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Abstract: Currently, most machine learning applications follow a one-off learning process: given
a static dataset and a learning algorithm, generate a model for a task. These applications can
neither adapt to a dynamic and changing environment, nor accomplish incremental task performance
improvement continuously. STEP perpetual learning, by continuous knowledge refinement through
sequential learning episodes, emphasizes the accomplishment of incremental task performance
improvement. In this paper, we describe how a personalized temporal event scheduling system
SmartCalendar, can benefit from STEP perpetual learning. We adopt the interval temporal logic
to represent events’ temporal relationships and determine if events are temporally inconsistent.
To provide strategies that approach user preferences for handling temporal inconsistencies, we
propose SmartCalendar to recognize, resolve and learn from temporal inconsistencies based on
STEP perpetual learning. SmartCalendar has several cornerstones: similarity measures for temporal
inconsistency; a sparse decomposition method to utilize historical data; and a loss function based on
cross-entropy to optimize performance. The experimental results on the collected dataset show that
SmartCalendar incrementally improves its scheduling performance and substantially outperforms
comparison methods.

Keywords: STEP perpetual learning; temporal inconsistency; interval temporal logic; temporal event
scheduling; SmartCalendar

1. Introduction

To date, most machine learning applications follow a one-off metaphor: given a static
dataset and a learning algorithm, generate a function or a model for a task. Such a metaphor
prevents these applications from adapting to the dynamic environment and achieving incre-
mental task performance improvement [1–3]. Unlike the one-off metaphor, human learning is
a long-term process with continuous knowledge refinement [4]. Researchers have proposed
several paradigms that model the complexity, diversity, and accumulative nature of human
learning [5–9]: Lifelong Learning, Never-ending learning, and STEP perpetual learning.

Lifelong Learning (LL) learns to obtain knowledge continuously by carrying out sequen-
tial tasks [6–8]. The knowledge of past tasks is accumulated so that the learner can make use
of them to help learn a new task [6]. Never-ending learning is a paradigm that: learns various
types of knowledge, improves subsequent learning based on learned knowledge, and with
sufficient self-reflection [3,5]. NEL defines the problem as an ordered pair comprised of a
set of learning tasks and coupling constraints [3]. However, these solutions do not formally
define learning stimuli, nor do they distinguish learning episodes and working episodes.

Unlike previous studies, STEP perpetual learning (PL) is a novel paradigm that regards
learning stimuli as important as tasks, experience, and performance measures [2,10–13].
Each time a perpetual learning agent (PeLA) encounters stimuli, learning episodes will
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be triggered to improve the agent’s problem-solving knowledge, which leads to better
performance. Therefore, STEP PL enables us to design a special PeLA, SmartCalendar, whose
performance will be progressively better and can satisfactorily perform tasks in the end.

This work chooses the calendar application as one usage scenario to demonstrate how
a PeLA incrementally improves its performance through continuous knowledge refinement.
In today’s fast-paced world, many people use calendar systems to improve productivity and
organize life. Internet giants recognized the importance of calendar systems, and released
their applications, e.g., Google calendar, Microsoft Outlook, and Apple calendar [14–16].
Despite the vast investment in these applications, we find that these applications are still
flawed in the core function, which is helping users schedule events. For instance, if the user
has two events to attend on 1 October 2022. One is an exam from 9 a.m. to 10 a.m. in Room
A201, and the other is a meeting from 10 a.m. to 11 a.m. in Room C408. Because there is
not enough time between two events for the user to move from one location to another,
the user cannot attend the second event on time. We say there is a temporal conflict or
temporal inconsistency (TI) between two events [17] (formal definitions of events and TIs
are given later). In this case, the user can reschedule events by adjusting the starting point
and ending point of events. Considering that it is difficult for users to detect all conflicts
in time, especially those caused by the transition of events, an intelligent calendar system
should be able to detect and solve temporal conflicts between events. However, none of the
aforementioned calendar applications has such capabilities.

Researchers proposed some scheduler models [18–22] to resolve conflicts. TASHA [18]
utilizes rules based on event types to resolve temporal conflicts. ADAPTS employs a
Decision Tree (DT) to make decisions from four strategies: modify the original event,
modify the new event, modify both events, and delete the original event [19,20]. As
an updated version, Ref. [22] adopts a non-linear programming model which objects to
minimizing the duration changes of conflicting events. However, the above scheduler
models are still far from an intelligent event scheduling system. They treat all events as
equally important [21], which contradicts the highly personalized nature of the calendar
scene. Refs. [19,22] trained a DT model on the complete dataset, which is incompatible with
the cumulative nature of the calendar system. Additionally, Refs. [19,20,22] oversimplify
the user’s actual strategies by categorizing solutions into four classes.

1.1. Challenges

Here are questions an intelligent event scheduling system must answer:

1. How to schedule temporally conflicting events using existing knowledge?

What the system knows is past events and conflicts with solutions. The number of
events and TIs the user has per day is limited, whereas most of the attributes of a TI are
discrete attributes with dozens of values. Therefore, for a long time after the use, the
system’s knowledge is insufficient for constructing a conventional ML model to solve
TIs directly [1,23]. In this work, we propose three methods replicate solutions of identical
cases (RSIC), reference solutions of similar cases (RSSC), and generate solutions with strategy
distribution (GSSD) to deal with TIs in different scenarios: Given a TI, RSIC looks for cases
where user preferences are determined, i.e., the same TI in history, then adopts the strategy
used in the same TI. RSSC seeks similar TIs based on the importance of attribute values and
draws on their solutions to generate a strategy. If there does not exist the same or similar
TI, GSSD obtains a strategy from the distribution of historical user decisions. Therefore,
at all stages of operation, the system chooses the most appropriate method to resolve the
current conflict.

2. How to consistently improve the system’s performance?

As a personalized system, the user’s preference is the golden rule for addressing
TIs, which requires the system to incrementally improve its performance to adapt to
an individual’s preferences over time. To this end, we design the stimuli-driven learn-
ing processes according to the STEP PL framework: The completion of each working
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episode drives the system to resolve knowledge inadequacy by recording relevant data
and revising the corresponding meta-knowledge. Disagreement between the user and the
system on the TI solution prompts the system to address knowledge deficiency by refining
the problem-solving model. As a result, the system has more data for reference and is
gradually approaching users’ decision preferences. Eventually, the system can generate
user-acceptable solutions to TIs.

1.2. Contributions

Our work’s contributions are summarized as follows:

1. Interval temporal logic (ITL) only considers the original interval relationships within
events. While in real life, realistic events could occur at various locations, and the
transition of events cannot be ignored for the fulfillment of an event. Thus, we propose
complete temporal classes based on ITL to identify temporal relations by considering
the events’ transition.

2. To the best of our knowledge, we are the first to model temporal events scheduling
and management system under STEP PL. We introduce a theoretical model to pro-
vide guidelines to develop algorithms to recognize, resolve, and more importantly,
learn from TIs. The stimuli-driven learning processes enable the system to realize
incremental performance improvement.

