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Abstract: The swine industry is one of the industries that progressively incorporates smart livestock
farming (SLF) to monitor the grouped-housed pigs’ welfare. In recent years, pigs’ positive welfare
has gained much attention. One of the evident behavioral indicators of positive welfare is playing
behaviors. However, playing behavior is spontaneous and temporary, which makes the detection
of playing behaviors difficult. The most direct method to monitor the pigs’ behaviors is a video
surveillance system, for which no comprehensive classification framework exists. In this work, we
develop a comprehensive pig playing behavior classification framework and build a new video-
based classification model of pig playing behaviors using deep learning. We base our deep learning
framework on an end-to-end trainable CNN-LSTM network, with ResNet34 as the CNN backbone
model. With its high classification accuracy of over 92% and superior performances over the existing
models, our proposed model highlights the importance of applying the global maximum pooling
method on the CNN final layer’s feature map and leveraging a temporal attention layer as an input
to the fully connected layer for final prediction. Our work has direct implications on advancing the
welfare assessment of group-housed pigs and the current practice of SLF.

Keywords: animal positive welfare; pig play behavior; convolutional neural network; long short-term
memory network; video classification

1. Introduction

Along with the emergence of the Fourth Industrial Revolution, smart livestock farming
(SLF) is being considered as a realistic way to effectively meet the global food demand.
SLF is an emerging concept that seeks to improve livestock farming conditions by effec-
tively utilizing digital technologies including the real-time supervision of the behaviors
of livestock. Due to the SLF tools’ real-time and non-invasive nature, swine practitioners
generally use them to closely monitor pigs’ behavior, welfare, and growth [1,2]. Among
these tasks, behavior and welfare monitoring has gradually gained much attention these
days, as there is an increasing awareness and demand from global consumers for a better
farming environment for piglets in food production as standard practice [3].

As suggested by [4,5], qualitative and quantitative measurement of behavioral expres-
sion is essential in identifying and facilitating the conditions conducive to positive welfare.
Accordingly, within the animal behavioral research community, instead of just focusing
only on pigs’ negative problems, there has been an increasing number of studies related to
behavioral indicators of pigs’ positive welfare, such as social affiliative behaviors [6–10]
and play behaviors [11–19].

Pig play behaviors are evident natural indicators that positive welfare exists in a par-
ticular pigpen. Animals only express their play behaviors when they are under a favorable
and non-life-threatening environment [4,20,21]. Not only do play behaviors indicate pleas-
ant experiences, but they could also contribute to the development of physical, cognitive,
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and affective competence, thereby promoting the positive welfare state [21]. In the work
of [22], they found that pig playing behaviors were associated positively with physical de-
velopment, especially the weight change between birth and weaning of piglets. In addition,
several studies showed how play behavior is associated with positive welfare conditions
such as low ammonia [23] or an enriched environment [24].

Undoubtedly, it is practically impossible for pig farmers to directly monitor and
analyze the group-housed pig behaviors on-farm twenty-four seven. Fortunately, the
advancement of affordable video surveillance technology has made continuous monitoring
of pig behavior practically possible. Nonetheless, it is labor-intensive and time-consuming
to train a pig farmer to continuously monitor and analyze the pig behavior from the video
display. Therefore, there is a growing number of studies in computer vision to automatically
recognize diverse pig behaviors from the video by developing an artificial intelligence (AI)
model using a huge volume of collected video data [25,26].

Following the success of deep learning (DL) in the computer vision field, particularly
the convolutional neural networks (CNNs), the methodology of pig behavior recognition
has shifted from the conventional computer vision to DL. Not only have CNNs been widely
applied by researchers in the livestock sector but also by researchers in various fields,
including the medical field [27,28] and structural engineering field [29,30]. Most of the
prior studies focused on recognizing pig behaviors such as feeding, drinking, mounting,
aggressive, and postural behaviors, as well as multiple locomotive movements. In contrast,
detecting pig playing behaviors has been much less studied, primarily due to data scarcity.

Recent studies that focused on recognizing pig playing behaviors from the video
clips mostly relied on a deep neural network (DNN) that consisted of a CNN and long
short-term memory (LSTM), which is also known as a CNN-LSTM network. For example,
ref. [31] sought to recognize the object play or engagement behaviors of fattening pigs with
different enrichment objects by first tracking the enrichment object and then locating the
region of interest (ROI) that includes the target pig and the enrichment object. The final
circular ROI was constructed by setting the centroid of the detected enrichment object as
the circle center and the average pig length (220 pixels) as the radius. Each episode frame
with pixels other than the ROI removed was consequently fed into a CNN-LSTM network
for the downstream behavior recognition task. The CNN backbone used in this work is
InceptionV3 [32]. Another set of experiments was also carried out with the radius of circular
ROI shortened into half to investigate the effect of ROI on model performance [33]. It is
worth mentioning that in the work of [34], they also used a CNN-LSTM network with
VGG16 [35] as the CNN backbone to recognize the aggressive episodes at the group level
within a pigpen. The model was trained to detect the occurrence of aggressive behaviors
at the pen level instead of the individual level. All the video clips or episodes used in
the aforementioned work contained a much smaller number of pigs (fewer than 15) and
a simpler or more consistent background than in our work; hence, they could achieve
good performance by simply applying the original CNN-LSTM architecture. None of them
attempted to alter the CNN-LSTM architecture to improve the model performance.

