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Abstract: Sea fog can seriously affect schedules and safety by reducing visibility during marine
transportation. Therefore, the forecasting of sea fog is an important issue in preventing accidents.
Recently, in order to forecast sea fog, several deep learning methods have been applied to time
series data consisting of meteorological and oceanographic observations or image data to predict fog.
However, these methods only use a single image without considering meteorological and temporal
characteristics. In this study, we propose a multi-modal learning method to improve the forecasting
accuracy of sea fog using convolutional neural network (CNN) and gated recurrent unit (GRU)
models. CNN and GRU extract useful features from closed-circuit television (CCTV) images and
multivariate time series data, respectively. CCTV images and time series data collected at Daesan Port
in South Korea from 1 March 2018 to 14 February 2021 by Korea Hydrographic and Oceanographic
Agency (KHOA) were used to evaluate the proposed method. We compare the proposed method
with deep learning methods that only consider temporal information or spatial information. The
results indicate that the proposed method using both temporal and spatial information at the same
time shows superior accuracy.

Keywords: deep learning; encoder−decoder structure; forecasting;multi-modal learning; sea fog

1. Introduction

Sea fog is an important atmospheric phenomenon generated by warm and humid air
passing over the cold sea or cold air passing over the warm sea. It mainly occurs in July
around the coast of South Korea. Sea fog causes low visibility, limiting various marine
activities. In South Korea, marine accidents caused by sea fog account for 29.5% of all
marine accidents. Thus, early forecasting of sea fog is essential in maritime safety and route
management [1]. Traditionally, statistical and numerical analyses of sea fog occurrence are
mostly used. However, numerical analysis currently used by the Korea Meteorological
Administration is vulnerable to accurate meteorological forecasting due to climate change
over time.

Numerical analysis predicts future weather using numerical calculations through
meteorological observation, provided that dynamics and physical equations which govern
atmospheric conditions and motion on Earth are sufficiently known [2]. The mesoscale
model version 5 (MM5) used for numerical prediction is based on the Pennsylvania State
University/National Center for Atmospheric Research model designed by Antes et al. [3]
and has been improved and supplemented to suit the South Korea meteorological environ-
ment [4]. The MM5 predicts sea fog by substituting observation values into a predetermined
coefficient as a three-dimensional primitive equation model. However, the method of sub-
stituting observations into a calculated equation cannot quickly represent changing weather
conditions, and predicting sea fog in detail in time is a challenge.

It is possible to collect many observational data of various types with the recent
development of meteorological observation equipment. Miao et al. [5] predicted fog
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through a deep learning method using time series meteorological data. However, because
of the characteristic of the time series model, the longer the input data, the more information
in front of the input data is lost. Consequently, the meteorological data do not change
significantly over time, so it is difficult to improve the predictive performance.

In this study, we propose a spatio-temporal network for sea fog (STN-SF) forecasting.
Our purpose is to accurately forecast sea fog that adversely affects marine transportation.
To improve sea fog forecasting performance, we simultaneously use multivariate time series
meteorological data and closed-circuit television (CCTV) images to reflect temporal and
spatial information. The overall architecture of STN-SF consists of sequence-to-sequence
(Seq2Seq) with attention [6] based on gated recurrent unit (GRU) cells [7]. In STN-SF with
an encoder and decoder, the encoder sequentially receives information from CCTV images
extracted from the convolutional neural network (CNN) and time series data and generates
a context vector reflecting spatio-temporal information. Meanwhile, the decoder receives
the context vector generated by the encoder as input and then forecasts sea fog. In partic-
ular, data augmentation techniques that can show distinct differences by modifying the
texture of CCTV images were used to effectively extract spatial information regarding sea
fog from the encoder. CCTV images collected by Korea Hydrographic and Oceanographic
Agency (KHOA) at Daesan Port in South Korea from 1 March 2018 to 14 February 2021
and a meteorological time series public dataset from the Korea Meteological Adminis-
tration (KMA) that matches the time of the CCTV images were used. Results show that
the proposed method takes advantage of the complementary benefits by simultaneously
using time series meteorological data and CCTV images and improves sea fog forecasting
performance by applying data augmentation techniques.