3. There is no existing calendar dataset that matches our definitions. We collected a
five-user dataset, which is available at https://github.com/hensontang9/Temporal_
conflicts, (accessed on 14 September 2022). For each user, there are about 4000
events and 600 Tis. Experiments on the collected dataset verified the feasibility and self-
improvement capability: Our system exhibits significantly better performance than the
comparison methods. Moreover, it incrementally improves its scheduling performance
during use. A prototype is implemented on the Android platform, which is available at
https://github.com/hensontang9/SmartCalendar, (accessed on 14 September 2022).

2. Related Work
2.1. Temporal Logics

Temporal logics are systems of rules and symbolism for temporal representation and
reasoning, which are categorized by Refs. [17,24]: “propositional versus first-order”, “linear
versus branching”, “point versus interval”, etc. ITLs are first-order, linear time, intervals,
and continuous operators [17,25,26] and possess a richer representation formalism to
define interval relations than the point-based scheme due to the additional expressiveness
obtained by reasoning about time interval [24,27]. Hence, we chose ITL to help qualitatively
delineate temporal relations within events.

2.2. Temporal Scheduling Applications

To the best of our knowledge, the existing temporal scheduling applications focus
on either scheduling periodical events [28–31], tracking events that users have interest
in [32–34], efficiently creating and sharing appointments according to the given availability
preference [35,36], or planning events with the minimized start-to-end time duration [37,38].
They do not cover developing an event scheduling system that acquires the capability to
resolve temporal conflicts and improve performance over time.

2.3. Incremental Performance Improvement Paradigms

M.I. Jordan et al. pointed out that one of the challenges in machine learning is to
develop systems that never stop learning new tasks and improving their performance
continuously [3]. Related explorations include lifelong learning [6–8], never-ending learn-
ing [5], perpetual learning [2,10–13], etc.

Lifelong learning agents learn one task at a time, continuously acquire new knowledge
and refine existing knowledge [6,7,39]. By adding a specific KB, the capability to identify
new tasks, and the ability to learn on the job, Z. Chen et al. extended the definition of LL
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and employed the LL method in the field of topic modeling [8,40,41]. NEL is a system that
can improve itself using the knowledge learned from self-supervised experience [5]. As a
case study, Never-Ending Language Learner has been equipped with 120 million candidate
beliefs by extracting information from the Web [9,42,43].

There are several important differences between the above paradigms and STEP PL:
First, the learning episodes in PL are discrete and triggered by stimuli, whereas learning in
the aforementioned approaches is not triggered by any events and is largely continuous.
Second, PL emphasizes the accomplishment of incremental task performance improvement
through sequential learning episodes, whereas the above work is primarily oriented toward
knowledge acquisition. In this paper, our calendar system is designed following the concept
of STEP PL.

3. Preliminaries
3.1. Events

An event ε is defined to be:

ε = (ε, α, τ, ϑ, p, L, ζ, ι) (1)

where

- ε indicates the event type, ε ∈ {work, study, social, family, entertainment, personal};
- α represents the activity, α ∈ Actε where Actε is the set of activities belonging to event

type ε;
- τ is the time interval, τ = (St, St + Dur), St is the starting point, Dur is the duration;
- ϑ denotes an event’s flexibility, ϑ ∈ {rigid, flexible}. The time intervals of rigid events

need to be strictly adhered to, while that of flexible events can be adjusted;
- p represents the host and participant, p =

(
phost, ppart

)
, in which

- phost denotes a host in a set phost of all events’ hosts, i.e., phost ∈ phost;
- ppart is a participant in a set ppart of all events’ participants, i.e., ppart ∈ ppart;

- L indicates the location, L =
(
Lname,Llong, Lla

)
, Lname, Llong and Lla are the name,

longitude, and latitude of the location;
- ζ denotes the periodicity, ζ ∈ {once, every day, every week, every month, every year}
- ι is a flag representing the whole event’s importance, ι ∈ {important, normal}.

3.2. Complete Temporal Classes

Based on the primitive relationship Meets [25,44,45], Figure 1 depicts the interval
relationships between τi and τj (τi and τj are time intervals of events εi and ε j) [17]:
Before

(
τi, τj

)
, Overlaps

(
τi, τj

)
, Starts

(
τi, τj

)
, During

(
τi, τj

)
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(
τi, τj
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τi, τj
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Figure 1. Interval temporal relations for events εi and ε j [17].
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However, in the calendar scenario, events’ transitions cannot be ignored since events
may occur in different locations. Let τij =

(
Stij, Stij + Durij

)
denote the time interval

to travel from Li to Lj (Li, Lj are locations where εi, ε j take place. Stij and Durij are
the starting point and duration of transition). If εi and ε j can be realized concerning
a single given circumstance, then εi and ε j are consistent with each other and we use
�
(
εi, ε j

)
to denote that. Otherwise, we say that they are inconsistent and this is denoted as

2
(
εi, ε j

)
. We propose temporal class (TC) to represent the temporal relation between two

events by considering events’ transitions.
There does not exist temporal inconsistency between εi and ε j and both events can be

scheduled without compromise if any of the following statements is true:
- Meets

(
τi, τj

)
, when Durij = 0 (NTI−M0 )

- Before
(

τi, τj

)
, when Durij = 0 (NTI− B0 )

- Before
(

τi, τj

)
∧ Stj ≥ Stij + Durij, when Durij > 0 (NTI− B1 )

The presence of overlapping time intervals indicates direct temporal conflicting cir-
cumstances. Direct temporal conflicting circumstances can be further divided into the
following two subcases. The first subcase is that conflicting events occur at the same
location and the user does not need extra time to commute

(
Durij = 0

)
. We are aware that

there is a direct temporal inconsistency between εi and ε j without the travel time complication
if any of the following conditions is true:

- Overlaps
(

τi, τj

)
, when Durij = 0 (DTI−O0)

- Starts
(

τi, τj

)
, when Durij = 0 (DTI− S0)

- Equals
(

τi, τj

)
, when Durij = 0 (DTI− E0)

- During
(

τi, τj

)
, when Durij = 0 (DTI−D0)

- Finishes
(

τi, τj

)
, when Durij = 0 (DTI− F0)

Let 2dti−nt
(
εi, ε j

)
denote the following:

2dti−nt

(
εi, ε j

)
≡def

[
2
(

εi, ε j

)
∧ [DTI−O0 ∨DTI− S0 ∨DTI− E0 ∨DTI−D0 ∨DTI− F0]

]
. (2)

The second subcase is that the locations of conflicting events are different and the user
needs extra time to travel from one location to another

(
Durij > 0

)
. We are aware that

there is a direct temporal inconsistency between εi and ε j with the travel time complication if
any of the following conditions are true:

- Overlaps
(

τi, τj

)
, when Durij > 0 (DTI−O1)