In this study, we propose a deep-learning-based framework that can recognize pig
playing and non-playing behaviors, covering a comprehensive range of playing behaviors
from the video episodes, where their occurrences can serve as an indicator of assessing
positive welfare for a commercial pig production system. Traditional machine learning
methods require feature engineering involving human experts. Our study aims at detect-
ing pigs’ playful behaviors without feature engineering. To the best of our knowledge,
this study represents the first endeavor to include three pig playing behavior categories,
namely, social play, object play, and locomotor play for comprehensive pig playing and
non-playing behavior classification. In particular, we develop an end-to-end trainable deep
neural network that can work well in a more complex situation involving a complicated
background and context, and a large number of pigs (50–60 per pigpen). To adapt the
original CNN-SLTM architecture to this environment, we propose a few significant modifi-
cations to the existing CNN-LSTM network to boost the model performance, including the
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global maximum pooling method and temporal attention layer. Our approach does not
require any feature engineering, and it has direct implications on the welfare assessment
of group-housed pigs and the current practice of SLF.

2. Materials and Methods
2.1. Datasets
2.1.1. Data Acquisition

Data used in this study were collected directly from a commercial pig farm in
Hampyeong-gun, Jeollanam-do, South Korea, in collaboration with Animal Industry Data
Korea (AIDK), a livestock healthcare solution provider company based in South Korea.
The nursery pigs, aged between 25 to 50 days old, were housed and monitored closely
in 2 separate pig pens, and each pigpen contained 50 to 60 pigs. Each pen had a size
of 3.6 m (V) × 3 m (W) × 8 m (H). A feed stand was placed at the center of each pen and
a bucket was placed at its corner to store materials to manage excrements. There was an
irregular arrangement of the toys (e.g., rubber balls, wooden sticks, and rubber tires) to
help the pigs relieve their stress by playing with them. The pens typically get cleaned once
or twice a month depending on the season.

To collect the video data, a top-view camera (CCTV) was installed in the middle
of each nursery pigpen, perpendicularly above the pigpen floor. A normal lens camera
was fixed with a focal distance of 4 mm and a relative aperture of F1.4. The angular field
of view is set as 88.6° (H) × 47.5° (V) × 104.8° (D). Cameras are adjusted to have fixed
focus control, with a minimum focusing distance of 0.5 m. Each pigpen was recorded for
24 h at a rate of 30 frames per second, with a resolution of 1920 × 1080. The pigpen was
recorded continuously from 15 November 2021 to 29 December 2021.

For this study, four 1 min video clips were selected for each pigpen, at 7.30 a.m.,
11 a.m., 6 p.m., and 11 p.m. The collection schedule was set based on the work of [36],
which analyzed the videos that captured the locomotive behaviors of pigs in the morning,
afternoon, and evening. We added 11 p.m. to expand the coverage and include nighttime
behaviors. The 1 min length of clips was determined based on the work of [37], who found
that 1 min assessments were sufficient to distinguish two groups of pigs based on behavior.

Each 1 min video clip (Figure 1) came with a JSON file, which contained the growth
phase, ID, and the corresponding bounding box coordinates of each of the pigs that ap-
pear in the video frame. Particularly, we used video clips that were collected after the
nursery pigs were regrouped for more than 10 days to avoid the hierarchy establishment
period [38] that involves aggressive fighting due to the mixing of unfamiliar pigs right after
weaning [39,40]. A total of 72 1 min video clips were eventually obtained for our work.

2.1.2. Data Preprocessing

To enhance the coverage of bounding boxes and extract the behavior of each pig in
the scene, we applied an additional preprocess procedure. We made use of the bounding
box coordinates and pig ID to crop and extract the episodes from the 1 min video clips
for each pig, with the target pig centered in the frame. One limitation we have with this
method of automated episode extraction based on the bounding box is that the bounding
box of certain pigs is occasionally missing when the pigs are inactive or have very minor
movements, overlapped with other pigs, or covered by other objects such as pigpen poles
and feeders. Hence, we employed a very simple and straightforward bounding box
imputation method to harness more episodes, which is particularly useful for pigs that
show minor movement. Whenever an ‘empty’ bounding box is detected for a pig ID in each
frame, we check if the nearest 45 frames contain any non-empty bounding box. If there
exists non-empty bounding box information from the nearest 45 frames, we impute the
missing bounding box using the coordinates from the nearest frame.
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Figure 1. A sample frame of video clips recorded in the nursery pigpen, with bounding box and
ID information.

After imputation, the maximum width and height of the bounding box for each pig
ID in the 1 min clip were obtained. To extract the bounding box with consistent width
and height for each pig ID across all frames in each video clip, we expanded the biggest
bounding box of each pig ID by a factor of 1.2 to obtain the new bounding box coordinates
for further episode extraction. The rationale for expanding the bounding box size is to
capture the context, such as interactions with other pigs, feeders, enrichment objects, and
pen facilities around the target pig. Hence, after a few preliminary extraction attempts with
different expansion factors, the factor of 1.2 was eventually decided since it gave minimal
noise and optimal area for context understanding from a human observer’s point of view.
Then, for each pig ID, we extracted the cropped episodes based on the new bounding
box coordinates.

To increase the dataset size and the efficiency of the labeling task, we divided and
trimmed all the 1 min clips extracted for each pig equally into multiple 2 s episodes.
We selected the fixed episode length of 2 s instead of 1 s, following the approach from
previous work [33] in order to identify the noticeable aggressive behaviors. For instance,
when a pig approaches another pig’s ear, we cannot typically identify if the pig is biting
(aggressive) or just nudging (playing) in just one second. However, in a 2 s time window,
it is possible for us to observe whether the receiver pig shows an unpleasant reaction,
which indicates whether the receiver pig’s ear is bitten or nudged [41]. In the process
of preliminary data screening, 2 s episodes that appeared to be shaky due to the unstable
bounding box coordinates or with fewer than 60 frames were discarded.

