery. Integrating dedicated
waste collection streams with a material recovery facility will ensure the sustainability of
the waste management sector in the country. In return, this can help attain self-sufficiency
in the fertilizer and energy sectors from compost and waste-to-energy/biogas. The research
also highlights that “waste is a resource”, which can guide the decision makers [78] of
the government of Pakistan to achieve the GHGs emission reduction targets, as defined
by the NDCs. Future research is required to upgrade the HMAFH calculator/tool into a
computer software by incorporating the default values of all urban areas of the country for
the sustainability of the sector from the perspective of the climate change agenda.
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