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Abstract: Lack of sleep causes central fatigue in the body, which in turn affects brain function, and
similarly, intense exercise causes both central and peripheral fatigue. This study aims to charac-
terize the brain state, and in particular the functional changes in the relevant brain regions, after
intense exercise in sleep-deprived conditions by detecting EEG signals. Thirty healthy adolescents
were screened to participate in the trial, a sleep-deprivation model was developed, and a running
exercise was performed the following morning. Meanwhile, pre-exercise and post-exercise Electroen-
cephalogram (EEG) data were collected from the subjects using a 32-conductor electroencephalogram
acquisition system (Neuroscan), and the data were analyzed using MATLAB (2013b) to process the
data and analyzed Phase Lag Index (PLI) and graph theory metrics for different brain connections.
Compared with the control group, the pre-exercise sleep-deprivation group showed significantly
lower functional brain connectivity in the central and right temporal lobes in the Delta band (p < 0.05),
significantly lower functional brain connectivity in the parietal and occipital regions in the Theta
band (p < 0.05), and significantly higher functional brain connectivity in the left temporal and right
parietal regions in the Beta2 band (p < 0.05). In the post-exercise sleep-deprivation group, functional
brain connectivity was significantly lower in the central to right occipital and central regions in the
Delta band (p < 0.05), significantly higher in the whole brain regions in the Theta, Alpha2, and Beta1
bands (p < 0.05 and 0.001), significantly higher in the right central, right parietal, and right temporal
regions in the Alpha1 band (p < 0.05), and in the Beta2 band, the functional brain connections from
the left frontal region to the right parietal region were significantly lower (p < 0.05). The results of
the brain functional network properties showed that the clustering coefficients in the Delta band
were significantly lower in the pre-exercise sleep-deprivation group compared to the control group
(p < 0.05); the characteristic path length and global efficiency in the Theta band were significantly
lower (p < 0.05 and 0.001). The post-exercise sleep-deprivation group showed significantly higher
clustering coefficients, input lengths, and local efficiencies (p < 0.001), and significantly lower global
efficiencies in the Delta and Theta bands (p < 0.001), and significantly higher clustering coefficients
and local efficiencies (p < 0.001) and significantly lower input lengths and global efficiencies in the
Alpha1 band compared with the control group (p < 0.001). After sleep deprivation, the pre-exercise
resting state reduces the rate of information transfer in the functional networks of the adolescent
brain, slowing the transfer of information between brain regions. After performing strenuous exercise,
sleep deprivation leads to decreased athletic performance in adolescents. After a prolonged period of
intense exercise, brain activity is gradually suppressed, resulting in even slower work efficiency and,
eventually, increased information transfer in adolescents.

Keywords: sleep deprivation; adolescents; heavy-intensity exercise; brain function network; phase
lag index

1. Introduction

High-quality sleep restores energy and strength, while low quality sleep affects the
body’s functional state and can lead to a gradual decline in athletic performance. It was
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found that during 15 min of cycling, 4 h partial sleep deprivation reduced the exercise
duration in subjects compared to the normal sleep group [1]. Roberts SSH et al. studied the
effects of prolonged sleep, normal sleep, and restricted sleep on endurance performance
and found that prolonged sleep maintained endurance performance in athletes, while
restricted sleep impaired endurance performance [2].

The functional connectivity approach aims to integrate information in brain networks
and plays a crucial role in optimal brain function [3]. Node-edge analysis is the main
analytical tool for assessing functional brain networks, where COH and PLV are susceptible
to volumetric conduction effects while PLI is not [4]. In addition, graph theory analysis
has the advantage of allowing the analysis of brain network properties to be quantified
and reproducible [5]. It was found that after 36 h of sleep deprivation, subjects showed an
increase in the strength of functional connectivity and a significant increase in the number
of connections, along with changes in clustering coefficients, small-world properties, and
characteristic path lengths [6]. Moreover, the characteristic path length on the Theta band
increased significantly after 36 h of acute sleep deprivation and the clustering coefficient
on the Alpha band decreased significantly [7]. It was found that the use of power bikes to
induce exercise fatigue in subjects had diminished thalamic and striatal activation, along
with reduced neuronal activity [8]. It is worth noting that basketball players undergo
different changes in feature path length, global efficiency, and small-world properties
relative to the general population [9]. In summary, both sleep deprivation and intense
exercise affect brain function networks.