2.1.3. Data Labeling

Video clips were manually labeled following the ethogram developed in [8,13–15,22,42]
and the advice from professional veterinarians. There are 3 main categories of pig playing
behavior, namely social play, object play, and locomotor play. As for the remainder of the
paper, a pig’s behavior is categorized as a playing behavior following the ethogram that
contains 17 fine-grained playing behaviors (see Table A1 under Appendix A). If the target
pig showed a playing behavior for at least 1 s in a 2 s episode, the episode is labeled as
playing, and vice versa.

By strictly following the ethogram and 1 s rule mentioned above, the main researcher
first manually labeled all episodes’ binary play class, play category, and dominant play-
ing behaviors. Two other researchers then manually labeled the episodes separately and
independently after going over the guideline and observing a one-time demonstration
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of the labeling by the main researcher. They inspected a total of 4466 episodes and initially
disagreed on the labels of 524 episodes, which account for about 11.7% for the four cate-
gories (social, object, locomotor, and non-play). To ensure the objectivity of the class labels,
a face-to-face discussion was conducted to resolve the conflict in the combined labeling
results. The episodes were re-labeled with the ultimate objective of achieving unanimity.
The episodes were discarded when a unanimous agreement could not be achieved after
discussion. The whole labeling plus post-agreement discussion process took approximately
60 h to finish. After the intensive data labeling process, a total of 4333 2 s episodes were
finally obtained. Table 1 depicts the distribution of the labeled episodes.

Table 1. Breakdown of Playing and Non-Playing Episodes.

Class Play Category Number of Episodes (Ratio) Total Ratio

Playing
Social 825 (0.1904)
Object 178 (0.0411) 1029 0.24

Locomotor 26 (0.0060)

Non-playing - 3304 (0.7625) 3304 0.76

4333 1.00

2.1.4. Train–Test Set Creation

Before splitting the final dataset of 4333 episodes into the train set and test set, we
manually selected 203 episodes as Test Set 2 for model robustness testing. The episodes in
Test Set 2 possess the following characteristics:

• From the top-view angle, the target pig’s body is partially blocked by the objects such
as a pole, feeder, and lamp for at least 1 s.

• The target pig is not located in the middle of the video frame.
• When the target pig is captured near the feeder, the feeder appears proportionally

larger than the target pig.

By comparing the sample frames taken from Train Set, Test Set 1 (Figure 2), and Test
Set 2 (Figure 3), we can see that Train Set and Test Set 1 contain episodes with less noise
(obstacles) and with the target placed in the middle. The remaining 4130 episodes were
split into Train Set and Test Set 1 with a ratio of 8:2 by stratified random sampling to retain
the ratio of playing to non-playing episodes. Table 2 presents a summary of our train
and test data. Additionally, to mitigate the imbalanced dataset problem, we performed
weighted oversampling during model training, where we assigned higher weights to the
playing episodes and lower weights to non-playing episodes. After applying the weighted
oversampling strategy, the total number of episodes used during the training was 5028
(2514 playing and 2514 non-playing).

Figure 2. The sample frames of Train Set and Test Set 1 for model training and testing.
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Figure 3. The Sample Frames of Test Set 2 for Model Robustness Testing.

Table 2. Distribution of Train Set, Test Set 1, and Test Set 2. The Numbers in the Brackets Represent
the Ratio of the Class.

Train Set Test Set 1 Test Set 2

Non-playing 2514 (0.76) 628 (0.76) 162 (0.80)
Playing 790 (0.24) 198 (0.24) 41 (0.20)

Total 3304 826 203

2.2. Methodology
2.2.1. Algorithm

Our proposed deep learning network in this study was based on a deep CNN-LSTM
network, as depicted in Figure 4. A ResNet34 [43] model pretrained on ImageNet [44]
and a single-layer LSTM [45] network containing 60 hidden units were used to form the
CNN-LSTM network. By treating each frame from the preprocessed 2 s episodes as an
input image, the frame was first resized to 256 × 256 and then center-cropped to a size
of 224 × 224, following the input image requirement of ResNet34.

Figure 4. CNN-LSTM network (baseline/original variant) used in our work. FC = fully con-
nected layer.

Inspired by the results of [34], we sampled only 20 equidistant frames instead of all
60 frames from each episode and fed them into the backbone ResNet34 model frame
by frame to extract the spatial feature. The noticeable drawbacks of feeding all frames
to the model such as [31,33] are redundant visual and motion information and higher
computational cost. The extracted spatial feature acted as an input to the LSTM network.
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The hidden state extracted by the LSTM for each frame was treated as a spatio-temporal
feature. The hidden state output was then fed into a fully connected layer and a Softmax
layer, which eventually yielded two probabilities of both playing and non-playing classes,
respectively. The episode was predicted as the class with a higher probability.

2.2.2. CNN Spatial Feature Map

To convert the spatial feature maps (7 × 7 × 512 dimensions) extracted from the
last layer of ResNet34 to the input feature of LSTM, we experimented with 3 alternative
operations on the feature maps (See Figure 4):

1. Flattening: The feature maps extracted from the last layer of ResNet34 model were
simply flattened and concatenated to obtain a fixed-length vector representation
(25,088-dimensional input feature of LSTM).

2. Global average pooling: Global average pooling was employed to downsample the
feature maps extracted from the last layer of ResNet34 model, in which the average
value of all pixels in each feature map was concatenated to be a fixed-length vector
representation (512-dimensional input feature of LSTM). As compared with global
maximum pooling, it gives a more general representation of each feature map.

3. Global maximum pooling: Global maximum pooling was used to downsample the
feature maps extracted from the last layer of the ResNet34 model, in which the pixel
with the highest value (brightest pixel) of each feature map was concatenated to be
a fixed-length vector representation (512-dimensional input feature of LSTM). As com-
pared with global average pooling, it produces the most important representation
of each feature map, which in our case is the pigs that are white in color.