- Starts
(

τi, τj

)
, when Durij > 0 (DTI− S1)

- Equals
(

τi, τj

)
, when Durij > 0 (DTI− E1)

- During
(

τi, τj

)
, when Durij > 0 (DTI−D1)

- Finishes
(

τi, τj

)
, when Durij > 0 (DTI− F1)

Let 2dti−tc
(
εi, ε j

)
denote the following:

2dti−tc

(
εi, ε j

)
≡def

[
2
(

εi, ε j

)
∧ [DTI−O1 ∨DTI− S1 ∨DTI− E1 ∨DTI−D1 ∨DTI− F1]

]
. (3)

Let 2dti
(
εi, ε j

)
denote the direct temporal inconsistency between εi and ε j:

2dti
(
εi, ε j

)
≡def

[
2dti−nt

(
εi, ε j

)
∨ 2dti−tc

(
εi, ε j

)]
. (4)
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Even if εi and ε j do not overlap, the completion of events will be compromised if the
duration of commuting time is greater than the gap between εi and ε j. We refer to this kind
of conflicts as indirect temporal inconsistencies (ITI) and denote it by 2iti

(
εi, ε j

)
:

2iti
(
εi, ε j

)
≡def

[
2
(
εi, ε j

)
∧ [ITI−M1 ∨ ITI− B1]

]
, (5)

where ITI−M1 and ITI− B1 are cases met the following conditions:

- Meets
(

τi, τj

)
, when Durij > 0 (ITI−M1)

- Before
(

τi, τj

)
∧ Stj

〈
Stij + Durij, when Durij

〉
0 (ITI− B1)

Temporal inconsistency between εi and ε j, denoted as 2ti
(
εi, ε j

)
, is defined to be:

2ti
(
εi, ε j

)
≡def

[
2dti

(
εi, ε j

)
∨ 2iti

(
εi, ε j

)]
. (6)

It is noteworthy that when a user commutes to another location it is subjective and
not fixed. Here, we assume the user commutes immediately after completing one event,
corresponding to the shortest conflict length of all temporally conflicting cases.

3.3. Strategies to Overcome Temporal Conflicts

As an essential basis for adjusting events, the importance of an event is collectively
influenced by attributes other than time information. These attributes are called decision
attributes, including event type, activity, host, participant, location name, and periodicity.

An action A defines the modification applied to an event’s time point:

A =
(

atype, atime
)

, (7)

where action type atype ∈ {hold, advance, postpone, abandon}. hold implies remaining a
time point unchanged; advance/postpone represents adjusting a time point earlier/later;
abandon indicates discarding the time interval. atime represents the time length to adjust,
which is zero when atype is hold or abandon.

The strategy C describes adjustments applied to a TI’s events, and is defined as:

C = (A1,start, A1,end, A2,start, A2,end), (8)

where Ai, start and Ai,end(i = 1, 2) are actions applied to the starting point and ending point
of the i-th event in the TI.

We use the strategy type ctype to qualitatively analyze a TI, which is defined to be:

ctype =
(

atype
1,start, atype

1,end, atype
2,start, atype

2,end

)
, (9)

where atype
i,start and atype

i,end (i = 1, 2) are action types of Ai, start and Ai,end, respectively.
For brevity, we use csys

n and cuser
n to denote the strategy type that the system suggested

and the user adopted in TIn, respectively.

4. STEP PL Framework

STEP PL focuses on developing a PeLA that can consistently and continuously improve
its performance at tasks over time [2]. As depicted in Figure 2, a PeLA runs in an episodic
manner, where an episode can be classified as a working or learning episode.
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Working episode. Each time the agent performs a task, it first queries corresponding
knowledge in the knowledge base (KB), i.e., experience E. Based on the knowledge queried,
the problem-solving component generates a result for the task. By evaluating the processing
result with metrics P, we can tell how well the agent performs. However, the agent may fail
to achieve the desired performance for the task if experience E is flawed or the environment
changes. Hence, the agent improves its performance through the stimuli-driven learning
processes, where learning stimuli S are served by knowledge deficiencies. Once the agent
detects a stimulus, it knows its knowledge in E cannot properly and adequately handle the
task. At this point, a subsequent learning episode is triggered by the stimulus.

Learning episode. In a learning episode, the learning component uses stimulus-specific
algorithms or heuristics to augment or revise the existing knowledge, resulting in an
improvement in P. In the long-running process, the agent refines E continuously, leading
to incremental performance improvements of P at T over time. In the end, the agent can
satisfactorily perform tasks in T.

5. Learning through Solving Temporal Conflicts

This section first briefly introduces the system from STEP PL perspectives, then de-
scribes approaches to resolve TIs, and finally presents the stimuli-driven learning processes.

5.1. STEP PL Perspectives of the SmartCalendar System

Figure 3 illustrates how SmartCalendar consistently and incrementally improves
performance from the STEP PL perspectives. We define the Tasks, Learning stimuli,
Performance measure, and Experience as follows.

- Tasks: We define tasks T = { T1, T2}. T1 is an arrangement of an ordinary event that
does not temporally conflict with others. T2 is a rescheduling of temporally conflicting
events.

- Stimuli: We define learning stimuli S = {S1, S2, S′2}. S1 and S2 stand for successful
processing tasks T1 and T2, respectively; S′2 refers to the user disagreeing with the
system suggestion.

- Experience: we define experience E as the knowledge base that saves data regarding
past events and TIs, and meta-knowledge including the IPR profile union, historical TIs’
dvalues, system-user strategy matrix, and model parameters.

- Performance metric: we define performance metric P as the set containing two metrics.
The first metric is weighted cross-entropy, which evaluates the distance between the
system’s prediction and the user’s decision. And the second metric is strategy type
acceptance rate, which assesses whether the system’s strategy type is compatible with
the user’s.

In Section 5.2, we introduce methods for resolving TIs. In Section 5.3, we propose
three learning components LC1, LC2 and LC3 to refine knowledge regarding events, TIs
and update models. After processing T1, S1 triggers LC1. After processing T2, the system
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generates a suggestion to reschedule conflicting events. If the user accepts the system’s
suggestion, S2 triggers LC1 and LC2 sequentially. Otherwise, S′2, the inconsistency between
the system’s and the user’s decision, triggers LC1, LC2 and LC3 sequentially.
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5.2. Resolutions for Temporal Conflicts
5.2.1. Heuristics

The system provides recommendations based on the following principles.

Principle 1: A feasible strategy is reasonable and effective. Reasonableness demands that a
strategy satisfies events’ flexibility, makes as few changes as possible, and obeys the linearity of time:
the starting point should precede the ending point. Effectiveness requires a strategy conducive to the
TI’s settlement.

Given a TIn comprises εi and ε j (Sti ≤ Stj). Table 1 lists all reasonable strategy types{
ctype
(l)

}17

l=1
when both events are flexible.