The main contributions of this study can be summarized as follows:

• A spatio-temporal network for sea fog forecasting is proposed. The method aims to
take advantage of the complementary benefits by simultaneously using time series
meteorological data and CCTV images. To the best of our knowledge, this has not
been previously studied in the field of fog forecasting.

• Data augmentation techniques were applied to the image. CCTV images contain
information such as sea fog, sea, sky, and clouds. Data augmentation techniques
modify the texture of the image to reveal distinct differences to effectively extract
spatial information about sea fog.

• Experiments on data augmentation techniques were conducted to improve the sea
fog forecasting performance of the proposed method. An experiment was conducted
by applying random invert, color jitter, Gaussian blur, random solarization, and
random posterization, showing what augmentation techniques can effectively capture
information about sea fog information.

The remainder of the paper is organized as follows. Section 2 reviews recent advances
in a climate with artificial intelligence. Section 3 describes the details of the proposed
method. Section 4 presents the experimental results and discussion. Section 5 gives the
concluding remarks and future research directions.

2. Related Works

Heuristic algorithms or machine learning has been proposed to forecast fog (or sea
fog). Dev et al. [8] proposed a heuristic algorithm based on meteorological variables
to predict the occurrence of heavy fog. This algorithm is divided into test and check
blocks with the threshold for each variable and makes the correct prediction when all
thresholds are satisfied. Guijo-Rubio et al. [9] proposed a hybrid prediction model that
adjusts the window size of the data according to the dynamics of the time series to predict
daily low visibility events. Dewi et al. [10] used random forest (RF), gradient boosting
machine (GBM), extreme randomized tree, and stacked ensemble to predict fog events
at Wamena Airport in Indonesia. Han et al. [11] applied support vector machine (SVM)
and ensemble-based machine learning methods to predict the fog dissipation problem
occurring at Incheon Port and Haeundae Beach in South Korea. Castillo-Botón et al. [12]
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predicted the atmospheric low visibility by applying AdaBoost, GBM, and RF models to
multivariate data composed of meteorological variables (temperature, pressure, humidity,
visibility, and wind) in Mondonedo, Spain. However, these methods have difficulties in
improving prediction performance because they cannot effectively handle meteorological
information that changes over time.

Recently, deep learning methods have been used to address climate change problems.
Son et al. [13] forecasted solar power generation using satellite imagery, a means to study
and detect climate change. Guerra et al. [14] classified weather conditions based on three
classes of weather images, namely, rain, snow, and fog. This method uses data augmen-
tation techniques and CNNs that can effectively process images and classifies weather
conditions through an SVM classifier. Pulukool et al. [15] applied CNN to meteorological
observations to predict the occurrence of hail. Zhao et al. [16] proposed multi-task learning
that can simultaneously process segmentation and weather classification tasks on weather
cues, such as fog or clouds, to provide a comprehensive description of weather conditions.
Dewi et al. [10] used an artificial neural network and meteorological data to predict the fog
phenomenon at the airport. Han et al. [11] used a multi-layer perceptron and time series
meteorological and oceanographic data to predict fog dissipation for Incheon port and
Haeundae beach in South Korea. They also applied a recurrent neural network (RNN) to
reflect meteorological information that changes over time, demonstrating the effectiveness
in predicting fog dissipation. Zhao et al. [17] applied CNNs to classify fog levels for outdoor
video based on three classes, namely, fog-free, mist, and dense fog. FogNet [18] uses a
dense block-based 3D-CNN architecture to predict fog using complex meteorological data
with 3D patterns. However, these methods make prediction using only a single image; thus,
they could not consider temporal characteristics that frequently occur in fog prediction
problems. Consequently, these methods are vulnerable to minute meteorological changes.