2.2.3. LSTM Classifier

In addition to the conventional prediction approach of a CNN-LSTM network (See
Figure 4), we experimented with 3 alternative methods (hereinafter collectively referred to
as LSTM classifiers) of dealing with the spatio-temporal feature extracted from LSTM to
make the final prediction (See Figure 5):

1. Last hidden state: LSTM is well-known for its ability to learn the temporal informa-
tion of a long sequence progressively. In a time series prediction task using a deep
neural network, the prediction is usually made using the final hidden state (latent
representation learned) extracted. We applied the same concept by feeding the last
spatio-temporal feature vector extracted by LSTM to the fully connected layer.

2. All hidden states: In this approach, spatio-temporal feature vectors extracted by LSTM
from all video frames were fused by simple concatenation. The concatenated vector
was then passed to the fully connected layer.

3. All hidden states with temporal attention: In this approach, spatio-temporal feature
vectors, hs

t , extracted by LSTM from all video frames were attended differently. A tem-
poral attention layer (Equations (1) and (2)) was added after concatenation of the
spatio-temporal feature vectors. Then, the final representation vector (as derived from
Equation (3)) formed was passed to the fully connected layer.

α̃s
t = uT

α tanh(Wαhs
t + bα) (1)

αs
t =

exp α̃s
t

20
∑

t=1
exp α̃s

t

(2)

as = [αs
1hs

1, αs
2hs

2, ..., αs
20hs

20] (3)
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Figure 5. The 3 alternative approaches to make final prediction based on the extracted spatio-temporal
feature from LSTM: (a) Last hidden state, (b) All hidden states, (c) All hidden states with temporal
attention. hn stands for nth hidden state. FC stands for fully connected layer.

2.2.4. Experiment Implementation Details

All models were trained on an NVIDIA GeForce RTX 3080i GPU with 10 GB of memory.
We implemented our DNN models using libraries and packages from PyTorch [46] written in
Python programming language. For video reading, writing, and cropping, we used OpenCV
library [47] written in the Python programming language. To visualize the CNN backbone’s
final layer’s localized activation map, we adopted the Gradient-weighted Class Activation
Mapping (Grad-CAM) method [48] by using the PyTorch library provided by [49].

In all our experiments, due to the GPU memory constraint, we used a batch size
of 4 with stochastic gradient descent (SGD) as the optimizer. The initial learning rate was
set as 0.01, and the learning rate was decreased by a factor of 0.2 when the accuracy of Test
Set 1 did not improve for 5 epochs. An early stopping strategy was also implemented to
stop the training process when the loss did not become decreased for 20 epochs. Using the
CNN-LSTM network variant with only global average pooling, four separate experiments
were conducted to obtain the optimal number of hidden units of LSTM. After training and
evaluating the baseline model on 30, 60, 90, and 100 hidden units, we found that 60 is the
optimal number of hidden units for our case. A summary of hyperparameter settings is
presented in Table 3.

Table 3. Summary of Hyperparameter Settings.

Parameter Value

Batch size 4

Optimizer SGC

Learning rate 0.01 with scheduler

Input size 224 × 224

Number of hidden units 60

Our loss was calculated using the binary cross-entropy loss function. For each batch,
the loss lB is calculated as per Equation (4), where B is the batch size. The loss per epoch lN
is calculated as per Equation (5), where N is the size of the train or test set.

lB =

B
∑

n=1
ln

B
, where (4)

ln = −(yn · logxn + (1 − yn) · log(1 − xn))

xn: predicted probability of nth sample;
yn: ground truth of nth sample, where 1 = playing behavior, 0 = non-playing behavior.
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lN =

N
∑

n=1
ln

N
(5)

As our research task is a supervised classification task, we use the standard binary
classification metrics in machine learning to evaluate our model performance. In this study,
positive class is represented by playing episode, while negative class is represented by
non-playing episode. The metrics chosen are as follows:

1. Accuracy: The number of true positives (TP) and true negatives (TN) over the total
number of observations. In our case, it indicates the percentage of both playing and
non-playing episodes detected correctly.

2. Recall/Sensitivity: The number of TP over the number of all real positive observations.
In our case, it indicates the number of playing episodes correctly detected over all the
actual playing episodes.

3. Precision: The number of TP over all the observations that are classified as positive.
In our case, it indicates the number of playing episodes correctly detected over all the
episodes recognized as playing by the model.

4. Specificity: The number of true negatives (TN) over the number of all real negative
observations. In our case, it indicates the number of non-playing episodes correctly
detected over all the actual non-playing episodes.

Among these four metrics, accuracy is used as the primary indicator of the perfor-
mance of a model. The other three metrics are used as secondary indicators in our study.

3. Results
3.1. Baselines

We selected five CNN-LSTM networks: (1) InceptionV3-LSTM [31], (2) VGG16-LSTM [34],
(3) ResNet18-LSTM, (4) ResNet34-LSTM (our proposed baseline), and (5) ResNet50-LSTM [33]
as our baselines for comparison. We also included the majority baseline for comparison,
which in our case is a classifier that always predicts the sample as the negative class
(non-playing episode). The architecture of all the CNN-LSTM baselines is the same as the
original network [50], with different CNN backbone models used. All the CNN backbone
models were pretrained on ImageNet.

Table 4 shows the evaluation results of the selected baselines. The reported numbers
were produced by the best accuracy models identified using Test Set 1. ResNet34-LSTM
performed the best on Test Set 1 in all of the metrics except for specificity. On Test Set
2, ResNet34-LSTM performed the best in all of the metrics except for recall. When the
performances on Test Set 1 and Test Set 2 were both considered, the ResNet34-LSTM
baseline was extended to develop our proposed variants. Table 5 presents the confusion
matrices produced by the selected baseline.