Table 1. All reasonable strategy types when both events are flexible.

Optional
Pairs of Action

Types for εj

Optional Pairs of Action Types for εi

hold−
hold

postone−
hold

postone−
advance

advance−
advance

postone−
postone

abandon−
abandon

hold− hold ctype
(5) ctype

(6) ctype
(7) ctype

(8) ctype
(9)

postpone−hold ctype
(1) ctype

(10) ctype
(11)

hold−advance ctype
(12) ctype

(13)

advance− advance ctype
(2) ctype

(14) ctype
(15)

postpone− postpone ctype
(3) ctype

(16) ctype
(17)

abandon− abandon ctype
(4)

The effectiveness of a strategy type is determined by comparing the conflict length
with the adjustable length of events in the specified directions. We first describe how to
calculate the adjustable length of a single event in a specific direction. Let εi,day denote
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the set of events on the day of εi and that do not conflict with εi. Denote by εi,pre ⊆ εi,day,
εi,next ⊆ εi,day the set of events that end no later than Sti, and the set of events that start
no earlier than Sti + Duri, respectively. If εp is the event with the largest ending point in
the εi,pre, then we say εp is the previous event of εi, denoted as Previous(εp, εi). If εp is the
event with the smallest starting point in the ”i,pre, then εp is the next event of εi, denoted
as Next(εp, εi). Denote by Durshorten, Duradvance, and Durdelay the maximum length that
an event can be shortened, started earlier, and ended later, respectively. The value of
Durshorten is 0 if the event is rigid, and half the event’s duration otherwise. The Duradvance

and Durdelay of εi, denoted as Duradvance
i and Durdelay

i , are given by:

Duradvance
i =


0, εi is rigid

Sti − Stp − Durp, ∃εp satis f ies Previous(εp, εi)

Sti − Timest(αi), otherwise

, (10)

Durdelay
i =


0, εi is rigid

Stp − Sti − Duri, ∃εq satis f ies Next(εp, εi)

Timeend(αi)− Sti − Duri, otherwise

, (11)

where Timest(αi) and Timeend(αi) are the user-defined earliest starting point and latest
ending point of the event type αi, respectively.

For brevity, we use the q-th time point (q ∈ {1, 2, 3, 4}) to refer to the first event’s
starting point and ending point, and the second event’s starting point and ending point
in a TI, respectively. For the q-th time point in TIn, its adjustable length under includes
two aspects: the length that shortening or moving an event Dursingle

n, q, l , and the length that

additionally shortens the duration after moving an event Duradd_short
n,q, l , where Dursingle

n, q, l and

Duradd_short
n,q, l are defined to be:

Dursungle
n,q,l



0, q− th action type is hold or abandon

Durshorten
i , q ∈ {1, 2} ∧ l ∈ {5, 6, 10, 12, 14, 16}

Duradvance
i , q ∈ {1, 2} ∧ l ∈ {7, 11, 17}

Durdelay
i , q ∈ {1, 2} ∧ l ∈ {8, 13, 15}

Durshorten
j , q ∈ {3, 4} ∧ l ∈ {1, 10, 11, 12, 13}

Duradvance
j , q ∈ {3, 4} ∧ l ∈ {2, 14, 15}

Durdelay
j , q ∈ {3, 4} ∧ l ∈ {3, 16, 17}

(12)

Duradd_short
n,q, l =



Durshorten
i , q == 1∧ l ∈ {8, 13, 15}

Durshorten
i , q == 2∧ l ∈ {7, 11, 17}

Durshorten
j , q == 3∧ l ∈ {3, 16, 17}

Durshorten
j , q == 4∧ l ∈ {2, 14, 15}

0, otherwise

. (13)

Dursingle
n,l , the adjustable length that shortens or moves events in TIn under ctype

(l) , is
defined as:

Dursingle
n,l =


0, l ∈ {4, 9}

Dursingle
n,2, l + Dursingle

n,3, l , l ∈ {1, 3, 6, 7, 10, 11, 16, 17}

Dursingle
n,1, l + Dursingle

n,4, l , l ∈ {2, 5, 8, 12, 13, 14, 15}

. (14)
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Durmax_adjust
n,l , the maximum length that events in TIn can be adjusted under ctype

(l) , is
given by:

Durmax_adjust
n,l

=

Dursingle
n,2, l + Duradd_short

n,2, l + Dursingle
n,3, l + Duradd_short

n,3, l , l ∈ {1, 3, 4, 6, 7, 9, 10, 11, 16, 17}

Dursingle
n,1, l + Duradd_short

n,1, l + Dursingle
n,4, l + Duradd_short

n,4, l , otherwise

(15)

The minimum length to resolve TIn with ctype
(l) , denoted as Durmin_require

n,l , is defined as:

Durmin_require
n,l =


0, l ∈ {4, 9}

Sti + Duri + Durij − Stj, l ∈ {1, 3, 6, 7, 10, 11, 16, 17}
Stj + Durj + Durji − Sti, l ∈ {2, 5, 8, 12, 13, 14, 15}

. (16)

If Durmax_adjust
n,l is no smaller than Durmin_require

n,l , then we say ctype
(l) is effective in resolv-

ing TIn, the time length to be adjusted is assigned in proportion to their adjustable length.
Algorithm 1 formalizes this idea.

Principle 2: Adjustments should be consistent with the user’s preference The calendar’s
personalized nature dictates that the user’s preference is the golden rule for addressing TIs. Assuming
that the user’s preference for the attribute values and behavior pattern is constant, the user should
handle similar situations the same way.

Algorithm 1: Allocate Time Length to a Strategy Type

Input: A conflict : TIn

A strategy type : ctype
(l) (l ∈ {1, 2, . . . , 17})

Output: A binary flag of effectiveness: effect_flag
Time length for current strategy type: Durc_time

1. Calculate Durmax_adjust
n,l , Durmin_require

n,l

2. If Durmax_adjust
n,l < Durmin_require

n,l :
3. effect_flag ← False, Durc_time ← [−1,−1,−1,−1]
4. Else:
5. effect_flag ← True, Durc_time ← []
6. For q = 1, 2, 3, 4 do:

7. Dura_time ← Dursingle
n,q, l ∗min

(
Durmin_require

n,l

Dursingle
n,l

, 1
)
+

Duradd_short
n,q, l

∑4
w=1 Duradd_short

n,w, l
∗

max
(

Durmin_require
n,l − Dursingle

n,l , 0
)

8. Durc_time ← Durc_time + Dura_time

9. Return effect_flag, Durc_time

In the following, we introduce three approaches to resolve TIs: RSIC, RSSC, and GSSD.
After encountering a TI, the system tries the above methods in turn until it gets a feasible
strategy.