In recent deep learning research, multi-modal learning has been used to understand
the characteristics of multiple data types, integrating them into a single piece of information.
Ngiam et al. [19] proposed a multi-modal learning method based on a deep neural network
to learn audio and video modalities. Wang et al. [20] proposed using a CNN-based multi-
modal deep fusion method based on both typical and infrared image pairs to predict
visibility, a measure of atmospheric transparency. Bijelic et al. [21] proposed a multi-modal
learning method that fuses lidar, RGB, gated, and radar images collected from vehicle
driving. This method effectively detects objects in autonomous vehicles using images taken
in adverse weather, using lidar, radar, and gated near-infrared sensors. The multi-modal
vehicle detection network (MVDNet) [22] leverages the complementary advantages of
lidar and radar with multi-modal learning to accurately detect objects in foggy weather
conditions that reduce visibility. Zhang et al. [23] proposed using CNN and transformer
to handle spatial and temporal information of meteorological data. In the present study,
we use a multi-modal learning framework that can take advantage of the complementary
benefits between meteorological time series data and CCTV images.

3. Proposed Method
3.1. Data Acquisition

The purpose of our study is to forecast sea fog using multivariate time series meteoro-
logical data and CCTV images. Multivariate time series meteorological data were obtained
from sensors installed around the lighthouse at Daesan Port (37◦00′49′′ N, 126◦25′14′′ E) in
South Korea. CCTV images were obtained through video taken by a camera attached near
the lighthouse. Time series data consist of meteorological data (air temperature, relative
humidity, wind speed, and sea-level air pressure) and oceanographic data (water tempera-
ture) in one-minute increments. Minimum, maximum, mean, and standard deviation of the
observations in 10 min increments were calculated so as to have data with 32 meteorological
and oceanographic features. The images were extracted from CCTV videos and annotated
with the help of experts for the presence or absence of sea fog. The dataset was divided
into training, validation, and test sets. The training dataset contains 9178 observations from
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1 March 2018 to 19 October 2019. The validation dataset contains 1000 observations from
11 November 2019 to 4 June 2020. The test dataset contains 2108 observations from 5 June
2020 to 14 February 2021.

3.2. Model Architecture and Data Augmentation Techniques

In this study, we propose the STN-SF using multivariate meteorological time series
data and CCTV images to forecast sea fog. In STN-SF with the encoder and decoder, the
encoder sequentially receives information from CCTV images extracted from the CNN
and time series data and generates a context vector reflecting spatio-temporal information.
Meteorological time series observations include tabular data with 10 min intervals. CCTV
images are composed of parts in the video that match with the meteorological observation
points. Figure 1 shows the overall architecture of the proposed STN-SF, consisting of an
encoder−decoder of Seq2Seq with attention.

Figure 1. Overall architecture of the STN-SF.

GRU cells [7] are used to reflect temporal information in the encoder and the decoder.
The encoder generates a context vector containing spatio-temporal information by sequen-
tially receiving vectors that combine CCTV images information extracted from the CNN
and time series data. The decoder then receives the context vector generated by the encoder
and spatio-temporal information and forecasts sea fog. In particular, data augmentation
techniques that can show distinct differences by modifying the texture of CCTV images are
used to effectively extract spatial information regarding sea fog from the encoder.

In the Seq2Seq with attention architecture, the encoder takes the input data in time
order and compresses all data at the end into a single context vector. The context vector is
then fed into the decoder that receives data from time points after the input data as start
tokens and predicts future points sequentially. The attention mechanism is used to prevent
loss of information in the first received data when taking input and output long-term
data [6]. In the attention mechanism, whenever the decoding phase predicts a specific point
in time, a different context vector is applied at each timestep instead of a single context
vector that represents the input data. The attention mechanism is represented as follows:

sij = score(pi−1, hj), (1)

aij = so f tmax(sij), (2)

ci =
m

∑
j=1

aijhj, (3)

pi = f (pi−1, yi−1, ci), (4)