Table 4. Baseline Evaluation Results on (a) Test Set 1 and (b) Test Set 2. Reported numbers were
produced by the best accuracy models identified using Test Set 1. The best score for each metric is
shown in bold. DBZ = division by zero (undefined value).

(a) Test Set 1 Results

Metrics
Model

Majority InceptionV3 VGG16 ResNet18 ResNet34 ResNet50

Accuracy 0.7603 0.8983 0.7603 0.8923 0.9019 0.8983
Recall 0.0000 0.8081 0.0000 0.7980 0.8181 0.7929

Precision DBZ 0.7767 DBZ 0.7633 0.7826 0.7850
Specificity 1.0000 0.9268 1.0000 0.9219 0.9283 0.9315
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Table 4. Cont.

(b) Test Set 2 Results

Metrics
Model

Majority InceptionV3 VGG16 ResNet18 ResNet34 ResNet50

Accuracy 0.7980 0.6897 0.7980 0.7340 0.7980 0.6995
Recall 0.0000 0.4390 0.0000 0.5610 0.4878 0.4634

Precision DBZ 0.3103 DBZ 0.3898 0.5000 0.3275
Specificity 1.0000 0.7531 1.0000 0.7778 0.8765 0.7592

Table 5. Confusion Matrix Produced by ResNet34-LSTM.

Test Set 1

Truth: Playful Truth: Non-playful

Prediction: Playful 162 45

Prediction: Non-playful 36 583

Test Set 2

Truth: Playful Truth: Non-playful

Prediction: Playful 20 20

Prediction: Non-playful 21 142

3.2. Ablation Study

We conducted an extensive ablation study on the ResNet34-LSTM network variants
to examine the effectiveness of the components or modules proposed in Section 2.2. Our
proposed baseline and its variants’ components are depicted in Table 6. All models’
performances are evaluated and compared extensively using Test Set 1 and Test Set 2.

Table 6. Components of the ResNet34+LSTM baseline and variants.

Component(s) Baseline
Variant

1 2 3 4 5 6 7 8 9 10 11

Flattening X X X X
Global average pooling X X X X

Global max pooling X X X X
Weighted average of predictions X X X

Last hidden state X X X
All hidden states X X X X X X

Temporal attention X X X

Table 7 presents the results of an ablation study conducted with the ResNet34-LSTM
baseline and variants. The reported numbers were produced by the best accuracy models
identified using Test Set 1. As shown in Table 7, by replacing only the baseline’s flattening
component with the global average pooling (Variant 1) or global maximum pooling (Vari-
ant 2) component, the variants performed better on Test Set 1. Furthermore, when only
the LSTM classifier component of the baseline (i.e., weighted average of predictions) was
replaced by each of the three alternative LSTM classifiers (Variant 3, Variant 6, and Vari-
ant 9), the variant of all hidden states with temporal attention provided the best accuracy
among those models compared on both Test Set 1 and Test Set 2. Although our baseline
gave a fairly high accuracy of 90.56% on Test Set 1, its corresponding accuracy on Test Set 2
was merely 0.99% higher than the majority baseline’s accuracy of 79.80% (see Table 4).

The combination of applying global maximum pooling plus simple concatenation
of all extracted spatio-temporal features (Variant 8) gave the best performance with a 92.62%
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accuracy on Test Set 1, and the model performance deteriorated with a very slight difference
when a temporal attention layer was added (92.13%). Based on the models’ corresponding
performance on Test Set 2, it can be seen that Variant 11 with global maximum pooling
of spatial feature maps and temporal attention added to the concatenated spatio-temporal
feature was the most robust variant. This variant had the highest accuracy (87.19%) on
Test Set 2, and the second-highest accuracy (92.13%) on Test Set 1. Despite Variant 8’s
best performance on Test Set 1, its corresponding performance on Test Set 2 was even
worse than Variant 1, which has only global average pooling applied to the extracted CNN
feature maps.

In terms of the model’s performance based on the value of recall, Variant 2 performed
the best on Test Set 1 with 84.85%. This indicates that Variant 2 was able to identify the
greatest number of actual playing episodes. On the other hand, Variant 4 had the highest
precision (87.79%) and specificity (96.66%), but second-lowest recall (76.26%). This suggests
that Variant 4 was able to identify the greatest number of actual non-playing episodes with
the cost of the poorer ability to identify the actual playing episodes. However, both models’
corresponding performances on Test Set 2 were not among the best. More specifically, for
Variant 2, its accuracy on Test Set 2 was worse than the majority’s baseline accuracy.

Table 8 presents the results of an ablation study in which the reported numbers were
this time produced by the best accuracy models identified using Test Set 2. Here, in line
with the findings from Table 7, Variant 11 performed the best in both test sets, with accuracy
noticeably higher than the baselines. In addition, it is interesting to note that Variant 7’s
performance on Test Set 2 was perfect (100%) in precision and specificity. In other words,
Variant 7 did not make any false positive predictions, and all the episodes recognized
as playing episodes were the actual playing episodes. However, it had the lowest recall:
it could only recognize 17.07% and 64.65% of the actual playing episodes in Test Set 2
and Test Set 1, respectively. Additionally, Variant 10 had the highest recall on both Test
Set 1 and Test Set 2 but with the cost of relatively low precision. Overall, all the models
with high accuracy also came with reasonable recall, precision, and specificity, suggesting
that accuracy is a good indicator to evaluate a classification model for pig playing and
non-playing episodes.

Table 7. Performances of the ResNet34+LSTM baseline and variants on (a) Test Set 1 and (b) Test Set
2 with different combinations of components. Reported numbers were produced by the best accuracy
models identified using Test Set 1. The best score for each metric is shown in bold.

