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Abstract: Sustainable soil management with the appropriate understanding of soil characteristics is
vital in maintaining and improving agriculture soil management. The objectives of the present study
are to characterize the spatial variability of soil using the GIS technique and used agglomerative
hierarchical clustering (AHC) for the delineation of management zones (MZs) for precision agriculture.
A total of 111 soil samples were collected from 37 soil profiles in systematic depths (0–50, 50–100, and
100–150 cm) from the South Hail region, KSA. Samples were analyzed for pH, ECe, CaCO3, available
macro and micronutrients, and hydrological properties. The best fit models, using ArcGIS software,
were J-Bessel for pH, Clay, bulk density (BD), and available water (AW); K-Bessel for EC and available
N; Stable for CaCO3, P, K, Fe, Zn, Sand, field capacity (FC) and saturated hydraulic conductivity (Ks);
Spherical for Mn and Cu; Gaussian for saturation percentage (SP); whereas exponential for permanent
wilting point (PWP). The principal component analysis (PCA) resulted in six principal components
(PCs) explaining 79.75% of the total variance of soil properties. The PC1 was strongly influenced by
soil BD, FC, clay, PWP, Ks, and sand. PC2 was dominated by N, ECe, and CaCO3; PC3 was dominated
by pH; PC4 was dominated primarily by K and P, PC5 was mainly dominated by Fe; Mn, and Cu, and
PC6 was mainly dominated by SP and Zn. Based on AHC, four soil management zones (MZs) cover
77.94, 14.10, 7.11 and 0.85% of the studied area. Management zone 1 (MZ1) and Management zone
3 (MZ3) are classified as moderately saline while Management zone 2 (MZ2) is classified as highly
saline soils, greater than the limiting critical value for the sensitive crops. The potential solutions to
reduce salinization in the area include: reducing irrigation, moving to salt-tolerant crops or applying
humic acids to fix anions and cations and eliminate them from the root zone of the plants. Treating the
area with diluted sulfuric acid to remove salts and reduce ECe to less than 2 dSm−1, to get maximum
productivity. This finding is diagnostic for determining the amount of fertilizer and irrigation water
to be applied to soils in different management zones. Its emphasis’s the importance of site-specific
management for long-term crop productivity and, as a result, reducing environmental hazards caused
by uneven fertilizers and water applications.

Keywords: GIS; spatial variability; principal component analysis; management zone; agglomerative
hierarchical clustering

1. Introduction

Agricultural soils have a greater role in crop production, maintaining clean air and
water, lowering greenhouse gas emissions, protecting natural biodiversity, and assuring the
safety of food [1]. The hail region is one of the most important extents for crop production
in the kingdom which has 225.4 km2 of cultivation area [2]. This area has undergone
extensive agriculture and unplanned resource use, which could cause land degradation.
This is proved abundantly clear in the Modaihsh et al., [3] study, which observed that

Sustainability 2022, 14, 16209. https://doi.org/10.3390/su142316209 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su142316209
https://doi.org/10.3390/su142316209
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-4051-2030
https://doi.org/10.3390/su142316209
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su142316209?type=check_update&version=1


Sustainability 2022, 14, 16209 2 of 19

the degree of salinity-induced deterioration was typically correlated with certain physical
soil features, irrigation water quality, and prior soil management activities. Furthermore,
many studies stated that the groundwater in this region is exposed to non-point sources of
pollution such as agricultural materials including fertilizers, heavy metals, and pesticides.
At the same time, fertilizer consumption increased from 3.5 kg ha−1 in 1961 to 87.6 kg ha−1

in 2020. These indicate that more fertilizers losses to groundwater through the soil. So,
it’s necessary to manage the water and fertilizer according to soil properties [4,5]. The
possibility of dividing the area under investigation into management sectors to reduce the
loss of water and fertilizers and then prevent pollution, and soil degradation, and ensure
sustainable agriculture.

In order to assess how the chemical, physical, and nutritional characteristics of soil vary
with location and how to collect soil samples, spatial variability is necessary [6]. For site-
specific management, it is vital to comprehend soil spatial variability [7–9] and can support
the management of agricultural productivity by adjusting agricultural inputs to meet the
spatial needs of soils and crops [10]. Geographic Information Systems (GIS) techniques have
been used to examine the soil’s physical, chemical, and nutrient properties and identify
it spatially. It has been demonstrated to be a beneficial and effective tool for analyzing,
mapping, processing, and presenting soil parameters and defining certain problems [11–17].
The maps of spatial distribution can identify and delineate problematic zones, making them
powerful tools in site-specific management. The spatial distribution of soil characteristics
provides a wealth of site information that can be used for environmental forecasting,
precision agriculture, and natural resource management, among other things [18]. In
comparison to interpolation techniques, geostatistics is a more appropriate approach for
estimating soil parameters [19]. Kriging is a geostatistical technique that characterizes
the values of variables close to the original sample locations, which have a statistically
higher correlation with the observed value there than with values recorded elsewhere [20].
The projected values in this method are derived from the weighted mean’s assessment of
relationships in samples [20–22]. Furthermore, it was noted by Gupta et al. [20] that the
weight of kriging is influenced by the overall spatial arrangement of the measured points
and their individual values, in addition to the distances between the measured points and
the predicted location. Kriging can be described as a trustworthy linear unbiased estimator
that reflects this [23]. The best Kriging technique to utilize for producing an accurately
predicted distribution map is ordinary kriging [20,24]. For sand, silt, and clay content,
Gozukara et al. [25] found that the kriging interpolation method had a lower RMSE value in
the soil profile. Moreover, for all maps of elemental concentrations and weathering indices,
Gozukara [26] stated that the ordinary kriging interpolation methods with exponential
semivariogram have the lowest RMSE.

Principal component analysis (PCA) is a multivariate statistical analysis used to create
new uncorrelated variables called principal components (PCs) from the data set [27]. Since
the PCs are linear combinations of soil attributes, they were used to define the MZs [28].
In correlation with the PCA model, GIS is described as a procedure that incorporates the
preferences and concerns of decision-makers to produce an overall evaluation for selecting
between agricultural activities and sites [29,30]. Additionally, enhance a crop management
system to increase land productivity [31]. The AHC element GIS-based procedure inte-
grates expert knowledge, combines qualitative and quantitative information, and provides
an excellent framework for managing data and knowledge capture, storage, synthesis, mea-
surement, and analysis, all of which are critical for the land management process [32,33].
Brevik et al. [34] reported that adoption of region-specific soil and crop management tech-
niques at a reasonable cost using MZs created using geostatistical tools. Moreover, the
cluster algorithm and kriging simulation can be used to define uniform soil attributes MZs
with reduced sampling costs, and variance of estimation errors, and interpolate the data for
unsampled places [35,36]. MZs delineated using deviations in soil properties have not only
provided beneficial information for precise soil properties but also helped in detecting the
areas of low, medium, and high productivity potential [37]. Additionally, Abdel-Fattah [38]
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used PCA to summarize soil properties and ArcGIS software to assess the spatial dis-
tribution outline of different soil properties. Similarly, used Agglomerative hierarchical
clustering technique (AHC) to define MZs for the spatial variability of salt-affected soil
properties and delineation of site-specific management zones.