How sleep deprivation affects the functional connectivity of brain regions of ado-
lescents before and after high-intensity exercise is still seldom reported. Thus, by construct-
ing a sleep-deprivation model and an exercise model, this experiment has the potential to
reveal the characteristics of functional changes in adolescent brain regions after participat-
ing in intense exercise in the presence of sleep deprivation.

2. Materials and Methods
2.1. Materials
2.1.1. Participants

In the study, 32 physically fit adolescents were screened through recruitment at Shaanxi
Normal University’s School of Physical Education to serve as subjects for the experiment.
The screening criteria were: (1) normal vision or corrected vision and right-handedness;
(2) subjects did not smoke, drink alcohol, coffee, strenuous exercise, or mood swings within
24 h; and (3) all subjects had normal sleep quality and no sleep-related diseases.

Exclusion criteria: (1) history of heart disease, mental illness, family illness, etc.;
(2) poor sleep quality. Based on the screening criteria described above, two subjects were
excluded due to sleep quality issues. A final selection of 30 normal adolescents was used
for the experiment. Subjects volunteered to participate in the trial, were informed of the
process and purpose of the trial prior to the trial, and then signed an informed consent
form. The project was approved and supervised by the Academic Ethics Committee of
Shaanxi Normal University, and the subjects were paid at the end of the experiment. Table 1
shows the demographic characteristics of the subjects:

Table 1. Subject demographic characteristics (n = 30).

Variable Results

Age (years) 21.97 ± 2.14
Height (Cm) 178 ± 5.33
Weight (Kg) 70.21 ± 8.37

BMI (Kg/m2) 22.02 ± 2.14
Skeletal Muscle (%) 39.48 ± 3.72

Body Fat (%) 13.92 ± 4.63
Basal metabolism/d (Kcal) 1883 ± 187.2

Training time (years) 3.52 ± 0.45
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2.1.2. Random Groups

The present study was conducted by subjecting 30 subjects to data collection under
both sleep deprivation and sleep sufficiency models separately. In order to eliminate the
negative effects of both sleep deprivation and sleep sufficiency models on the results of
this study, a fully randomized design was used to randomize the 30 subjects who met the
screening criteria. Group 1: Sleep deprivation experiments followed by data collection for
sleep sufficiency experiments. Group 2: Sleep deprivation experiments data collection for
the sleep deprivation experiments followed by the sleep deprivation experiments.

2.2. Research Methods
2.2.1. Development of a Sleep-Deprivation Model

Based on the American Sleep Foundation’s recommendations for the amount of sleep
at night for young people aged 18–25 years (2015) [10], sleep duration < 4 h is considered
severe sleep deprivation, 4 h ≤ sleep duration < 6 h is considered mild sleep deprivation,
and sleep duration ≥7 h is considered normal sleep. The operational details of the sleep-
deprivation model developed in this experiment were as follows: (1) 30 participants were
guaranteed to have slept well and not to have accumulated somatic and mental fatigue
before the modeling; (2) at 10:00 pm on the day before the exercise, a sleep detector (GT9X-
BT, ActiLife, Pensacola, FL, USA) was worn and the sleep time, intensity and duration of
physical activity were recorded for 24 h. The acquisition frequency was 1000 Hz; (3) The
participants rested in the laboratory before the test until 3:00 a.m. and were awakened
before 7:00 a.m. to ensure that the actual sleep time was <4 h. The participants were
considered to be the sleep-deprivation group; (4) The control group was still the same
group of subjects, with the sleep time at 10:00 p.m. and the awakening time at 7:00 a.m. to
ensure that the sleep time was 7:00 a.m. The actual sleep time was guaranteed to be ≥7 h.