where pi−1 is the hidden state of the previous step used to predict the ith data in the decoder.
hj is the hidden state of the encoder, and sij is the similarity score calculated through the
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dot product of pi−1 and hj. Equation (2) normalizes the probability by applying the softmax
function to the score sij as the attention weights aij. The context vector ci is computed as
the weighted sum of the hidden states hj and the attention weights aij. A different value is
input for each step of the decoder. Finally, in the decoder, to predict the next timestep, pi−1
is represented as Equation (4). pi−1 is the hidden state for predicting the next data through
the hidden state pi−1 and data yi−1 of the previous step and the computed context vector
ci. Fog is forecasted using a Seq2Seq structure with the attention mechanism applied to
time series meteorological data. The encoder outputs a context vector with meteorological
observations in six timesteps organized in 10 min intervals, and the decoder predicts the
fog after 1 h. Figure 2 shows the Seq2Seq with attention architecture using meteorological
time series data.

Figure 2. Application of the attention mechanism to the Seq2Seq architecture of the encoder−decoder
structure. The encoder receives a continuous input of time series data and produces a context vector.
The decoder uses a different computed context vector for prediction for each timestep.

We consider spatial information as well as temporal information. In the encoder,
CNN is used to extract CCTV images information. CNN consists of three main structures,
namely, a convolution layer, a pooling layer, and a fully connected layer. In CNN, feature
maps of the input image are generated by convolution layers, and feature information
is compressed through pooling and fully connected layers. Figure 3 shows the CNN
architecture using images. Various methods have been proposed for the CNN architecture.
Representative CNN architectures include AlexNet [24], VGG16 [25], and ResNet [26].
In particular, this study uses VGG16, ResNet−18, and ResNet−50, which can effectively
extract image features. In addition, pretrained CNN architectures are used with ImageNet,
a vast dataset, when extracting feature vectors of sea fog images. Consequently, vectors that
combine CCTV image information extracted from a pretrained CNN and meteorological
time series data are processed to reflect spatio-temporal information in the encoder of
Seq2Seq with attention.

The CCTV images used in this study include sea, sky, and clouds as well as sea fog.
Sea fog occurs between the sea and the sky and resembles clouds. CNN architectures that
process CCTV images can be confused by similar information when extracting feature
vectors for sea fog. When sea fog information was extracted from CCTV images, it was
determined that there will be performance changes depending on the image texture. There-
fore, data augmentation techniques that can show a distinct difference by modifying the
texture of an image are used to extract an accurate feature vector. The data augmentation
techniques used in this study include random invert, color jitter, Gaussian blur, random
solarization, and random posterization. Figure 4 shows images with data augmentation
applied to the original image. As shown in Figure 4, some images to which data augmen-
tation techniques have been applied have texture differences between fog, sea, sky, and
clouds. The proposed method uses data augmentation techniques on CCTV images in the
encoder while simultaneously utilizing the complementary advantages of meteorological
time series data and CCTV image features to forecast sea fog.



Sustainability 2022, 14, 16163 6 of 10

Figure 3. CNN architecture for extracting features from images. In the convolution layer, a feature
map is generated through a compound multiplication operation and a slide of the input image. The
information on the image is then compressed through the pooling process in the pooling layer, and
the feature vector is finally generated through the fully connected layer.

Figure 4. Examples of various data augmentation techniques that can transform the texture of the
original image.

4. Experimental Results

This study trained STN-SF consisting of CNN and RNN structures. In the encoder,
we used ResNet−50, which is pretrained by the ImageNet dataset [27]. In the encoder
and decoder, we used the GRU with Xavier weight initialization [28]. The proposed
method was trained for 20 epochs with a batch size of 16. The parameters were optimized
with the AdamW optimizer [29] using a learning rate of 0.001. The time length of the
input data in the encoder is 1 h, and a total of six pieces of 10 min data were used. The
decoder autoregressively infers the occurrence of sea fog at 10 min intervals until one
hour. All experiments were implemented with a single NVIDIA TITAN RTX GPU with
PyTorch 1.11.0.