The main objective of this study was to (a) assess the heterogeneity, distribution pat-
tern, and spatial variability of soil properties using geostatistical analysis for defining
the soil physical, chemical, and nutrients status of south Hail-KSA, (b) assess the correla-
tion between measured soil properties, and (c) identify the potential MZs based on soil
property status using principal component (PC) analysis and agglomerative hierarchical
clustering (AHC).

2. Materials and Methods
2.1. Study Area

This study was conducted in the Hail province in northwestern Saudi Arabia. The
total studied area is about 1253.76 km2 and is located between latitudes 27◦7′37.261′′ and
27◦27′45.367′′ N and longitudes 42◦42′56.441′′ and 43◦23′47.137′′ E (Figure 1). Generally,
the soils are characterized by sand to sandy loam texture with a deep profile [5]. The
ground water is the main irrigation source in the area. There is no drainage network due to
the use of the new irrigation techniques (Drip and Sprinkler irrigation). The climate in Hail
is mild during summer with air temperatures ranging between 30 to 38 ◦C (The warmest
month with the highest average high temperature is August (38 ◦C). At the same time, soil
surface temperature fluctuated between 41 to 52 ◦C. While it is cold during winter with
air temperatures between 3 to 15 ◦C and can drop to even 0 ◦C (The coldest month with
the lowest average low temperature in January (3 ◦C)). Simultaneously, the temperature
of the soil surface fluctuated from 22 to 25 ◦C and can drop to 6 ◦C in the coldest month.
This period accompanied by rain and precipitation with total rainfall in the year is 186 mm.
Air humidity throughout the year ranged between 18 to 55%. The average wind speed in
Hail is mild seasonal variation over the year. The windier part of the year, from 19 October
to 27 May, with average wind speeds of more than 14.16 km per hour. The calmer time of
year is from 27 May to 19 October. The calmest month of the year is September, with an
average hourly wind speed of 20.45 km h−1 [39]. Date palm, barley, alfalfa, wheat, maize,
and a few vegetables are cultivated in some of the areas under investigation.
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2.2. Fieldwork and Laboratory Analyses

The fieldwork aimed to characterize the soil properties by selecting sites according to
surface soil characteristics. The total number of soil profiles was 37 in systematic depths
(0–50, 50–100, and 100–150 cm) with 111 total soil samples. The soil profiles were located in
UTM coordinate system by the GPS. The soil samples were air-dried and sieved through a
2 mm sieve to analyze the chemical, physical, and fertility characterization as follows:

2.2.1. Physical Properties

Soil particle size distribution was determined according to the hydrometer method [40].
Soil bulk density was determined from the volume-mass relationship for each core sam-
ple [41]. Saturated soil hydraulic conductivity was determined under a constant head [42].
Saturation percentage, field capacity, wilting point, and plant available water were deter-
mined using the method of [43].

2.2.2. Chemical Properties

Electrical conductivity (EC) was determined in the saturated soil paste extracted; soil
reaction (pH) was determined in (1:2.5) soil water suspension [44]. Total calcium carbonate
was determined volumetrically using Collin’s calcimeter [45]. Available nitrogen in the soil
was extracted in the 2.0 M KCl and determined by micro-Kjeldahl apparatus. Available
phosphorus was extracted in 0.5 N NaHCO3 solution (pH 8.5) and optical density was
measured using a spectrophotometer. Available potassium was extracted in the 1.0 N
ammonium acetate solution (pH 7) and measured using a flame photometer. Available
N, P, and K were determined according to Page et al. [44]. Available Fe, Zn, Mn, and Cu
were extracted by using DTPA and were assayed using an Inductively Coupled Plasma
Atomic Emission Spectrometer (ICP-AES) (Thermo 7000) Thermo Scintific, Model iCAP7400
Duo [46].

2.2.3. Terrain Analysis

Was performed using Arc-GIS 10.8 software. Digital Elevation Model (DEM) derived
using 38 × 38 m cell size thematic map. Slope and aspect were derived by spatial analyst
extension using inverse distance weighting (IDW) interpolation techniques [47].

2.3. Statistical Analysis and Principal Component Analysis

Data were analyzed for descriptive measurements including minimum, maximum,
arithmetic mean, median, range, variance, standard deviation, standard error, coefficient
of variation, skewness, and kurtosis. The normality of variables was verified using the
Shapiro-Wilk test before proceeding with the principal component analysis (PCA), and the
correlation between different variables was measured by Pearson correlation. Furthermore,
Bartlett’s sphericity test as well as Kaiser-Meyer-Olkin (KMO). The measure of Sampling
Adequacy was conducted to verify data dependence, where if the KMO result is larger
than 0.5 and the p-Value of Bartlett’s sphericity test is smaller than 0.05, this indicates the
non-mutual independence of data and can be applied for PCA.

Soil properties were summarized using PCA. The PCA was performed using XLSTAT
software version 2019.2.2.59614, Addinsoft, Boston, MA, USA [48]. PCA is a statistical
procedure that uses an orthogonal transformation to convert a set of observations of
possibly correlated variables (entities each of which takes on various numerical values)
into a set of values of linearly uncorrelated variables called principal components (PCs).
PCs having eigenvalues greater than one has been retained whereas PCs less than 1 were
subtracted away [49].

2.4. Geostatistical Analysis

ArcGIS 10.8 software, 2019, Redlands, CA, USA was used to assess the spatial dis-
tribution pattern of different soil properties. Geostatistical and interpolation methods
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such as Ordinary Kriging was used to assess the spatial distribution of soil characteristics
(Equation (1)) [50].

ẑ(x0) =
n

∑
i=1

λi z(xi) (1)

where ẑ(x0) is the value to be estimated at the location of x0, z(xi) is the known value at the
sampling site xi and n is the number of sites surrounded by the search neighborhood used
for the estimation.

The Semi-variogram models can be used with ordinary kriging (OK) for each soil
property to represent the average rate of variation of soil property with distance. It is the
basis for modeling the data set and for drawing a contour map [51].

The semi-variogram γ(h) is defined as:

γ(h) =
1
2

Var[Z(x)− Z(x + h)] (2)

where Z(x) and Z(x + h) are the values of a random function representing the soil property
of interest z, at places x and x + h separated by the vector h known as the lag or interval.

The accomplished semi-variogram values for each lag were fitted to one of the semi-
variogram models (i.e., Stable, J-Bessel, K-Bessel, Hole Effect, Rational Quadratic, Gaussian,
Exponential, Pentaspherical, Tetraspherical, Spherical, and Circular) using Arc GIS 10.8,
2019, Redlands, CA, USA. The selected model was evaluated based on criteria where the
best fit model which has a mean error “ME”, average standard error “ASE” and mean
standardized error “MSE” values close to zero [52].