2.2.2. Exercise Protocol and EEG Testing

The exercise protocol and Electroencephalography (EEG) tests are shown in Figure 1:
subjects were awakened at 7 am on the same day, after breakfasted, pre-preparation
(cleaning hair dandruff and oil) and pre-exercise Electroencephalography (EEG) data
collection were performed, and 20 min later the running platform (h/p/cosmos cos10253
Germany) exercise was performed. After the exercise, the post-exercise EEG data were
again collated. In addition to this, the subjects were not allowed to perform any other
moderate-intensity exercise during the day.
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Figure 1. General experimental flow chart for Control and SD groups.

The motion protocol is based on the Bruce motion protocol and the parameters shown
in Table 2 are used to set the running platform. The exercise test was performed on the
running platform (h/p/cosmos cos10253 Germany), and in order to prevent the subject
from falling, the subject wore a safety harness and a Polar meter to monitor and record the
ambulatory heart rate before stepping on the running platform; the running platform was
started by clicking start, and the subject started from the first level (During the exercise,
the subject wore a portable blood pressure monitor (Omron, Liaoning, China) to record
the ambulatory blood pressure and heart rate during exercise, and a subjective perceptual
evaluation of exercise load (Rating of Perceived Exertion (RPE)) was used to measure
the heart rate). Perceived Exertion (RPE) was used to ask subjects about their subjective
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perceptions at the end of each exercise level and recorded. Subjects were given at least
1 week between exercise and normal sleep and sleep deprivation to ensure full recovery of
body function after previous exercise and to avoid any impact on subsequent exercise.

Table 2. Exercise loads at all levels of the Bruce Protocol.

Parameters Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7

Speed (km/h) 2.7 4.0 5.4 6.7 8.0 8.8 9.6
Slope (%) 10 12 14 16 18 20 22

Duration (min) 3 3 3 3 3 3 3

The criteria for campaign termination are based on the literature [11]. Namely, the
subject terminates if any three of the following four conditions occur. (1) Behavioral
manifestations: the subject exhibits a dyspnoea condition; (2) Blood pressure changes: the
subject had a systolic blood pressure (SBP) > 150 mm Hg and a diastolic blood pressure
(DBP) > 75 mm Hg; (3) Heart rate: the subjects heart rate approached or reached my
HRmax = 208 − 0.7 × age [12]; (4) RPE rating: Subjects with an RPE of 18–19 are unable to
continue exercise after encouragement.

2.2.3. EEG Data Collection and Processing

A high-resolution EEG acquisition system (Brain Vision Recorder; Neuroscan, El
Paso, TX, USA) with 32 conductive polar caps extended by the International 10–20 system
was used to complete the acquisition of EEG signals from the functional state of the
subject’ brain, as shown in Figure 2. EEG signal acquisition conditions: Online EEG
data were recorded using a 0.05–100 Hz filtered bandpass with a sampling frequency of
1000 Hz/conductor, using the bilateral mastoid as the reference electrode and the forehead
grounded; vertical Electrooculography (EOG) activity was recorded with electrodes placed
above and below the left eye, and horizontal Electrooculography (EOG) activity was
recorded with electrodes placed laterally in both eyes. All electrodes had an impedance
of less than 5 kΩ between the electrodes and the scalp. The acquisition times were 8 min
each for the baseline values and after a one-time heavy-duty motion sweep, of which 5 min
were selected for analysis.
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Figure 2. EEG data acquisition and pre-processing (A) EEG data acquisition; (B) Raw EEG data;
(C) Processed EEG data.