The proposed method was compared with various machine learning and deep learning
methods in the aspect of the unimodal method, including RF [30], light gradient boosting



Sustainability 2022, 14, 16163 7 of 10

machines (LGBM) [31], GRU, and ResNet−50. RF and LGBM cannot effectively reflect
the temporal characteristic of time series data. Therefore, for an equivalent comparison
with the proposed method, time-lagged features at one hour behind at 10 min intervals
were generated so that RF and LGBM could handle past information as well as present
information. GRU can effectively reflect the temporal information of time series data.
However, ResNet−50 reflects only spatial information of the image, not the temporal
information. In the case of ResNet−50, only CCTV images were used to see if the presence
of sea fog could be judged well. The GRU and STN-SF, considering temporal information,
were trained to forecast sea fog one hour later using six observations at 10 min intervals as
input data. RF and LGBM were trained based on the processed time-lagged data.

The performance was evaluated using specialized metrics in the field of sea fog fore-
casting, including accuracy, probability of detection (POD), success ratio (SR), and critical
success index (CSI). These metrics are calculated using the confusion matrix presented
in Table 1 containing the instances in the predicted and actual classes. Accuracy is the
proportion of predicted successfully for either fog or no fog among the total number of pre-
dictions. POD is the proportion of fogs predicted successfully among the real fogs. SR is the
proportion of fog predicted successfully among the predicted fogs. CSI is a balanced metric
of POD and SR. Accuracy, POD, SR, and CSI can be calculated by the following equations:

Accuracy =
H+C

H+C+F+M
, (5)

POD =
H

H+M
, (6)

SR =
H

H+F
, (7)

CSI =
H

H+F+M
. (8)

Table 1. Confusion matrix for sea fog forecasting. Each column indicates the instances in a predicted
class, and each row represents the instances in an actual class.

Real
Prediction

No Fog Fog

No Fog True Negative (C) False Positive (F)
Fog False Negative (M) True Positive (H)

Table 2 shows the comparative results of sea fog forecasting models. STN-SF yielded
the best result in terms of accuracy, SR, and CSI. For POD, ResNet−50 performed better
than the proposed method but not a significant degree. RF and LGBM performed poorly
on both datasets with and without historical information. This indicates that machine
learning methods lack the ability to extract time series contexts. GRU, i.e., deep learning
methods specialized for time series data, showed better performance than machine learning
because it has strong ability to extract temporal information. ResNet−50, i.e., deep learning
methods specialized for images, achieved good performance by using sea fog image. This
indicates that sea fog image also has rich information for sea fog forecasting. Because
STN-SF used both time series and image data, it showed the best performance among
the comparative models. POD of ResNet−50 was good, but SR was relatively low. This
demonstrated that STN-SF was better in CSI, reflecting the balance between POD and SR.

STN-SF uses a CNN architecture on CCTV images to extract features for sea fog.
An experiment was conducted with VGG16, ResNet−18, and ResNet−50 to examine
the performance impact with different CNN architectures. Table 3 shows the results of
comparison experiments while changing the CNN architecture in STN-SF. The results
showed that ResNet−50 produced better results than others although their differences are
not significant.
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Table 2. Performance results of STN-SF and comparative methods. Unlike STN-SF considering all
spatio-temporal information, the rest of the methods considered only one of the two. RF, LGBM, and
GRU used meteorological and oceanographic tabular data in a time series, and ResNet−50 used sea
fog image data. STN-SF used both tabular and image data. (* indicates using time-lagged features as
historical information).

Models Accuracy POD SR CSI

RF 0.609 0.553 0.692 0.443
RF * 0.581 0.455 0.696 0.380

LGBM 0.608 0.519 0.708 0.427
LGBM * 0.604 0.500 0.713 0.416

GRU 0.568 0.856 0.579 0.528
ResNet−50 0.715 0.908 0.687 0.642

STN-SF
(Proposed) 0.799 0.886 0.785 0.713

Table 3. Performance of the proposed STN-SF with different CNN architectures.