(a)

Model
Metrics

Accuracy Recall Precision Specificity

Baseline 0.9056 0.8131 0.7970 0.9347
Variant 1 0.9116 0.8434 0.7990 0.9331
Variant 2 0.9153 0.8485 0.8077 0.9363
Variant 3 0.8608 0.6616 0.7318 0.9236
Variant 4 0.9177 0.7626 0.8779 0.9666
Variant 5 0.8923 0.7475 0.7914 0.9379
Variant 6 0.8935 0.8030 0.7644 0.9220
Variant 7 0.9165 0.8081 0.8377 0.9506
Variant 8 0.9262 0.8283 0.8586 0.9570
Variant 9 0.9104 0.8384 0.7981 0.9331

Variant 10 0.9153 0.8232 0.8232 0.9443
Variant 11 0.9213 0.8232 0.8446 0.9522
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Table 7. Cont.

(b)

Model
Metrics

Accuracy Recall Precision Specificity

Baseline 0.8079 0.5610 0.5227 0.8703
Variant 1 0.8621 0.6098 0.6757 0.9259
Variant 2 0.7931 0.5854 0.4898 0.8457
Variant 3 0.8030 0.5366 0.5116 0.8704
Variant 4 0.8030 0.3902 0.5161 0.9074
Variant 5 0.7882 0.4878 0.4762 0.8642
Variant 6 0.7389 0.3902 0.3636 0.8272
Variant 7 0.7882 0.4146 0.4722 0.8827
Variant 8 0.8325 0.4146 0.6296 0.9383
Variant 9 0.8325 0.4878 0.6061 0.9196

Variant 10 0.7783 0.2195 0.4091 0.9198
Variant 11 0.8719 0.4878 0.8000 0.9691

Table 8. Performances of the ResNet34+LSTM baseline and variants on (a) Test Set 2 and (b) Test Set
1 with different combinations of components. Reported numbers were produced by the best accuracy
models identified using Test Set 2. The best score for each metric is shown in bold.

(a)

Model
Metrics

Accuracy Recall Precision Specificity

Baseline 0.8768 0.6586 0.7105 0.9321
Variant 1 0.8719 0.4634 0.8261 0.9753
Variant 2 0.8571 0.4878 0.7143 0.9506
Variant 3 0.8235 0.3902 0.6400 0.9444
Variant 4 0.8621 0.5854 0.6857 0.9321
Variant 5 0.8522 0.5366 0.6667 0.9321
Variant 6 0.8177 0.3171 0.5909 0.9444
Variant 7 0.8325 0.1707 1.0000 1.0000
Variant 8 0.8966 0.6341 0.8125 0.9630
Variant 9 0.8374 0.3171 0.7222 0.9691

Variant 10 0.8374 0.7317 0.5769 0.8642
Variant 11 0.9015 0.6341 0.8387 0.9691

(b)

Model
Metrics

Accuracy Recall Precision Specificity

Baseline 0.8971 0.7778 0.7897 0.9347
Variant 1 0.9080 0.7980 0.8144 0.9427
Variant 2 0.8874 0.7626 0.7665 0.9268
Variant 3 0.8656 0.7020 0.7277 0.9172
Variant 4 0.8995 0.8131 0.7778 0.9268
Variant 5 0.8874 0.7929 0.7512 0.9172
Variant 6 0.8317 0.6919 0.6372 0.8758
Variant 7 0.8838 0.6465 0.8312 0.9586
Variant 8 0.9080 0.8384 0.7904 0.9299
Variant 9 0.8995 0.7525 0.8142 0.9459

Variant 10 0.8596 0.9242 0.6444 0.8392
Variant 11 0.9201 0.8232 0.8402 0.9506
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4. Discussion
4.1. Effect of CNN Backbone for Spatial Feature Extraction

We evaluated the performances of various CNN-LSTM baselines using different CNN
backbones (Table 4). It is shown that, when the CNN-LSTM network architecture of prior
work related to pig playing behavior recognition [31,33,34] was adopted, all the models
performed poorly in classifying the pig playing and non-playing behaviors from our
video dataset. They also performed worse than the majority baseline on Test Set 2 (see
Table 4b). Because the pretrained CNN backbone models of InceptionV3 and ResNet50
used in previous studies were deeper and larger (See Table 9) than our proposed CNN
backbone model, ResNet34, their notably poorer performances on Test Set 2 suggest that
they captured too much noise (overfitting) in our dataset. In [31,33], the noise level in the
background of their episodes was relatively lower than ours, because there were fewer pigs
and the lighting in the pigpen was the same and consistent for all episodes.

Table 9. Number of trainable parameters of all CNN-LSTM networks used in our experiments.

Model Number of Trainable Parameters

InceptionV3-LSTM 56,584,527
VGG16-LSTM 20,750,791

ResNet18-LSTM 17,212,615
ResNet34-LSTM 21,424,834
ResNet50-LSTM 47,607,495

It is worth noting that the precision of the VGG16-LSTM model is undefined in Test
Set 1 and Test Set 2, because this baseline simply predicted all samples as the negative class.
The failure of the VGG16-LSTM baseline to learn the distinctive feature between playing
and non-playing behaviors was also reflected in the value of recall (0.0000) and specificity
(1.0000). VGG16-LSTM baseline’s poor performance could be due to its failure in capturing
the higher complexity of various playing and non-playing behaviors (more complicated
context) in our dataset. Unsurprisingly, by using a relatively shallower ResNet18 as a CNN
backbone model, although with fairly good accuracy in classifying Test Set 1, the CNN-
LSTM network performed poorly on Test Set 2. The results above suggest that to obtain
an optimal CNN-LSTM network for a specific video classification task, it is important to
compare and evaluate CNN backbone models with different depths and widths extensively.