The data preprocessing process was performed using the sub-toolkit EEGLAB (De-
lorme and Makeig, 2004 [13]) with the following steps: Loading of raw data, positioning of
channel positions; remove useless channels; perform bandpass filtering (0.5~100 Hz) and
depression filtering (49~51 Hz); conversion of the reference electrode to a bilateral mastoid
(M1, M2) mean reference; data segments are selected for 2 s/segment (no overlap) and seg-
ments with voltage amplitudes exceeding plus or minus 100 µV are removed; the sampling
rate was reduced to 500 Hz; independent principal component analysis (ICA) algorithm
was used to correct for possible ocular and other artifacts in the signal, such as Electromyo-
graphy (EMG), Electrocardiography (ECG); observe the properties of each independent
component and identify independent components associated with artifacts. Independent
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components were identified and the artifacts related to independent components were
identified and removed.

2.2.4. Mathematical and Statistical Methods

(1) Selection of threshold values

Brain functional networks are constructed with the help of cutting-edge brain func-
tional connectivity mapping [14], and GRETNA software is used to analyze and study
brain regions. There is no clear criterion or method for selecting threshold values based on
previous expert studies. This study determined the step size as 0.02 and the minimum and
maximum values as 0.1 and 0.6 sparsity thresholds (0.1 ≤ T ≤ 0.6) after repeated validation
and testing.

(2) Statistical analysis

All data were analyzed by SPSS 26.0 (IBM SPSS Statistics, Chicago, IL, USA) software,
and the Shapiro–Wilk test was used to determine whether each set of data conformed to
a normal distribution. A non-parametric test is used if the data does not conform to a
normal distribution. A non-parametric test is used if the data does not conform to a normal
distribution, and a parametric test is used if the data conforms to a normal distribution.
Wilcoxon tests in nonparametric tests were used for statistical analysis of demographic
characteristics, evaluation of motion models, clustering coefficients, characteristic path
lengths, global, and local efficiencies. Data results are expressed as “mean ± standard
deviation”, with p < 0.05 being the criterion for a significant difference.

3. Results
3.1. Evaluation of the Motion Model

This experiment identified sleep duration <4 h and used it as the primary condition
for successful termination of sleep-deprivation modeling by recording the actual amount
of sleep the test subjects received during the night. Four criteria, including dyspnoea,
significantly elevated blood pressure, a maximum heart rate of 180 beats per minute or
more, and an RPE rating of 18 during exercise, were used as screening conditions for
exercise-related psychosis. In addition, the duration of the exercise, from the start of the
exercise to its termination, was used as a basis to evaluate the performance of the subject’s
exercise. The results of the experiment are given in Table 3.

Table 3. Evaluation results of the exercise model (n = 30).

Sleep Sleep
Time (h)

Condition of Exerciser Termination Exercise
Duration

(min)Behavior SBP (mmHg) DBP (mmHg) HRmax RPE > 18

Control ≥7 h Breath difficulty 156.47 ± 18.56 77.56 ± 14.12 189.47 ± 12.35 19.24 ± 1.15 19.20 ± 3.07
SD <4 h Breath difficulty 159.71 ± 27.45 87.77 ± 25.12 196.85 ± 17.48 19.93 ± 0.90 16.95 ± 2.77 **

Note: Compared to control group, **: p < 0.01.

The results in Table 3 show that after sleep deprivation, the sleep duration of the
subjects was less than 4 h, indicating that the sleep-deprivation model was accomplished,
while the sleep duration of the normal sleep group was ≥7 h, which was in line with the
“American Sleep Foundation’s recommendation of normal sleep duration at night for young
people”. Exercise was terminated in any three of the following four situations according to
the criteria for termination of exercise: in both sleep deprivation and normal sleep situations,
all subjects felt breathless at the end of exercise, had a heart rate of 180 beats/min or more,
had an RPE rating of 18 or more, and the mean systolic and diastolic blood pressures at
the end of exercise exceeded 150 mm Hg and 75 mm Hg. The above results confirm that
all test subjects met the exercise termination condition; furthermore, the subjects’ exercise
duration was significantly lower in the sleep deprivation compared to the normal sleep
group (p < 0.01), indicating that sleep deprivation causes a significant reduction in the
subjects’ athletic performance.
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3.2. Results of the Network Distribution Map Comparison