5.2.2. Replicating Solutions of Identical Cases (RSIC)

Two events are the same if they have the same values in attributes other than the
starting point and ending point. Two TIs are the same if they have identical temporal classes
and conflict lengths, and their events are correspondingly the same. Suppose TIm consists
of two events Stk and Stl (Stk ≤ Stl , m < n). If TIm, TIn are the same TIs, then we say
that TIm occurs again, and the strategy adopted in TIm should be followed according to
Principle 2.
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5.2.3. Referencing Solutions of Similar Cases (RSSC)

According to Principle 2, the system can solve a TI by referring to its similar TI, where
the similarity between TIs depends on three aspects: (1) the importance difference between
conflicting events, (2) the TCs, and (3) the feasibility of the target strategy type.

The importance difference between two events is calculated from two perspectives: the
importance of individual decision attribute values and the order relation between them. For
brevity, the values discussed below refer to the decision attribute values. We first introduce
how to derive a value’s importance. Values are divided into two categories: common values and
rare values. A value is a common value if it occurs no less than a specified number of times, i.e.,
the corresponding threshold in θrare =

(
θetype, θact, θhost, θpart, θloc, θperio

)
; otherwise, it is a

rare value. A common value’s importance is evaluated by its frequency in important events,
whereas a rare value’s importance is estimated using hidden correlation [46,47], as defined below.

Given two events, one has a value valuei on attribute attr1, and the other has a
value valuej on attribute attr2. If two events have an identical value valuek on one of
the remaining attributes, then we say valuek is one co-involved value for valuei and valuej.
Hidden correlation [46] between valuei and valuej, denoted as HCij, is defined as:

HCij =
∑k∈K(

(
v(i|k)− v(i)

)(
v(j|k)− v(j)

)
√

∑k∈K

(
v(i|k)− v(i)

)2
√

∑k∈K

(
v(j|k)− v(j)

)2
, (17)

where v(i) and v(j) are the frequency at which events containing valuei and valuej are
important, respectively; v(i|k) and v(j|k) indicate the frequency of events involving valuei
and valuek, valuej and valuek are important, respectively. K is the set of all co-involved
values for valuei and valuej. Given a rare value, common values under the same attribute
are alternative values. The extent to which an alternative value matches the event is assessed
by the transition probability (TP) [46]:

TPi = ∑j∈CVHCij, (18)

i′ = arg max
i

TPi, s.t. TPi ≥ θtrans, (19)

where i represents the alternative value valuei, CV is the set of common values in the
event, θtrans is the threshold at which an alternative value can be selected. A rare value’s
importance is temporarily substituted by that of valuei′ if there exists valuei′ obtained by
Eq. (18) and is estimated by its frequency in important events otherwise. For two conflicting
events, we construct d f re =

(
d f re

1 , d f re
2 , . . . , d f re

6

)
, where d f re

i is the importance difference
between their i-th values.

Next, we describe how to establish order relations between values. An Importance
preference relation (IPR) is a special case of strict partial order on a set of events, represented
by the symbol � (See Appendix A for proof) [48–50]. Given an important event εa and
a normal event εb, we denote by εa � εb the fact that the user prefers εa to εb, which is
equivalent to

(
εa, αa, phost

a , ppart
a ,Lname

a , ζa

)
�
(

εb, αb, phost
b , ppart

b ,Lname
b , ζb

)
.

Property 1. Provided that the operations are meaningful for an IPR they are applied to, the IPR
still holds if adding or subtracting the same value to both sides of the relation.

According to Property 1, we introduce Filter(εa, εb) to filter the duplicate information
by replacing the same value in εa as in εb with “null”. We use IPRL and IPRR to denote
the left and right-hand side in an IPR. The union of the left or right-hand side of two IPRs,
represented by the symbol ∪, is a tuple combining elements of the corresponding positions.
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Theorem 1. Given IPRi and IPRj, the strict partial order still holds for the union of IPRL
i and

IPRL
j , and the union of IPRR

i and IPRR
j , which is denoted as IPRi ∪ IPRj:

IPRL
i ∪ IPRL

j � IPRR
i ∪ IPRR

j . (20)

If the left and right-hand sides correspond the same, then we say IPRi is equal to IPRj,
denoted as IPRi = IPRj. The original information of IPRi, denoted as OI(IPRi), takes the
value null if there exists historical relations IPRm, IPRn, . . . , IPRk whose union equals to
IPRi and takes the value itself otherwise.

We use IPRL
i r IPRR

j to denote relative complement of IPRL
i in IPRR

j , which is the

tuple of elements in IPRL
i but not in IPRR

j .
Theorem 2. The extra information inferred from IPRi and IPRj, denoted as EI

(
IPRi, IPRj

)
, is

defined to be:

EI
(

IPRi, IPRj

)
=

IPRL
i r IPRR

j � IPRR
i r IPRL

j , subValue
(

IPRL
j , IPRR

i

)
∧ subValue

(
IPRR

j , IPRL
i

)
null, otherwise

,
(21)

where subValue
(

IPRL
j , IPRR

i

)
takes the value True if all not-null elements of IPRL

j are also

elements of IPRR
i , False otherwise.

For a tuple pair 〈tp1, tp2〉, IPRi is a regular subIPR if it fits subValue
(

IPRL
i , tp1

)
∧

subValue
(

IPRR
i , tp2

)
; IPRi is an inverse subIPR if it meets subValue

(
IPRL

i , tp2
)

∧ subValue
(

IPRR
i , tp1

)
.

IPR profile union. An IPR profile Γn is the transitive closure of all IPRs in OIPRn and
EIPRn, where OIPRn and EIPRn are sets of all original information and extra information
derived from TIn−1 to TIn, respectively [48]. An IPR profile union Ωn is the transitive
closure of IPRs in IPR profile Γn and past IPRs in IPR profile union Ωn−1, which is defined
to be:

Ωn =

{
Γn, n = 1

Γn ∪Ωn−1, otherwise
. (22)

We quantify the order relation between εi and ε j by the following procedure:

1. Get a tuple pair Filter
(
εi, ε j

)
, Filter

(
ε j, εi

)
by filtering out duplicate information.

2. Look for regular subIPRs and inverse subIPRs of Filter
(
εi, ε j

)
, Filter

(
ε j, εi

)
.

3. Construct dsubIPR =
(

dsubIPR
1 , dsubIPR

2 , . . . , dsubIPR
6

)
for each subIPR. For a subIPR

IPRk, dsubIPR
i is defined as:

dsubIPR
i =


0, i− th element of IPRL

k is null

U/NIPRk , IPRk is a regular subIPR

−U/NIPRk , IPRk is an inverse subIPR

, (23)

where U is a hyper-parameter, NIPRk is the number of not-null values in the IPRL
k .

Construct dIPR
n =

(
dIPR

1 , dIPR
2 , . . . , dIPR

6
)
, where dIPR

i is the largest value on the i-th
element obtained from all subIPRs.