2.5. Site-Specific Management Zones

Agglomerative hierarchical clustering (AHC) was executed to define soil management
zones. XLSTAT software version 2019.2.2.59614, Addinsoft, Boston, MA, USA was used to
classify the data into different clusters having a common trait [48]. A one-way ANOVA test
was performed for comparison between soil management zones and followed by a post hoc
test using Duncan multiple range (DMR) test for comparisons between management zones.

3. Results and Discussion
3.1. Terrain Analysis

Digital Elevation Model analysis (DEM) indicated that the elevations varied from 698.6
to 813.7 m A.S.L. The lowest elevation part of the study area was located in the eastern. The
prevailing elevation ranged from 700 to 760 m A.S.L. comprised 72.43% of the total area as
shown in Figure 2. Soil surface slope is most important in terms of its effect on erosion. The
soil depth increases with decreasing slope rate and decreases as the slope increases [53].
Using the Digital Elevation Model with GIS software gave the slope information data. The
slope of the area ranged from 0 to 64.23% and the main slope class was from 0 to 9.57%
which covered about 77.19% (96,777.42 ha) of the total area. This slope can classify as
slightly inclined (Table 1). The slope indirectly restricts agricultural production by affecting
soil properties negatively. It is noticeable that the directions of the area under investigation
are in equal percentages in all direction classes as shown in Table 1, Alharbi and Aggag [54].

3.2. Statistical Characterization of the Studied Soil

The soil is characterized as sand to sandy loam deep soil with low fertility content
and low water holding capacity. Table 2 shows the descriptive statistical analysis which
indicated that a wide variation in soil EC, pH, CaCO3, available N, P, K, micronutrients Fe,
Zn, Mn, Cu, and soil physical properties Sand, Clay, BD, SP, PWP, AW and Ks were recorded
(Table 2). The distribution of variation in soil properties over space was highly skewed for
all the properties except available phosphorus and B.D. Kurtosis in soil properties was also
found to behave similarly.
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Figure 2. Digital Elevation Model for the area under study.

Table 1. Area percentage of DEM, slope, and direction classes for the study area.

Digital Elevation Model (DEM) Slope Classes Direction Classes

Elevation Range, m Area, % Slope Class, % Area, % Direction Class Area, %

698.6–700 2.78 0–3.78 25.26 Flat 1.55
700–720 22.96 3.79–6.55 28.96 North 11.16
720–740 20.79 6.56–9.57 22.97 North East 13.02
740–760 28.68 9.58–13.10 13.33 East 12.92
760–780 7.50 13.11–17.63 6.39 South East 12.48
780–800 10.02 17.64–24.94 2.58 South 12.62

800–813.7 7.27 24.95–64.23 0.51 South West 12.20
West 12.14

North West 11.91

Among soil properties, maximum variability was recorded for EC (1.04–18.94 dSm−1)
with mean, CV%, skewness, and kurtosis being 4.69, 93.4, 1.82, and 3.11, respectively
(Figure 3b, Table 2). Higher EC was observed in the higher altitudes in the western area as
reported by Alharbi and Aggag [54]. The soil pH was in the acidic range (7.52–8.24) with
mean, standard deviation, and CV% being 7.92, 0.20, and 2.4, respectively (Table 2). The
lower CV in pH is explained to be due to uniform conditions in the study area as indicated
by the least skewness (−0.41). The alkaline reaction of soil is attributed to the alkaline
parent material, climate, topography, and precipitation. Similar results have been reported
in the area of Hail, KSA by Alharbi and Aggag [54]. CaCO3 showed wide variability
(0.9–17.2%) with the mean and CV being 6.4% and 61.6% (Figure 3m, Table 2). The clay
content ranged from 10.0 to 25.9% with mean and standard deviation being 17.1% and
3.7. Abdel-Fattah [38] stated that the study area is categorized as moderate to high salin-
ity soils, with ECe values varying from 0.87 to 20.33 dSm−1 with an average value of
5.30 ± 5.05 dSm−1.

Wide variations in DTPA Fe, Zn, Mn, and Cu were recorded with respective mean
values of 674.6, 235.2, 536.7, and 145.3 µg kg−1 (Table 2). This indicated a widespread
deficiency of micronutrients in the area under investigation. The four micronutrients CV,
ranging from 47.4 to 96.7 show high variability. The highest CV was observed for Fe
(96.7%) followed by Cu (87.2%), Mn (53.8%), and Zn (47.4%). The spatial prevalence of
four micronutrients reflected similar trends in skewness and kurtosis values ranging from
1.32 to 4.21 and 2.17 to 21.72, respectively (Table 2). The Kolmogorov-Smirnov and the



Sustainability 2022, 14, 16209 7 of 19

Shapiro-Wilk Tests result showed that the soil properties (ECe, K, Fe, Zn, Mn, Cu, sand,
clay, SP, FC, PWP, AW, and Ks) are not normally distributed (p-Values < 0.05). Therefore, the
data were transformed using the logarithmic transformation method before assuming the
spatial distribution of soil properties using the ordinary kriging (OK) method [55]. While,
pH, CaCO3, available N, P, and BD are normally distributed (Table 2). Amer [56] found
that all soil properties do not follow a normal distribution, where the value of p of the
Shapiro-Wilk Test is less than 0.05 except for the CEC property. Furthermore, Gozukara [57]
discovered that the EC, SOM, CaCO3, P, Zn, and Mn were not distributed normally. The
parameters were then logarithmically transformed to achieve a normal distribution.

Table 2. Statistical characterization of soil properties.

Parameter Min. Max. Mean Variance Std. Dev. CV Skewness Kurtosis

Normality Test

Shapiro-Walk Test Kolmogorov-
Smirnov Test

W Sig. D sig.

ECe (dSm−1) 1.04 18.91 4.69 19.13 4.38 93.38 1.82 3.11 0.77 <0.0001 0.24 0.024
pH (1:2.5 soil: water) 7.52 8.24 7.92 0.04 0.20 2.42 −0.41 −0.58 0.96 0.25 0.08 0.940

CaCO3 (%) 0.85 17.23 6.35 15.27 3.91 61.62 0.74 0.28 0.94 0.06 0.10 0.831
Av. N (mg kg−1) 800.0 1350.0 1135.1 14,564.6 120.7 10.63 −0.47 −0.03 0.94 0.05 0.16 0.245
Av. P (mg kg−1) 8.00 40.90 22.96 85.51 9.25 40.28 0.22 −0.64 0.95 0.12 0.11 0.773
Av. K (mg kg−1) 12.00 220.5 100.7 3574.7 59.79 59.40 0.50 −0.93 0.93 0.02 0.16 0.289