As the results in Figures 3 and 4 show, before exercise, brain functional connectivity
in the central and right temporal regions of the Delta band was significantly lower in the
sleep-deprived group compared to the control group (p < 0.05); there was significantly
lower functional brain connectivity in the parietal and occipital regions in the Theta band
(p < 0.05); and functional brain connectivity was significantly elevated in the left temporal
and right parietal regions (FT7-O2) in the Beta2 band (p < 0.05).
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However, for the post-exercise period, compared to the control group, the sleep-
deprived group showed significantly lower functional brain connectivity in both the central
to right occipital (FCZ-O1) and central (CPZ-C4) regions of the Delta band (p < 0.05),
significantly higher functional brain connectivity in whole brain regions of the Theta,
Alpha2, and Beta1 bands (p < 0.05 and 0.001), and significantly higher functional brain
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connectivity in the right central, right parietal, and right temporal regions of the Alpha1
band (p < 0.05 and 0.001). Functional brain connectivity was significantly higher in the
right central, right parietal, and right temporal regions in the Alpha1 band (p < 0.05), and it
was significantly lower in the left frontal to right parietal region (FC3-CPZ-P4) in the Beta2
band (p < 0.05).

3.3. Results of the Graphical Comparison

As shown in Figures 5 and 6, at a particular level of sparsity, the clustering coefficients
in the Delta band were significantly lower in the pre-exercise sleep-deprivation group
compared to the control group (p < 0.05); the characteristic path length and global efficiency
were significantly lower in the Theta band (p < 0.05 and 0.001). In the Delta and Theta bands
in the post-exercise sleep-deprivation group, clustering coefficients, characteristic path
lengths, and local efficiencies were significantly higher (p < 0.001) and global efficiencies
were significantly lower (p < 0.001). The clustering coefficient and local efficiency were
significantly higher (p < 0.001) and the feature path length and global efficiency were
significantly lower in the Alpha1 band (p < 0.001).
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4. Discussion

This study was carried out by setting up a sleep-deprivation model in which adoles-
cents with a certain level of motor capacity were subjected to intense exercise under sleep
deprivation. The results showed that HRmax gradually increased in the sleep-deprived
subjects, as did dyspnea and systolic and diastolic blood pressure. Moreover, after sleep
deprivation, adolescents’ exercise time gradually decreased and their exercise performance
significantly decreased, suggesting that high-intensity exercise decreases exercise perfor-
mance. However, overall sleep deprivation leads to a 10% impairment in the performance
of endurance for athletes during exercise compared to the normal sleep group [15]. In a
study conducted by Abedelmalek, they observed that the duration of sleep deprivation
affected the peak and average power during the 30 s Wingate test in football players [16].
What is clear is that sleep deprivation can result in impaired performance and a significant
reduction in athletic performance.

Results on the functional connectivity of brain regions after sleep deprivation showed
that the central, parietal, occipital, right temporal, and left frontal regions of the brain
were affected. These areas are mainly concentrated in the cerebral hemispheres, with
the cerebral cortex playing a non-negligible role, primarily in neural processing, when
sleep deprivation negatively affects information processing, working memory, mood,
and mood in adolescents. Studies have reported reduced functional connectivity in the
Alpha band after sleep deprivation, particularly in the parietal and limbic lobes, involving
areas such as the precuneus, posterior cingulate cortex, paracentral lobule, parietal lobule,
and parahippocampal gyrus [17]. These areas are linked to cognitive functions such as
processing information, attention, and working memory [18,19]. It was also found that
functional connectivity between the right thalamus and the right parahippocampal gyrus,
right middle temporal gyrus, and right superior frontal gyrus was significantly reduced
in the sleep-deprived group compared to the normal sleep group [20]. The thalamus is a
translational station for sensory transduction and intra-formation integration and reduced
functional connectivity in the thalamus leads to reduced intra-formation integration, which
in turn affects cognitive function in the brain. The results of functional connectivity studies
of brain regions after high-intensity exercise showed that the central, occipital, frontal,
right and left temporal, and parietal regions were further reduced after heavy exercise in
adolescents, resulting in reduced memory, difficulty concentrating, and delayed reactions.
It was found that low-intensity physical exercise increased the strength of connections
within the right frontoparietal network, while functional connectivity in sensorimotor areas
decreased after heavy-intensity exercise [21], which may be related to sustained fatigue from
heavy-intensity exercise, thus leaving sensorimotor areas in a state of sustained fatigue.
Similarly, it has been found that subjects have increased blood lactate and decreased
supplementary motor areas at the end of the acute forceful exercise, which in turn can lead
to difficulty concentrating [22].