Dvalue. We use dvalue dn = d f re
n + dIPR

n to indicate the importance difference be-
tween two events in TIn. Let Mn = (d1, d2, . . . , dn−1) denote the matrix that consists
of dvalues for past n-1 TIs. Given dn and Mn, X = (x1, x2, . . . , xn−1)

T denote the coeffi-
cients corresponding to Mn, and is defined as follows through the sparse decomposition (SD)
process [1,51–53]:

min
X
‖X‖1, s.t. MnX = dn, (24)
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where ‖·‖1 is the L1-regularization and gives as few non-zero coefficients as possible.
We then introduce how the system utilizes the previous strategies. The historical

strategies can be used directly or after being modified by Trans(·), which is a function that
transforms a strategy type using the following steps: First, swap action types on different
events. Second, swap action types on each event’s starting point and ending point and
reverse adjustment directions. Two strategy types ctype

(i) and ctype
(j) are inverse strategy types,

denoted as ctype
(i) ↔ ctype

(j) , if the following condition holds:

ctype
(i) ↔ ctype

(j) , s.t.Trans
(

ctype
(i)

)
= ctype

(j) , Trans
(

ctype
(j)

)
= ctype

(i) . (25)

The set of all inverse strategy types is
{

ctype
(1) ↔ ctype

(6) , ctype
(2) ↔ ctype

(8) , ctype
(3) ↔ ctype

(7) , ctype
(4)

↔ ctype
(9) , ctype

(10) ↔ ctype
(10), ctype

(11) ↔ ctype
(16), ctype

(12) ↔ ctype
(12), ctype

(13) ↔ ctype
(14), ctype

(15) ↔ ctype
(17)

}
.

We say TIn and TIm have inverse flags if ζi 6= ζj and ζi, ζj are identical with ζl , ζk,
respectively. We train two calibrated support vector machine (SVM) [1,54,55] fR and f I on{(

xi, j, yregular
i, j

)}
and

{(
xi, j, yinverse

i, j

)}
, where i, j denotes TIi, TIj, i 6= j. xi, j is the training

sample that contains TCs, feasible strategy types, and flags within TIi and TIj. yregular
i, j and

yinverse
i, j are true if feasible strategy types, flags, and the user’s strategy type of TIi and TIj

are all the same or inverse, respectively; false otherwise.
The regular TC and inverse TC between TIm and TIn, denoted as TCregular(TIm, TIn)

and TCinverse(TIm, TIn), are given by:

TCregular(TIm, TIn) ≡def

[
fR(xm, n) ≥ θTC ∨ TCm == TCn

]
, (26)

TCinverse(TIm, TIn) ≡def

[
f I(xm, n) ≥ θTC

]
, (27)

where TCm and TCn are temporal classes of TIm and TIm, respectively; θTC is the threshold
for the SVM model.

Let STIrsc(TIm, TIn) and STIisc(TIm, TIn) denote the regular similar case and inverse
similar case between TIm and TIn:

STIrsc(TIm, TIn) ≡def

[
cuser

m is f easible ∧ xm ≥ θSD ∧ TCregular(TIm, TIn)
]
, (28)

STIisc(TIm, TIn) ≡def

[
Trans(cuser

m ) is f easible ∧−xm ≥ θSD ∧ TCinverse(TIm, TIn)
]
. (29)

Similar TIs between TIm and TIn, denoted as STI(TIm, TIn), is defined to be:

STI(TIm, TIn) ≡def[STIrsc(TIm, TIn) ∨ STIisc(TIm, TIn)]. (30)

We use STI to denote all similar TIs of TIn. Let xl
m, ol

n denote score on ctype
(l) obtained

by TIm and all similar TIs of TIn, respectively. xl
m, ol

n are given by:

xl
m

=

|xm|,
(

STIrsc(TIm, TIn) ∧ cuser
m == ctype

(l)

)
∨
(

STIisc(TIm, TIn) ∧ Trans(cuser
m ) == ctype

(l)

)
0, otherwise

,
(31)

ol
n = ∑m∈STIxl

m. (32)

ŷl
n, the possibility that the system recommends ctype

(l) , is given by:

ŷl
n =

exp
(

ol
n

)
∑17

k=1 exp
(
ok

n
) . (33)
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Let ŷn =
(
ŷ1

n, ŷ2
n, . . . , ŷ17

n
)

denote the prediction probability distribution of TIn. Let
yn =

(
y1

n, y2
n, . . . , y17

n
)

denote the label probability distribution, where yl
n is 1 if the user

adopted ctype
(l) and 0 otherwise. The system suggests the strategy type with the highest

prediction probability returned by Z(ŷn):

Z(ŷn) = ctype
(l) , where l = arg max

k
ŷk

n. (34)

Algorithm 2 describes how to find similar TIs and generate strategies based on
KB(n, wn), where KB(n, wn) specifies the contents of KB correspond to TIn and
wn =

(
θrare

n , θmatrix
n , θtrans

n , θSD
n , θTC

n
)

assigns values of thresholds.

Algorithm 2: Resolve Temporal Inconsistencies by Similar Circumstances

Input: A conflict : TIn
Knowledge base : KB(n, wn)

Output: System’s suggestion : Csys
Initialization:

Csys ← [[“hold”,−1], [“hold”,−1], [“hold”,−1], [“hold”,−1]] # -1 indicates an invalid action
STI← [] # indexes of all similar TIs
Durall_c_time ← [] # adjustment lengths for all possible strategy types

1. Get d f re
n and dIPR

n , dn ← d f re
n + dIPR

n
2. Sparse decomposition: min

X
‖X‖1, s.t. MnX = dn

3. For i = 1, 2, . . . , n− 1 do:
4. If xi ≥ θSD and TCregular(TIi, TIn):
5. Get effect_flag and Durc_time of cuser

i # by Algorithm 1
6. Elif −xi ≥ θSD and TCinverse(TIi, TIn):
7. Get effect_flag and Durc_time of Trans

(
cuser

i
)

# by Algorithm 1
8. Else:
9. effect_flag ← False
10. If effect_flag is True:
11. Update STI and Durall_c_time

12. If exists similar TI(s) with TIn:
13. Generate prediction probability distribution ŷn # by Eq. (33)
14. Choose a strategy type ctype

(l) # by Eq. (34)

15. Get corresponding time length of ctype
(l) , generate suggestion Csys

16. Return Csys

5.2.4. Generating Solutions with Strategy Distribution (GSSD)

The generic solution GSSD exploits the system-user strategy matrix Mctype:

Mctype =

 n1,1 · · · n1,17
...