DTPA Fe (µg kg−1) 141.64 3662.4 674.6 425,894.4 652.61 96.74 3.20 12.41 0.65 <0.0001 0.26 0.010
DTPA Zn (µg kg−1) 68.85 613.7 235.2 12,422.5 111.46 47.40 1.32 2.90 0.91 0.01 0.14 0.386
DTPA Mn (µg kg−1) 120.60 1438.8 536.7 83,336.9 288.69 53.79 1.33 2.17 0.90 0.00 0.16 0.248
DTPA Cu (µg kg−1) 36.84 809.8 145.3 16,048.8 126.69 87.20 4.21 21.72 0.57 <0.0001 0.20 0.101

Sand (%) 47.00 80.00 68.08 47.01 6.86 10.07 −1.16 2.01 0.92 0.01 0.14 0.433
Clay (%) 10.00 25.90 17.11 13.68 3.70 21.62 0.78 0.72 0.96 0.02 0.16 0.269

B.D. (Mg m−3) 1.41 1.58 1.49 0.00 0.04 2.39 −0.14 0.68 0.40 0.20 0.14 0.407
S.P. (%) 40.30 71.90 44.75 22.89 4.79 10.69 5.33 30.81 0.92 <0.0001 0.31 0.001
F.C. (%) 18.30 25.60 21.38 3.33 1.83 8.53 0.86 0.26 0.94 0.01 0.14 0.441

P.W.P. (%) 9.00 16.70 12.04 2.40 1.55 12.87 0.89 1.60 0.93 0.04 0.15 0.312
A.W. (mm m−1) 80.00 126.00 93.30 99.44 9.98 10.69 1.53 2.81 0.85 0.00 0.24 0.022

Ks (cm h−1) 0.36 2.78 1.12 0.24 0.49 43.88 1.41 3.05 0.90 0.00 0.20 0.097

Note. AW: available water; BD: bulk density; DTPA: diethylene-triamine-penta-acetic acid; EC: electrical
conductivity; F.C.: field capacity; Ks: saturated hydraulic conductivity; PWP: permanent wilting point; S.P.:
saturation percentage.

3.3. Distribution of Soil Properties

The measured salinity value ranged between 1.09 to 18.94 dSm−1, indicating low,
medium to high soil salinity as recorded by Richard [58]. About 8.43% (10,569.15 ha) of the
study area has low salinity and is well suitable for agriculture, 59.35% (10,569.16 ha) area
shows medium salinity, and 32.22% (40,395.98 ha) of the area show high salinity (Figure 3b).
About 86.71% of the area (108,713.09 ha) has a pH between 7.52 to 8.00 (slightly alkaline),
and 13.29% (16,662.40 ha) has a pH between 8.00 and 8.24 (alkaline) (Figure 3a) [59]. The
CaCO3% in the study area ranged between 0.9 and 17.2% and classified into low, (less than
5%) at about 51.61% of the area (64,706.30 ha), and medium (5 to 17%) 48.39% (60,669.20 ha)
(Figure 3m). Most of the area is classified as medium nitrogen content (1000–1350 ppm)
which covers 98.73% of the area (123,783.23 ha) and 1.27% of the area (1592.27 ha) clas-
sified as low N content (less than 1000 ppm) according to classification by Barthakur
and Baruah [59]. Whereas 94.55% of the area (118,542.53 ha) was classified as medium
potassium concentration (60–120 ppm K), 3.22% of the area (4037.09 ha) was classified as
high K-concentration (greater than 120 ppm), and 2.23% of the area (2795.87 ha) has low
K-concentration (less than 60 ppm). While 84.69% of the area (106,180.51 ha) was classified
as medium phosphorus concentration (15–30 ppm P), and 15.31% of the area (19,182.45 ha)
has high P-concentration (30–40.9 ppm), as classified by Barthakur and Baruah [59]. The
investigated area has low micronutrients Fe, Zn, Mn, and Cu concentrations (Figure 3i–l);
less than 4000, 600, 2000, and 200 µg/kg, respectively as mentioned by Reddy [60]. The
available N ranges between 1.33 mg kg−1 and 61.6 mg kg−1, indicating that the nitrogen
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content in the area is low. The available P content ranges from low 2.33 mg kg−1 to high
19.84 mg kg−1, and available K ranges from 32.76 mg kg−1 to 734 mg kg−1, which is
classified as high [37]. Zn, Cu, Fe, and Mn levels varied greatly, with mean values of 0.28,
0.44, 8.51, and 8.59 mg kg−1. Verma et al. [37] stated that micronutrient distribution varies
due to parent material, climatic conditions, and anthropogenic activities.
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The clay fraction range of less than 20% is classified as low and covers 92.12%
(115,495.91 ha) of the study area and medium categories 20 to 26% clay covering 7.88%
(9879.59 ha) of the study area (Figure 3d). Most of the area 72.67% (91,110.37 ha) has
B.D. between 1.41 to 1.50 Mg m−3 and 27.33% (34,265.12 ha) have B.D. between 1.50 to
1.58 Mg m−3 (Figure 3n). The greatest of the area 96.89% (121476.32 ha) has medium FC
between 20 to 25.6% and 3.11% (3899.17 ha) has less than 20% of FC (Figure 3p). A major of
the area, 88.83% (111371.05 ha), has medium AW between 90 to 126 mm m−1 and 11.17%
(14004.44 ha) has low AW, less than 90 mm m−1 (Figure 3r). These results were in agreement
with those found by Brady et al. [61] and Abdel-Fattah [38].

3.4. Relationships between Soil Properties

A Pearson correlation test was running out to study the relationship between different
soil properties as presented in Table 3. Some of the soil properties had significant correla-
tions with each other. EC had a negative correlation with soil pH at P = 0.05 level. N and P
were negatively correlated with Fe at P = 0.05. Whereas a positive correlation was found
between each EC and K, N and P, and between Zn and Cu [62]. It was observed that there
were positive strong significant correlations between clay and FC, and PWP while negative
correlations were with BD and Ks. Correspondingly, negative correlation between sand
and clay, FC, PWP, and AW; while positive correlation with BD.

Using a biplot (Figure 3), where the angles between the vectors show how traits
correlate with one another, we can corroborate this from these correlations between the
various variables. Variables have a positive correlation when they are near together and
create a small angle. They are not likely to be associated if they intersect at a 90◦ angle. They
are negatively correlated when they diverge and produce a significant angle that is nearly
180 degrees. Consequently, one or more major general components of these variables are
present. According to the correlation between various soil properties, principal components
analysis (PCA) was used to determine the principal sources of data variability. This is
also supported by Bartlett’s sphericity and KMO tests (Table 4), where small p-Values
(p < 0.05) of the significance level indicate that a PCA may be useful with these data [63].
Table 3 contains the results of Bartlett’s sphericity test. The observed p-Value is less than
0.001. Because the KMO values were greater than 0.586, a PCA may be useful for these
data [64,65].