Models Accuracy POD SR CSI

VGG16 0.785 0.842 0.791 0.688
ResNet−18 0.793 0.833 0.806 0.694
ResNet−50 0.799 0.886 0.785 0.713

The performance of CNN can be degraded by similar information when extracting
feature vectors. The CCTV images contain sea fog information. When sea fog information
is extracted from CCTV images, we hypothesize that more important information can be
captured using augmentation techniques. Random solarization, Gaussian blur, random
posterization, color jitter, and random invert techniques are used. Table 4 shows the
performance results by applying various data augmentation techniques. Regardless of the
CNN architecture, the performance was improved with augmentation. In terms of CSI,
random posterization performed the best, implying that it can help effectively extract sea
fog information.

Table 4. Comparative results with different augmentation techniques. The best-performing augmen-
tation techniques for each CNN architecture are shown in bold.

Encoder Architecture Models Accuracy POD SR CSI

VGG16

Random solarization 0.784 0.844 0.788 0.687
Gaussian blur 0.772 0.865 0.764 0.682

Random posterization 0.785 0.842 0.791 0.688
Color jitter 0.741 0.919 0.708 0.667

Random invert 0.598 0.994 0.585 0.583
No augmentation 0.711 0.919 0.669 0.632

ResNet−18

Random solarization 0.776 0.889 0.757 0.691
Gaussian blur 0.783 0.828 0.795 0.683

Random posterization 0.793 0.833 0.806 0.694
Color jitter 0.773 0.890 0.752 0.688

Random invert 0.605 0.989 0.589 0.585
No augmentation 0.778 0.876 0.764 0.689

ResNet−50

Random solarization 0.796 0.881 0.783 0.709
Gaussian blur 0.795 0.893 0.777 0.711

Random posterization 0.799 0.886 0.785 0.713
Color jitter 0.787 0.886 0.770 0.701

Random invert 0.656 0.987 0.623 0.618
No augmentation 0.784 0.873 0.773 0.695
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5. Conclusions

In this study, we propose the STN-SF to forecast sea fog using both meteorological
and oceanographic time series data, and CCTV images simultaneously. Our method takes
advantage of the complementary benefits of temporal and spatial information. STN-SF con-
sists of GRU-based Seq2Seq with attention and ResNet−50. In particular, spatio-temporal
information is simultaneously reflected in the encoder of STN-SF by extracting spatial
information of CCTV images from ResNet−50 and extracting temporal information from
meteorological and oceanographic data. Moreover, the performance is further improved by
using data augmentation techniques that can show distinct differences by modifying the
texture of CCTV images to effectively extract spatial information about sea fog. Real data
collected from Daesan Port in South Korea are used, and sea fog is forecasted one hour later
using six observations at 10 min intervals as input data. Results show that the proposed
method is superior in terms of various metrics by using time series meteorological data
and CCTV images simultaneously to take advantage of the complementary benefits and
apply data augmentation techniques.

Our study can be extended in new directions in terms of the architecture of forecast
models that reflect spatio-temporal information. The Seq2Seq with attention architecture
used in this study does not effectively reflect the information of the previous time, as
the time length of the input data is longer, and parallel processing is impossible. Trans-
former [32] using the self-attention mechanism is widely used in time series forecasting
as a method to solve the above problems. Therefore, extending to transformer to input
and output long-term data may be advantageous for new and fog forecasting studies. A
more accurate forecasting will be possible if data augmentation techniques that can better
reflect the texture in the image from a spatial point of view are considered. In future work,
we hope to develop a method to improve sea fog forecasting performance by considering
transformer and suitable data augmentation techniques. In addition, since we used data
collected over three years, we will additionally collect and test time series meteorological
data and CCTV images to prevent overfitting.
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