4.2. Spatial Feature and Spatio-Temporal Feature Learning in a CNN-LSTM Network for
Video Classification

As detailed in Section 2.2, we experimented with alternative combinations of (1) meth-
ods of converting spatial feature maps extracted from the last layer of ResNet34 and
(2) LSTM classifier used for final prediction.

Based on the models’ best performance on Test Set 1 (See Table 7a), regardless of the
LSTM classifier, applying global pooling methods to the CNN feature maps produced a better
result than just merely flattening the CNN feature maps in general. However, there is an
exception to this finding—for the LSTM classifiers that fed the last hidden state to the final
fully connected layer for classification, the variant with global average pooling (Variant 4)
performed better than the one with global maximum pooling (Variant 5). A possible reason
for this is that with only the final hidden state utilized, the model could predict better when
the spatial feature was more generic in representing the CNN feature maps.

The best synergy was found on the variant that combines the global maximum pooling
component and the LSTM classifier concatenating all hidden states for final prediction,
in which it achieved the highest accuracy of 92.62%. This outcome might have occurred
because the classifier was able to predict based on the most distinct feature in each feature
map extracted from every frame, which is important for our dataset because our main
objects are the light-colored pigs that presented highly dynamic behaviors in various
backgrounds across the video frames. Nonetheless, if we look at the models’ corresponding
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performance on Test Set 2 (See Table 7b), except for Variant 2, Variant 8, and Variant 11, all
of them performed no better than the majority class baseline. This result is in accordance
with our justification of separating Test Set 2 from Test Set 1 initially, as mentioned in
Section 2.1.4, in which the episodes in Test Set 2 contain more irrelevant noise (dark pixels
and imbalanced pixel intensity).

While our work here focused on identifying the best alternative combinations of a
CNN-LSTM network, there is a need to expand our research to make more comparisons
with other deep-learning-based methods for video classification such as 3D CNN mod-
els [51–53], SlowFast networks [54], and two-stream networks [55,56] after more video
data are collected. All the aforementioned DL-based methods work well on large-scale
video datasets [57] that contain at least 10,000 video clips in the previous studies. At the
same time, we wish to highlight the fact that the SlowFast network and two-stream net-
work are more computationally expensive than our proposed method because they require
hand-crafted features such as optical flow or training of two CNNs.

4.3. Effect of CNN Transfer Learning

Table 10 depicts the performances of the ResNet34-LSTM baseline and its two variants
(Variant 8 and Variant 11) on Test Set 1, with and without fine-tuning a pretrained ResNet34.
All the models performed much worse when ResNet34 was used solely as a spatial feature
extractor without any fine-tuning. Particularly, for Variant 11, which contains more param-
eters induced by the temporal attention mechanism, its performance was even worse than
the majority baseline due to the severe overfitting problem, with an accuracy of 71.19%
when no fine-tuning was performed.

Table 10. Comparison of the models’ performances on Test Set 1 with and without CNN backbone
fine-tuned in the training process. Reported numbers are based on the highest accuracy. FT = with
fine-tuning; FE = without fine-tuning.

Model
Metrics

Accuracy Recall Precision Specificity

Baseline (FT) 0.9056 0.8131 0.7970 0.9347
Baseline (FE) 0.8462 0.5960 0.7152 0.9252

Variant 8 (FT) 0.9262 0.8283 0.8586 0.9570
Variant 8 (FE) 0.8136 0.4545 0.6618 0.9268

Variant 11 (FT) 0.9213 0.8232 0.8446 0.9522
Variant 11 (FE) 0.7119 0.6768 0.4351 0.7229

Figure 6 shows the localization map from the final layer of ResNet34 for a playing
(object play) episode. It can be seen that without fine-tuning the ResNet34, the important
region, i.e., the head of the target pig that shows object play behavior, could not be localized
properly. Hence, it is conceivable that even when a sophisticated spatio-temporal feature
learning method such as temporal attention is applied to a CNN-LSTM network, if the
spatial representation is not learned properly for a new video classification task, the
classification performance could drop substantially because the subsequently extracted
spatio-temporal feature depends on a well-represented spatial feature.
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Figure 6. The localization map from the final layer of CNN backbone in which the important regions
in the sample video frames are highlighted for prediction. The first row is the first input frame, the
second row is the last input frame. (a) Original frame. (b) ResNet34 without fine-tuning. Same for
the baselines and all variants. (c) Variant 8 with fine-tuning. (d) Variant 11 with fine-tuning.

4.4. Selection of Robust Classification Model

As highlighted in Section 2.1.4, our dataset contains a small portion of video episodes
(Test Set 2) with a high level of noise, which is expected because our dataset is obtained
from the real-world environment, where the videos were all recorded under a commercial
pig farm setting encountered commonly in today’s pig production system. In the previous
studies conducted by Chen et al. [31,33,34] and Gan et al. [41], the structure of the pigpen
was simpler, and the number of pigs was much lower than ours. In particular, in the work
of [31,33], all the video recordings were collected from an experimental pig farm. Therefore,
for our work, it is important to identify a robust model that can accurately classify the
pig playing and non-playing behaviors from the video episodes and perform well against
various levels of noise in the videos at the same time.