. . .
...

n17,1 · · · n17,17

 =
(
ni,j
)
∈ R17×17, (35)

where ni,j is the number of times the system suggested ctype
(i) and the user adopt ctype

(j) . The
main diagonal elements indicate the number of times the system and the user have agreed,
while elements outside represent discrepancies. Let Pj =

nj,j

∑17
k=1 nj,k

denote the recommendation

probability that the system suggests ctype
(j)

(
Pj = 0 when nj,j = 0

)
. The matrix is gradually

populated, and the information it carries is partial and incomplete if the number of TIs is less
than the threshold θmatrix. In this case, the system randomly chooses one from all feasible
strategies. Otherwise, the system suggests the strategy with the highest recommendation
probability. Algorithm 3 formalizes the above process.
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Algorithm 3: Generate a suggestion with strategy distribution

Input: A conflict : TIn
The system-user strategy matrix: Mctype

The threshold for Mctype: θmatrix

Output: System′s suggestion : Csys
Initialization:

Cposs ← [] # all possible strategy types for TIn
Durall_c_time ← [] # adjustment lengths for all possible strategy types

1. For l = 1, 2, . . . , 17 do: # find all feasible strategy types
2. Get effect_flag and Durc_time of ctype

(l) # by Algorithm 1
3. If effect_flag is True:
4. Update Cposs and Durall_c_time

5. If n ≥ θmatrix:

6. l ← arg max
j

Pj , where Pj =
nj,j

∑17
k=1 nj,k

, ctype
(j) ∈ Cposs

(
Pj = 0 when nj,j = 0

)
7. Else:
8. Randomly choose a strategy type ctype

(l) ∈ Cposs

9. Get corresponding time length of ctype
(l) , generate system suggestion Csys

10. Return Csys

5.3. Incremental Performance Improvement through Knowledge Refinement

As depicted in Figure 3, the system uses three learning components LC1, LC2 and LC3
to refine the existing knowledge, where:

- LC1 is the component that records and revises the event-related knowledge. When
LC1 is invoked, it first records the new event. After that, it derives original and extra
information from the IPRs generated, based on the new event and historical events,
and then updates the IPR profile union accordingly. Event accumulation and IPR
profile union updates lead to better estimation of a TI’s dvalue. Hence a subsequent
update on historical TIs’ dvalues is in order, which provides a better basis for using
RSSC to resolve TIs.

- LC2 is the component that records and revises the TI-related knowledge. When LC2 is
invoked, it records the new TI and maintains Mctype by aggregating the system’s and
user’s decisions over past TIs. As the number of historical TIs grows, the probability
that the system can find the same or similar TI of the current TI increases, and thus the
probability that the system uses RSIC and RSSC methods increases. The refinement
of Mctype helps the system gradually approach the user’s decision preference in the
genera case, which in turn makes the strategy generated by GSSD more acceptable to
the user.

- LC3 is the component that optimizes models. When LC3 is triggered, it retrains the
calibrated SVM and updates parameters w. The updates of calibrated SVM and
parameters w enable the system to determine the similarity of TIs more accurately,
thereby improving the success rate of solving TIs by RSSC.

We next define how the system learns from strategy discrepancies. If action types
of the system’s and the user’s strategies are correspondingly the same, then we say they
agree on the solution of TIn, denoted as csys

n = cuser
n . Otherwise, we say there is a strategy

discrepancy due to the incompatible action types, denoted as csys
n ·cuser

n . csys
n is obtained from

ŷn, which in turn is generated by the system model f :

f : TIn ×KB(n, wn)→ ŷn. (36)
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The strategy discrepancy on TIn is evaluated by weighted cross-entropy WCE(yn, ŷn):

WCE(yn, ŷn) = −
17
∑

j=1

(
yj

nlogŷj
n +

(
1− Pj

)(
1− yj

n

)
log
(

1− ŷj
n

))
= WCE(yn, f (TIn, KB(n, wn)))

(37)

Since the data corresponding to TIn is deterministic, we address the knowledge
deficiency from the parameter perspective. We present loss to measure the strategy dis-
crepancies achieved on past n TIs with the specific parameters wk ∈W (W is the set of all
possible values of w), which is defined as:

loss
(

n, wk
)
=

1
n ∑n

i=1WCE
(

yi, f
(

TIi, KB
(

i, wk
)))

. (38)

The strategy discrepancy leads the system to update parameters to the ones that obtain
minimal loss:

w∗n = arg min
wi

loss
(

n, wi
)

. (39)

6. Results
6.1. Experimental Setup and Metrics

To validate the effectiveness of our system, we carried out experiments on resolving
TIs involving five participants in total (four males and one female). Generally, the number
of events ranges from 3359 to 5110, and the amount of TIs ranges from 489 to 853. Table 2
gives participant information. See Appendix B for details of experimental data.

Table 2. Participant information.

User Age Sex Profession Educational
Background

1 28 M PhD student Postgraduate

2 29 M IT engineer Bachelor

3 33 M SIPI engineer Bachelor

4 28 M PhD student Postgraduate

5 20 F College student High school

We adopt a heuristic method Base algorithm (BA), SC-based methods, and a traditional
ML model SVM@n as benchmarks: BA randomly suggests a choose a strategy from the
feasible ones. SC-based methods include SC_V1 (deals with TIs by RSIC and GSSD), SC_V2
(additionally employs the RSSC), and SC_V3 (the SmartCalendar system with complete
components); SVM@n is an SVM model that starts from the 80−th TI and retrains every
20 more TIs.

We propose strategy type acceptance rate (SA) to measure the consistency between
system recommendations and user decisions, which is defined to be:

1
MA ∑MA

t=0I
(

csys
n−t = cuser

n−t

)
, (40)

where I(·) is an indicator function that takes the value 1 if the statement is true and takes
0 otherwise. We smooth out short-term fluctuations and emphasize longer-term trends
through a moving average with a size of 200. A moving average is a series of averages of
different fixed-size subsets of the complete dataset.
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6.2. Experimental Results

First, we compare the distance between the SC-based methods’ strategies and the
user’s strategies in terms of WCE. Figure 4 illustrates that the WCE of SC_V1 shows a
steady decline. SC_V2 followed a similar trend, but the result was slightly lower than
that of SC_V1, which validates the effectiveness of the RSSC module. Meanwhile, SC_V3
witnessed a significant fall. SC_V3′s lead over SC_V2 verifies the validity of knowledge
refinements. Refer to Appendix B for a discussion of convergence.
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Figure 4. Weighted cross-entropy for five users.

Next, we evaluate the adaptability to user preferences of our approach, BA, and
SVM@n concerning SA. Figure 5 shows that BA and SVM@n remained at a lower level
and did not show an ascending trend on SA with increasing data, which indicates that
neither the heuristic nor the traditional ML algorithm can be directly applied to the calendar
scenario. In contrast, SC-based methods have steadily increased in SA. The SA of SC_V2 is
higher than SC_V1, indicating that the system obtains a more accurate recommendation
using RSSC. SC_V3 increased sharply and finally led SC_V2 by 26.5%, 9%, 15%, 10%, and
23% among five users, proving that the system gains greater adaptability to the dynamic
and complex environment than other approaches.
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The system incrementally improves its performance through continuous knowledge
refinement. Knowledge refinements can be classified as data accumulation and meta-
knowledge updates. Since the occurrence of data is beyond the system’s control, we
focus on how the system achieves incremental performance improvement through meta-
knowledge refinement.
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We present how the meta-knowledge has been updated over time from the perspective
of IPRs and parameters. As shown in Figure 6, the number of IPRs experienced a rapid
surge in the first 20% of data and continued with a gradual increase. This is because,
as the data accumulates, the probability that an incoming event has ever occurred in
history increases. Accordingly, the average amount of origin information and additional
information it can produce gradually decreases.
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Figure 6. IPR updates for five users.