3.5. Geostatistical Analysis and Spatial Variability

The semivariogram-derived best-fit models for various soil parameters were presented
in Table 5. Additionally, Figure 3 shows the spatial maps of soil properties. The best fit
models were J-Bessel (pH, Clay, BD, and AW), K-Bessel for (EC and Av. N), Stable (CaCO3,
P, K, Fe, Zn, Sand, FC, and Ks), Spherical (Mn and Cu), Gaussian (SP), exponential (PWP).
Gozukara et al. [25] reported that the exponential semivariogram model had the lowest
prediction error with the lowest RMSE for sand and silt content on the soil surface, whereas
the spherical semivariogram model had the lowest prediction error with the lowest RMSE.
Similar best-fit models for various soil properties have also been reported by [66,67]. The
models for the soil properties at various sites show how anthropogenic activities and the
local environment have an impact on the spatial variability of soil properties.

The nugget is the measurement of the errors that sampling, measurement technique,
and other sources contribute to overall variation. It denotes microvariability, and its values
for various soil characteristics ranged from 0 to 50.72; the lowest values were for EC, FC,
and BD, and the highest was for P, with the exception of Fe, which was extremely high
and reached 14515.83. The nugget values of all the studied parameters were very small
and varied from 0 to 1.23 [56]. Large nugget values indicated that ecological practices
were affecting soil indicators on a small scale, and the chosen sampling distance could not
adequately capture the spatial dependence [68].
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Table 3. Matrix of Pearson’s correlation coefficients between the soil properties used in this study.

Variables EC pH N P K Fe Zn Mn Cu CaCO3 Sand Clay BD SP FC PWP AW Ks

ECe (dSm−1) 1
pH (1:2.5

soil: water) −0.536 * 1

Av. N (mg kg−1) 0.033 −0.229 1
Av. P (mg kg−1) 0.273 −0.156 0.528 * 1
Av. K (mg kg−1) 0.716 * −0.310 0.033 0.217 1

DTPA Fe
(µg kg−1) 0.007 0.094 −0.434 * −0.556 * 0.174 1

DTPA Zn
(µg kg−1) −0.084 −0.243 −0.131 −0.175 −0.002 0.187 1

DTPA Mn
(µg kg−1) −0.154 0.095 0.016 −0.228 −0.170 0.296 0.103 1

DTPA Cu
(µg kg−1) −0.140 0.015 −0.267 −0.236 −0.218 0.184 0.596 * 0.149 1

CaCO3 (%) 0.178 −0.137 −0.023 0.026 0.220 0.223 −0.052 0.059 −0.090 1
Sand (%) −0.090 −0.098 −0.205 −0.273 −0.038 0.094 −0.013 −0.144 −0.004 −0.058 1
Clay (%) −0.131 −0.269 0.368 0.189 −0.043 −0.128 0.172 0.066 0.116 0.113 −0.441 * 1

B.D. (Mg m−3) 0.029 0.193 −0.261 −0.181 −0.054 0.078 −0.164 −0.074 −0.098 −0.161 0.657 * −0.895 * 1
S.P. (%) −0.071 0.071 −0.120 0.074 −0.030 −0.123 −0.006 −0.081 −0.030 −0.080 −0.107 −0.032 0.054 1
F.C. (%) −0.023 −0.096 0.274 0.215 −0.012 −0.092 0.135 0.120 0.072 0.101 −0.832 * 0.837 * −0.915 * 0.016 1

P.W.P. (%) −0.112 −0.300 0.265 0.136 −0.055 −0.129 0.188 0.053 0.068 0.175 −0.448 * 0.948 * −0.914 * −0.037 0.833 * 1
A.W. (mm m−1) 0.119 0.232 0.126 0.213 0.052 −0.022 0.008 0.126 0.009 0.001 −0.836 * 0.082 −0.263 0.139 0.544 * 0.010 1

Ks (cm h−1) 0.025 0.321 −0.135 −0.092 −0.066 0.008 −0.239 −0.115 −0.144 −0.241 0.232 −0.779 * 0.815 * 0.192 −0.606 * −0.836 * 0.207 1

Note. AW: available water; BD: bulk density; CaCO3: calcium carbonate; DTPA: diethylene-triamine-penta-acetic acid; EC: electrical conductivity; F.C.: field capacity; Ks: saturated
hydraulic conductivity; PWP: permanent wilting point; S.P.: saturation percentage. * Correlation is significant at a probability level of 0.05.
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Table 4. Bartlett’s Sphericity Test and KMO Measure of Sampling Adequacy.

KMO Measure of Sampling Adequacy 0.586
Bartlett’s Sphericity Test

Chi-square (Observed value) 568.457
Chi-square (Critical value) 196.609

DF 153
p-Value <0.0001
alpha 0.01

Table 5. Semivariogram parameters of soil properties for the area under investigation.

Variables Model Nugget Partial Sill Sill Nugget/Sill Range (m) MSE

ECe (dSm−1) K-Bessel 0.00 0.681 0.68 0.00 21,238.42 4.399
pH J-Bessel 0.03 0.012 0.04 0.68 17,359.25 0.196

CaCO3 (%) Stable 15.07 0.0 15.07 1.00 17,472.56 4.036
Av. N (mg kg−1) K-Bessel 14,515.83 83.000 14,598.83 0.99 46,971.71 122.565
Av. P (mg kg−1) Stable 50.72 27.934 78.65 0.64 17,359.25 8.231
Av. K (mg kg−1) Stable 0.40 0.143 0.54 0.74 33,708.12 84.609

DTPA Fe (µg kg−1) Stable 0.19 0.264 0.45 0.41 15,044.21 541.570
DTPA Zn (µg kg−1) Stable 0.20 0.033 0.23 0.86 26,154.06 126.429
DTPA Mn (µg kg−1) Spherical 0.22 0.085 0.30 0.72 11,080.77 367.920
DTPA Cu (µg kg−1) Spherical 0.08 0.355 0.43 0.18 15,340.73 87.910

Sand (%) Stable 0.01 0.007 0.01 0.48 37,650.31 6.847
Clay (%) J-Bessel 0.03 0.02 0.05 0.67 20,425.33 3.748

B.D. (Mg m−3) J-Bessel 0.00 0.00 0.00 0.57 21,798.39 0.034
S.P. (%) Gaussian 0.01 0.00 0.02 0.44 23,877.11 4.131
F.C. (%) Stable 0.00 0.00 0.01 0.53 16,586.41 1.650

P.W.P. (%) Exponential 0.01 0.01 0.02 0.59 20,963.86 1.559
A.W. (mm m−1) J-Bessel 0.01 0.01 0.01 0.79 39,149.09 9.221

Ks (cm h−1) Stable 0.00 0.21 0.21 0.00 20,827.91 0.532

Note. AW: available water; BD: bulk density; DTPA: diethylene-triamine-penta-acetic acid; EC: electrical
conductivity; F.C.: field capacity; Ks: saturated hydraulic conductivity PWP: permanent wilting point; S.P.:
saturation percentage.

Sill is theoretically equal to the variance of the sampled population at a large separation
distance if the data has no trend [69]. The highest sill was recorded for N (14598.83) followed
by P (78.65) whereas BD, sand, FC, AW, PWP, SP, pH, and clay has the lowest recorded 0.0,
0.01, 0.01, 0.01, 0.02, 0.02 followed by 0.04 and 0.05, respectively. The sill ratio for remaining
soil properties varied between 0.23 and 15.07.