Based on the models’ best performance on Test Set 2 (See Table 8a), we can see that
by applying temporal attention to all hidden states, Variant 11 could attend to the spatio-
temporal feature with important motion information, even when the level of noise is higher,
producing the most sophisticated performance. It is thus reasonable that a variant with
the best performance on Test Set 2 also performed well on Test Set 1, considering that it
had learned to filter out the noise in extracting the essential spatio-temporal feature. By
selecting Variant 11, which had the best performance on Test Set 2, we only need to bear
a 0.61% drop in accuracy on Test Set 1. If Variant 8, which performed best on Test Set 1, is
selected, we would need to sacrifice the good performance on Test Set 2, with a 6.9% drop
in accuracy. Nonetheless, if all the future real-world datasets obtained are cleaner, such as
Test Set 1, we would suggest to re-train Variant 8. As a side note, our observations made
between Test Set 1 and Test Set 2 suggest that it would be important to install a wide-angle
video camera that can cover all the corners well, minimize the number of objects that can
block the camera angle, and keep the pen uncrowded in order to obtain a clean dataset in
a commercial farm condition.

5. Conclusions

In this paper, we propose a new deep-learning-based framework designed to classify
group-housed pig playing and non-playing behaviors in videos collected from a com-
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mercial pig farm. We managed to develop an end-to-end trainable CNN-LSTM network
without any feature engineering, using a combined architecture of ResNet34 and LSTM. We
demonstrated that for our real-world video dataset that contains a wide range of dynamic
pig behaviors, diversified context, and various levels of noise, the ResNet34-LSTM network
provides the most robust performance when (1) global maximum pooling is applied to
the spatial feature maps extracted from the last layer of the CNN backbone and (2) spatio-
temporal features (hidden states) derived from each video frame are combined via temporal
attention mechanism as an input to the fully connected layer for final prediction. Our work
represents a substantial improvement over the existing work on automatically detecting the
positive behaviors of pigs. Our proposed framework should be useful to SLF researchers
and practitioners who are interested in detecting the positive behaviors of group-housed
pigs and their welfare conditions.

For our future work, we aim to build the playful index per pigpen by aggregating the
frequency of detected playing episodes. Given that only playing and non-playing behaviors’
binary classification is considered in this work, future work should attempt to further
develop a multiclass model of pig playing behaviors. Moreover, in our experiments, we
manually chose Test Set 2 to test our model’s robustness against the noise around the target
pig in the videos due to the camera settings within a commercial pigpen. Going further,
a future study might test our model’s robustness against other types of noises including
image processing noise such as Gaussian noise and salt-and-pepper noise. Last but not least,
to build a more comprehensive group-housed pig positive welfare assessment protocol,
the playing behaviors of pigs from different growth phases should also be investigated.
Notwithstanding these limitations, it should also be noted that the current work has direct
and useful implications on improving the current practice of SLF, while contributing to the
welfare assessment of group-housed livestock animals.
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Appendix A. Ethogram

Table A1. The ethogram below is referred to during our data labeling process. It details out the
description of pig playing behaviors for categories of object play, social play, and locomotor play.

Play
Category Behavior Description Reference

Locomotor Scamper Two or more forward-directed hops in quick succession of each other are
usually associated with excitability. [15]

Pivot Twirling of body on the horizontal plane by a minimum of 90◦ is usually
associated with jumping on the spot. [15]

Toss head Energetic movements of head and neck in quick succession, in both
horizontal and vertical planes. [15]

Flop
Focal animal drops to the pen floor from a normal upright position to
a sitting or lying position. There is no contact with an object or another
individual piglet which could cause the change in position.

[15]

Hop
Focal animal has either its two front feet or all four feet off the pen floor at
one time, through an energetic upwards jumping movement. The animal
continues facing the same original direction for the whole of the behavior.

[15]

Rolling Lying on back, while rocking entire body in side to side movements.
Behavior is terminated when focal animal returns to an upright position. [15]

Gamboling
Energetic running in forward motions within the pen environment.
Normally associated with using large areas of the pen, and occasionally
coming into marginal contact with other piglets (e.g., nudge).

[15]

Social Pushing
Focal animal drives its head, neck or shoulders with minimal or moderate
force into another piglet’s body. Occasionally the behavior results in the
displacement of the target piglet.

[15]

Nudging

Snout of focal piglet is used to gently touch another piglet’s body, with no
retaliation by the recipient, excluding naso–naso contact. Usually occurs in
bouts of behavior in quick succession. More intensive than mere touching,
more gentle than a push. Does not include pushing past other pigs
restricting passage during locomotion or joining a resting pile of piglets.

[8,13–15,22,42]

Chase Focal animal follows the locomotory movement and direction of another
piglet vigorously, e.g., running after a target piglet which is also running. [15]

Push-overs

The focal animal uses its head and shoulders to drive a substantial force at
a target piglet, resulting in the target to lose balance and fall over. A fall is
identified by the target piglet losing its footing for at least two feet,
resulting in its shoulders or hips coming into contact with the floor.

[15]

Play object
together

Focal animal performs object play behavior together with at least another
pig on the enrichment object or toy. [13]

Play invite/Play
fighting invite

Focal piglet performs locomotor or social play behaviors, which are
directed through face-to-face body orientation to another non-playing
piglet. The behaviors are often repeated rapidly and highly energetic.

[15]

Play fighting
(success)

Target piglet responds to the initiator piglets ‘invite’ by pushing back and
engaging in a play response. Play occurs as both individuals push towards
one another, with an occasional head knocking and biting attempts.

[8]

Play fighting
(failure)

Initiator is unsuccessful at eliciting a play response from the target
individual. Target piglet either turns its head/body away from the initiator
piglet, moves away without further reaction, or does not give any
noticeable response to the initiator piglet’s attempts to play

[8]

Object Enrichment
object

Manipulating the enrichment objects (toys or substrates that were
deliberately put into the pen by the farmer) with mouth or snout, resulting
in visible movement of the target.

[14,15]

Pen facilities
Nosing or chewing any object which is part of the pen (e.g., feeder or bar
of sow crate), but excluding the pen wall, floor, and enrichment object. Any
behavior toward a drinking device will not be recorded.

[15]
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