Figure 7 delineates the update of w over time for each user. The y-axis represents all
sets of values of w and the star marker highlights the moment when w changes. For each
user, parameters were updated multiple times and ended up with different values. The
above result shows that no model works for every user at every stage, demonstrating the
need for continuous learning.
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Figure 7. Parameter updates for five users.

We assess the performance of RSIC, RSSC, and GSSD in SC_V3 in terms of the percentage
of successfully solved TIs. Table 3 depicts that for each 10% increase in data, RSSC obtained the
highest improvement rate, followed by RSIC, and GSSD with the lowest. The growth in RSIC
indicates that the data augmentation provides a good basis for the system to refer to history. In
addition, the refinement in meta-knowledge further improves the performance of RSSC and
GSSD, which is why SC_V3 outperforms SC_V2 in Figures 4 and 5.
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Table 3. The increase in the percentage of TIs successfully solved by RSIC, RSSC, and GSSD for each
10% increase in data.

User RSIC RSSC GSSD

1 0.00670 0.01842 0.01060

2 0.01228 0.01340 0.00167

3 0.00949 0.01060 0.00725

4 0.00614 0.00670 0.00446

5 0.00223 0.01507 0.00111

Figure 8 shows that the gap between RSSC and GSSD continues to narrow as data
increases, and RSSC outraced GSSD on Users 2, 3, and 5. The fact that the system prefers
RSSC over GSSD indicates that the system gradually approaches the user’s decision pref-
erences through continuous knowledge refinements. And RSSC is playing a more and
more important role in resolving TIs. In summary, continuous knowledge refinement is
indispensable and effective for a PeLA to acquire self-improvement capability.
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6.3. Discussions

STEP PL emphasizes incremental task performance improvement through sequential
stimuli-driven learning episodes. In contrast to STEP PL, learning processes in LL and NEL
are neither triggered by stimuli nor oriented toward incremental performance improvement,
which makes these two paradigms inapplicable for developing an intelligent calendar
system that can gradually adapt to the user’s preference.

7. Conclusions and Future Work

In contrast to the one-off metaphor, STEP PL emphasizes accomplishing incremental
task performance through continuous knowledge refinements. In this work, we investi-
gated the problems that a long-term event scheduling system encounters when resolving
TIs, and proposed a system SmartCalendar based on the STEP PL. First, we formally
define events, complete temporal classes, and strategies. Then, we theoretically model the
SmartCalendar system to detect, handle, and learn from TIs, enabling it to consistently
improve its problem-solving performance. Finally, we conduct experiments to validate our
approach and demonstrate that our approach outperforms the comparison algorithms in
terms of strategy type acceptance rate and self-improvement ability. The collected dataset
and prototype system are open source on the GitHub repository.

Future work can be pursued in the following directions:

1. Expand the dataset. The current dataset contains one year of events and TIs for five
users. In future work, we plan to expand the dataset in terms of the number of
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users and the time span to validate the system’s adaptability to a more complex
environment.

2. Classify learning stimuli. Learning stimuli play an essential role in a PeLA’s perfor-
mance improvement. In future work, we plan to classify learning stimuli from the
knowledge perspective, which provides guidelines for people to develop PeLAs in
other fields.
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Appendix A

Appendix A.1. Proof of Strict Partial Order

For all εi, ε j, εk ∈ ε, a binary relation � on a set ε satisfies the following conditions:
(Irreflexivity): εi cannot be more important than itself
(Transitivity): if the user prefers εi to ε j and prefers ε j to εk, then it is easy to know that

εi is preferred to εk(Asymmetry): if the user prefers εi to ε j, then ε j cannot be preferred to εi
Therefore, a binary relation � on a set ε is a strict partial order.

Appendix A.2. Proof of Theorem 1

Given IPRi and IPRj, relation still holds by adding IPRL
j on both sides of IPRi

according to property 1, then we get

IPRL
i ∪ IPRL

j � IPRR
i ∪ IPRL

j

similarly, we have
IPRL

j ∪ IPRR
i � IPRR

j ∪ IPRR
i

Hence, we obtain the following by transitivity

IPRL
i ∪ IPRL

j � IPRR
i ∪ IPRL

j � IPRR
i ∪ IPRR

j

Q.E.D.

Appendix A.3. Proof of Theorem 2

Given IPRi and IPRj that satisfy subValue
(

IPRL
j , IPRR

i

)
and subValue

(
IPRR

j , IPRL
i

)
.

By property 1, we get

IPRL
j ∪ IPRR

i r IPRL
j � IPRR

j ∪ IPRR
i r IPRL

j

which equals
IPRR

i � IPRR
j ∪ IPRR

i r IPRL
j

with transitivity, we get

IPRL
i � IPRR

i � IPRR
j ∪ IPRR

i r IPRL
j

https://github.com/hensontang9/Temporal_conflicts
https://github.com/hensontang9/Temporal_conflicts
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by assumption we have
subValue

(
IPRL

j , IPRR
i

)
by property 1, we subtract IPRL

i on both sides

IPRL
i r IPRR

j � IPRR
i r IPRL

j

Q.E.D.

Appendix B

It is very difficult and time-consuming to collect real calendar data: either let the user
record each day’s events, then the time span of the required experimental data determines
the time needed to collect the data, or let the user recall historical events, which is almost
impossible due to the forgetfulness of human beings. So, we used an indirect method to
collect experimental data: First, users input their non-duplicate daily events. Next, the
system generates a 365-day temporal sequence, and each event is scheduled for specific
days according to its periodicity. The user is asked to enter solutions to the temporally
conflicting events.

The experimental results show that the system does not converge on the WCE metric,
which is related to two factors: meta-knowledge and data. Figure 7 reveals that 81.7% of
the model parameter updates occurred on the first 400 TIs. This is because, on the one
hand, fewer strategy discrepancies occur afterward, and on the other hand, the system
is becoming more aware of user preferences, and the current parameters are already the
best ones for a given data set. Nevertheless, Figures 5 and 8 delineate that the system’s
performance grows steadily. Therefore, data insufficiency is the main reason for the system
not converging. However, increasing data volume brings a new problem: The longer the
time span of the dataset, the higher the probability that the user’s preference will change.
Thus, we choose a time span of one year to balance the dataset being too small and causing
preference changes. Assuming that the user preference remains unchanged, the system
performance regarding WCE on more data afterward is expected to maintain the downward
trend, then eventually converge.
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