If the value of the nugget-to-sill ratio was <0.25, 0.25–0.75, and >0.75, this exposes
strong (attributable to intrinsic factors), moderate (attributable to both intrinsic and extrinsic
factors) and weak (attributable to extrinsic factors) spatial dependence, respectively [70].
The nugget: sill ratio, which indicates the relationship between location and ratio, showed
that the soil’s EC, Cu, and Ks characteristics were strong, while pH, P, K, Fe, Mn, sand,
clay, BD, SP, FC, and PWP were moderate and CaCO3, N, Zn, and AW were weak (Table 4).
Nugget-to-sill ratio values were less than 0.25 for all the studied soil properties except
CEC [56].

Spatially dependent soil attributes are affected by parent material inherent to the soil,
mineralogy, texture, farming techniques, and other anthropogenic activities. Variations
in terrain, fertilizer application rates, nutrient management techniques, and diverse flora
all affect how location and soil properties interact in different ways. The underlying
mineralogy and parent material are ascribed to the high geographical dependency of soil
characteristics [37]. Extrinsic factors such as soil management including tillage and fertilizer
application influence moderate and weak spatial dependence of soil properties [24].

The semivariogram’s range value can be interpreted as the farthest distance at which
there is spatial dependency or autocorrelation. The range of soil property values was 11.08
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for manganese to 46.97 km for nitrogen (Table 5). Beyond this point, autocorrelation is
absent. Large-range values show that measured soil properties are impacted by natural
and human-made causes over a wider area [24]. Kerry and Oliver [71] state that the delay
between soil samples should be no more than half the semivariogram range value.

Kriged maps of pH, ECe, CaCO3, available macro and micronutrients, and hydro-
logical properties were created by ordinary kriging interpolation methods to evaluate the
distribution of these nutrients (Figure 3a–r) which were successfully applied by many
studies [72]. Future studies will use these maps as a knowledge resource. The maps
can be used by individual farmers to adopt a variable rate of nutrient application in cer-
tain places. The maps will also serve as a foundation of knowledge for State authorities,
decision-makers, and extension specialists as they build site-specific strategies for land-
scape management and application of balanced nutrients. Applications for computers and
mobile devices that are based on these maps will provide farmers with more exact and
balanced rates of nutrient application [37].

3.6. Principle Components Analysis (PCA)

The principal component analysis (PCs) was used to sort through major soil properties
to determine which can contribute the most to soil quality improvement and help priorities
immediate management action. PCs with eigenvalues greater than or equal to 1.0 were
chosen for this purpose; therefore, these PCs were used according to the method described
by Kaiser [73] while PCs with eigenvalues less than 1 were subtracted. As a result, the
first six PCs had eigenvalues greater or equal to 1.0 and a cumulative variability of 79.75%.
(Table 6 and Figure 4). PC1, 2, 3, 4, 5, and 6 contributed 28.6%, 14.7%, 12.5%, 10.4%, 7.6%,
and 5.9%, respectively. BD dominated the PC1 loading, followed by FC, clay, PWP, Ks, and
sand. PC2 was dominated by N, ECe, and CaCO3; PC3 was dominated by pH; PC4 was
dominated primarily by K and P, PC5 was mainly dominated by Fe; Mn, and Cu, and PC6
was mainly dominated by SP and Zn. A biplot chart depicts the graphical representation
of the variability contribution by PC1 and PC2, as well as the loadings for different soil
properties (Figure 4). This will aid in decision making regarding the identification of
properties for prioritization of physical, chemical, and nutrient management strategies
in this area under investigation to improve agriculture production and reduce the effects
of land degradation. Soil status of BD, FC, PWP, Ks, N, ECe, and CaCO3 matters in that
order may be used as criteria to decide priorities for improving water and salt and nutrient
content based on variable loading of soil properties in different PCs and expert opinion.

3.7. Initiating Management Zones Using Soil Properties

A cluster analysis was applied to classify the four PCs into MZs. The XLSTAT was
used based on the AHC technique to define the optimum number of MZs. This method
allows us to differentiate different zones with a similar value of properties and higher
differences between them [74]. To obtain the optimum number of MZs and plotted as
shown in Figure 5, against the number of clusters (or MZs). In this study, four different
management zones were finally identified as the optimum number of MZs, as shown
in Figure 5. The four SMZs were distinctly different from each other and the percent
areas were 77.94, 14.10, 7.11, and 0.85% for SMZ1, SMZ2, SMZ3, and SMZ4 respectively.
Figure 6 shows the spatial distribution map of the four delineated MZs in the study area.
In each delineated MZ, the measured soil properties present the lowest variance and
highest degree of membership. Thus, in each zone, different management practices, such
as agriculture management can be carried out to increase crop production while decreasing
costs. Therefore, the one-way ANOVA was carried out to evaluate the effectiveness of the
PCA and AHP combination to delineate MZs and also its spatial variability. There were
significant differences (p < 0.05) between all soil and terrain attributes except for N, Zn,
AW, and Ks among the four MZs, as shown in Table 7. The MZ1 and MZ3 which covers
85.05% of the area under investigation had a mean value of ECe as 3.03 and 4.52 dSm−1

and were classified as moderately salinized soils, greater than the limiting critical value for
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the sensitive crops. Whereas the MZ2 which covers 14.10% of the area has 7.23 dSm−1 of
ECe and must be leached to remove salts from the soil and reduce ECe to less than 2 dSm−1

to get high productivity. When the total amount of salts accumulated in the root zone is
high enough, negatively affects plant growth by reducing the plant’s available water [75].
Only 0.85% of the area has low ECe, as shown in Table 7. In all MZs, the soil available
nitrogen, zinc, available water content, and saturated hydraulic conductivity remains
tight and did not show significant differences. The four MZs have low clay, available N,
P, and lower micronutrient concentrations. Thus, these MZs have a great potential for
environmental risk via nitrogen leaching through the soil profiles and also nitrogen load in
soil surface run-off, especially with a high percentage of sand. This finding is diagnostic for
determining the amount of fertilizer and irrigation water to be applied to soils in different
management zones. Its emphasis’s the importance of site-specific management for long-
term crop productivity and, as a result, reducing environmental hazards caused by uneven
fertilizers application. Moreover, all of the delineated MZs had low hydrological properties
(SP, FC, PWP, and AW) and should be taken into account in agriculture management
processes. According to several studies, analysis of variance is an effective method for
determining the differences between delineation zones. [74,76–78].

Table 6. Principal component analysis of soil properties and loading coefficient for first six
principal components.