In brain function networks, feature path length and global efficiency reflect the abil-
ity to transfer information across the network as a whole. While clustering coefficients
and local efficiency portray how quick information is transferred and processed from
a local perspective of the network [23]. The results of this study show that subjects in
the sleep-deprived condition have reduced clustering coefficient in the Delta band and
reduced feature path length and global efficiency in the Theta band. Miraglia F et al. used
EEG data recorded for 5 min after 40 h of normal and sleep deprivation, and their results
showed that the small-world nature tends to decrease in the Delta and Theta bands after
sleep deprivation, while the opposite is true in the Sigma band. The results also showed
a decrease in normalized feature path length and normalization coefficients in the Beta
band, making it clear that sleep deprivation affects different cognitive processes in brain
regions [24]. Yang Liu selected 37 subjects for fMRI scans twice (40 h of sleep deprivation
and normal sleep, self-controlled experiments) and found that the clustering coefficient
and input length on the Delta band increased after sleep deprivation, while global effi-
ciency showed the opposite shift. The clustering coefficient, local efficiency, and global
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efficiency decreased on the Alpha band, and both input length and small-world properties
increased [25]. The differences and variations in the above studies may be related to the
age of the subjects, the testing apparatus (EEG and fMRI), the time of acquisition, and the
length of sleep deprivation. Results on the topological well-posedness of brain networks
after intense exercise show that after sleep deprivation, clustering coefficients, characteristic
path lengths, and local efficiencies are enhanced in the Delta and Theta bands and globally
reduced. The clustering coefficient and local efficiency are elevated in the Alpha1 band,
while the characteristic path length and local efficiency are reduced. It was also found
that after subjects engaged in an endurance cycling task until exhaustion, a reduction in
subjects’ global efficiency could be observed on the Alpha band only during cycling [26].
It is worth noting that athletes and the general population also bring changes to brain
networks. It was found that compared to non-professional athletes, gymnasts had reduced
functional connectivity, who had significantly lower clustering coefficients, local efficiency
as well as global efficiency, and increased feature path length [27]. The above findings
agree that both sleep deprivation and exercise have an impact on functional brain network
metrics, with a decrease in clustering coefficient, shorter feature path length, and greater
global efficiency with increasing sleep deprivation, when the brain’s ability to process
intra-cellular information is reduced.

5. Conclusions

This study explored the characteristics of changes in brain functional networks follow-
ing high-intensity exercise in both sleep-saturated and sleep-deprived states using brain
functional networks and graph theory. Sleep deprivation reduces the speed of information
transfer, and the combination of sleep deprivation and intense exercise results in lower
motor performance, resulting in slower work efficiency and information transfer. The
results of this study tell us that high-intensity exercise with sleep deprivation should be
avoided in order to protect one’s health and maintain a strong motor and learning capacity.
Due to the constraints of time and practical conditions available, the following areas need to
be investigated otherwise. First, the sample size in this study is relatively small. Therefore,
the sample size should be expanded for further validation in future studies. Second, this
study collected resting-state EEG data, while future studies could consider task-state EEG
data in relation to sleep deprivation.
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