PC1 PC2 PC3 PC4 PC5 PC6

Eigenvalue 5.157 2.639 2.248 1.876 1.367 1.069
Variability (%) 28.648 14.661 12.488 10.423 7.595 5.936

Cumulative (%) 28.648 43.309 55.797 66.220 73.815 79.751

PC loading for each variable

PC1 PC2 PC3 PC4 PC5 PC6

ECe (dSm−1) −0.019 0.601 −0.478 0.492 0.162 −0.065
pH 0.277 −0.275 0.685 0.047 −0.281 0.110

CaCO3 (%) −0.395 0.487 0.118 −0.349 −0.026 −0.465
Av. N (mg kg−1) −0.312 0.711 0.135 −0.165 0.194 −0.115
Av. P (mg kg−1) −0.049 0.502 −0.498 0.503 0.020 0.080
Av. K (mg kg−1) 0.172 −0.506 −0.277 0.564 −0.296 0.018

DTPA Fe (µg kg−1) −0.191 −0.493 −0.273 0.138 0.622 −0.148
DTPA Zn (µg kg−1) −0.100 −0.409 0.114 0.233 −0.274 −0.510
DTPA Mn (µg kg−1) −0.081 −0.622 −0.088 0.117 0.553 −0.145
DTPA Cu (µg kg−1) −0.180 0.056 −0.343 0.290 −0.469 0.154

Sand (%) 0.690 −0.120 −0.498 −0.453 −0.036 0.019
Clay (%) −0.922 −0.128 −0.086 −0.209 −0.037 0.070

B.D. (Mg m−3) 0.965 0.100 0.021 −0.019 0.065 −0.100
S.P. (%) 0.044 0.075 0.306 0.061 0.316 0.656
F.C. (%) −0.943 −0.049 0.224 0.168 −0.013 0.047

P.W.P. (%) −0.922 −0.155 −0.147 −0.206 −0.081 0.149
A.W. (mm m−1) −0.322 0.176 0.631 0.616 0.130 −0.123

Ks (cm h−1) 0.779 0.221 0.403 0.190 0.133 −0.068
Note. AW: available water; BD: bulk density; DTPA: diethylene-triamine-penta-acetic acid; EC: electrical
conductivity; F.C.: field capacity; Ks: saturated hydraulic conductivity; PWP: permanent wilting point; S.P.:
saturation percentage.



Sustainability 2022, 14, 16209 15 of 19
Sustainability 2022, 14, x FOR PEER REVIEW 15 of 20 
 

 
Figure 4. PCA biplot (PC1 vs. PC2) of soil properties in South Hail located in KSA. 

3.7. Initiating Management Zones Using Soil Properties 
A cluster analysis was applied to classify the four PCs into MZs. The XLSTAT was 

used based on the AHC technique to define the optimum number of MZs. This method 
allows us to differentiate different zones with a similar value of properties and higher 
differences between them [74]. To obtain the optimum number of MZs and plotted as 
shown in Figure 5, against the number of clusters (or MZs). In this study, four different 
management zones were finally identified as the optimum number of MZs, as shown in 
Figure 5. The four SMZs were distinctly different from each other and the percent areas 
were 77.94, 14.10, 7.11, and 0.85% for SMZ1, SMZ2, SMZ3, and SMZ4 respectively. Figure 
6 shows the spatial distribution map of the four delineated MZs in the study area. In each 
delineated MZ, the measured soil properties present the lowest variance and highest de-
gree of membership. Thus, in each zone, different management practices, such as agricul-
ture management can be carried out to increase crop production while decreasing costs. 
Therefore, the one-way ANOVA was carried out to evaluate the effectiveness of the PCA 
and AHP combination to delineate MZs and also its spatial variability. There were signif-
icant differences (p < 0.05) between all soil and terrain attributes except for N, Zn, AW, 
and Ks among the four MZs, as shown in Table 7. The MZ1 and MZ3 which covers 85.05% 
of the area under investigation had a mean value of ECe as 3.03 and 4.52 dSm−1 and were 
classified as moderately salinized soils, greater than the limiting critical value for the sen-
sitive crops. Whereas the MZ2 which covers 14.10% of the area has 7.23 dSm−1 of ECe and 
must be leached to remove salts from the soil and reduce ECe to less than 2 dSm−1 to get 
high productivity. When the total amount of salts accumulated in the root zone is high 
enough, negatively affects plant growth by reducing the plant's available water [75]. Only 
0.85% of the area has low ECe, as shown in Table 7. In all MZs, the soil available nitrogen, 
zinc, available water content, and saturated hydraulic conductivity remains tight and did 
not show significant differences. The four MZs have low clay, available N, P, and lower 
micronutrient concentrations. Thus, these MZs have a great potential for environmental 
risk via nitrogen leaching through the soil profiles and also nitrogen load in soil surface 
run-off, especially with a high percentage of sand. This finding is diagnostic for determin-

EC

pH

N

P

K

FeZn
Mn

Cu

CaCO3

SandClay

BDSAT

FC

PWP

AW Ks

L1P1
L1P2L1P3

L1P4L1P5

L1P6
L1P7

L1P8L1P9

L1P10L1P11

L1P12 L1P13

L1P14

L1P15
L1P16

L2P1

L2P2

L2P3

L2P4

L2P5

L2P6

L2P7 L2P8

L2P9

L2P10
L2P11

L2P12

L2P13
L2P14

L2P15

L2P16

L2P17

L2P18

L2P19

L2P20

L2P21

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6 8

PC
2 

(1
4.

66
 %

)

PC1 (28.65 %)

Biplot (axes PC1 and PC2: 43.31 %)

Active variables Active observations

Figure 4. PCA biplot (PC1 vs. PC2) of soil properties in South Hail located in KSA.

Sustainability 2022, 14, x FOR PEER REVIEW 16 of 20 
 

ing the amount of fertilizer and irrigation water to be applied to soils in different manage-
ment zones. Its emphasis’s the importance of site-specific management for long-term crop 
productivity and, as a result, reducing environmental hazards caused by uneven fertiliz-
ers application. Moreover, all of the delineated MZs had low hydrological properties (SP, 
FC, PWP, and AW) and should be taken into account in agriculture management pro-
cesses. According to several studies, analysis of variance is an effective method for deter-
mining the differences between delineation zones. [74,76–78]. 

 
Figure 5. Dendrogram for Agglomerative hierarchical clustering. 

Table 7. Mean values of soil properties in different management zones of South Hail located in KSA. 

MZ No. EC pH N P K Fe Zn Mn Cu CaCO
3 Sand Clay BD S.P. F.C. P.W.

P A.W. Ks  

1 24 4.52ab 7.91b 1147.9a 25.5a 98.7ab 432.4b 233.5bc 367.5c 135.1b 5.9b 68.8ab 16.9b 1.49a 
45.1

a 
21.2

b 
12.0b 

92.6b
c 

1.17a 

2 7 7.23a 7.89c 
1078.6a

b 
15.9bc 120.1a 

1,069.1
ab 

244.1ab 707.8b 
157.7a

b 
7.9a 67.2b 15.9b 1.49a 

43.7
b 

21.1
b 

11.6b 
94.4a

b 
1.11a

b 

3 2 3.03b 8.02a 
1000.0b

c 
8.1c 140.3a 

2,953.0
a 

257.0a 764.7ab 216.2a 8.7a 71.1a 17.5b 1.49a 
44.0

b 
21.3

b 
12.0b 89.5c 

0.98b
c 

4 4 2.03c 7.95ab 1225.0c 27.3a 58.6b 297.8b 218.4c 
1,138.1

a 
149.1b 4.9b 63.7c 20.2a 1.47b 

45.0
a 

22.8
a 

13.1a 97.3a 0.85c 

Note. AW: available water; BD: bulk density; DTPA: diethylene-triamine-penta-acetic acid; EC: elec-
trical conductivity; F.C.: field capacity; Ks: saturated hydraulic conductivity; No: number of profiles; 
PWP: permanent wilting point; S.P.: saturation percentage; a,b,c: Values not sharing similar letters 
are significantly differenct (p>0.05). 

C3

C1

C2

C4

1539820 6539820 11539820 16539820
Dissimilarity

Dendrogram

Figure 5. Dendrogram for Agglomerative hierarchical clustering.

Table 7. Mean values of soil properties in different management zones of South Hail located in KSA.

MZ No. EC pH N P K Fe Zn Mn Cu CaCO3 Sand Clay BD S.P. F.C. P.W.P A.W. Ks

1 24 4.52
ab

7.91
b

1147.9
a

25.5
a

98.7
ab

432.4
b

233.5
bc

367.5
c

135.1
b

5.9
b

68.8
ab

16.9
b

1.49
a

45.1
a

21.2
b

12.0
b

92.6
bc

1.17
a

2 7 7.23
a

7.89
c

1078.6
ab

15.9
bc

120.1
a

1069.1
ab

244.1
ab

707.8
b

157.7
ab

7.9
a

67.2
b

15.9
b

1.49
a

43.7
b

21.1
b

11.6
b

94.4
ab

1.11
ab

3 2 3.03
b

8.02
a

1000.0
bc

8.1
c

140.3
a

2953.0
a

257.0
a

764.7
ab

216.2
a

8.7
a

71.1
a

17.5
b

1.49
a

44.0
b

21.3
b

12.0
b

89.5
c

0.98
bc

4 4 2.03
c

7.95
ab

1225.0
c

27.3
a

58.6
b

297.8
b

218.4
c

1138.1
a

149.1
b

4.9
b

63.7
c

20.2
a

1.47
b

45.0
a

22.8
a

13.1
a

97.3
a

0.85
c

Note. AW: available water; BD: bulk density; DTPA: diethylene-triamine-penta-acetic acid; EC: electrical conduc-
tivity; F.C.: field capacity; Ks: saturated hydraulic conductivity; No: number of profiles; PWP: permanent wilting
point; S.P.: saturation percentage; a,b,c: Values not sharing similar letters are significantly differenct (p > 0.05).



Sustainability 2022, 14, 16209 16 of 19Sustainability 2022, 14, x FOR PEER REVIEW 17 of 20 
 

 
Figure 6. Management zones (MZs) kriged map of South Hail located in KSA. 

4. Conclusions 
A total of 111 soil samples were collected from 37 soil profiles in systematic depths 

(0–50, 50–100, and 100–150 cm) from the South Hail region, KSA. The samples were ana-
lyzed for pH, ECe, CaCO3, and accessible macro and micronutrients and hydrological 
properties. A strong significant correlation was observed between most of the soil prop-
erties. The best fit models were J-Bessel for pH, Clay, BD, and AW; K-Bessel for EC and 
Av. N; Stable for CaCO3, P, K, Fe, Zn, Sand, FC, and Ks; Spherical for Mn and Cu; Gaussian 
for SP; whereas exponential for PWP. The PCA resulted in six principal components (PCs) 
explaining 79.75% of the total variance of soil properties. The PC1 was strongly influenced 
by soil BD, FC, clay, PWP, Ks, and sand. PC2 was dominated by N, ECe, and CaCO3; PC3 
was dominated by pH; PC4 was dominated primarily by K and P, PC5 was mainly dom-
inated by Fe; Mn, and Cu, and PC6 was mainly dominated by SP and Zn. Based on ag-
glomerative hierarchical clustering, four soil management zones (MZs) cover 77.94, 14.10, 
7.11 and 0.85% of studied area. MZ 1 and 3 classified as moderately saline while MZ 2 
classified as highly saline soils. This area must be leached to remove salts and reduce ECe 
to less than 2 dSm−1, to get maximum productivity. All MZs have a great potential for 
environmental risk via nutrients leaching through the soil profiles, especially with a high 
percentage of sand. This finding is diagnostic for determining the amount of fertilizer and 
irrigation water to be applied to soils in different management zones. Moreover, all of the 
delineated MZs had low hydrological properties (SP, FC, PWP, and AW) and should be 
taken into account in agriculture management processes. 

Author Contributions: Conceptualization, A.M.A. and A.A.; methodology, A.A.; software, A.M.A.; 
validation, A.M.A., and A.A.; formal analysis, A.M.A.; resources, A.A.; writing—original draft prep-
aration, A.M.A. and A.A; visualization, A.M.A. All authors have read and agreed to the published 
version of the manuscript. 

Funding: This research received no external funding. 

Figure 6. Management zones (MZs) kriged map of South Hail located in KSA.

4. Conclusions

A total of 111 soil samples were collected from 37 soil profiles in systematic depths
(0–50, 50–100, and 100–150 cm) from the South Hail region, KSA. The samples were an-
alyzed for pH, ECe, CaCO3, and accessible macro and micronutrients and hydrological
properties. A strong significant correlation was observed between most of the soil proper-
ties. The best fit models were J-Bessel for pH, Clay, BD, and AW; K-Bessel for EC and Av.
N; Stable for CaCO3, P, K, Fe, Zn, Sand, FC, and Ks; Spherical for Mn and Cu; Gaussian
for SP; whereas exponential for PWP. The PCA resulted in six principal components (PCs)
explaining 79.75% of the total variance of soil properties. The PC1 was strongly influenced
by soil BD, FC, clay, PWP, Ks, and sand. PC2 was dominated by N, ECe, and CaCO3;
PC3 was dominated by pH; PC4 was dominated primarily by K and P, PC5 was mainly
dominated by Fe; Mn, and Cu, and PC6 was mainly dominated by SP and Zn. Based on
agglomerative hierarchical clustering, four soil management zones (MZs) cover 77.94, 14.10,
7.11 and 0.85% of studied area. MZ 1 and 3 classified as moderately saline while MZ 2
classified as highly saline soils. This area must be leached to remove salts and reduce ECe
to less than 2 dSm−1, to get maximum productivity. All MZs have a great potential for
environmental risk via nutrients leaching through the soil profiles, especially with a high
percentage of sand. This finding is diagnostic for determining the amount of fertilizer and
irrigation water to be applied to soils in different management zones. Moreover, all of the
delineated MZs had low hydrological properties (SP, FC, PWP, and AW) and should be
taken into account in agriculture management processes.
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