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Abstract: Climatic changes and environmental pollution caused by traditional urban development
models have increased due to accelerated urbanisation and industrialisation. As a new model of
urban development, smart city construction relies on digital technology reform to achieve intelligent
urban governance, which is crucial for reducing carbon emission intensity and achieving regional
green development. This paper constructs a multi-period DID model based on panel data from
283 cities from 2007 to 2019 to explore the impact of smart city construction on urban carbon emission
intensity. This study found that smart city construction decreased urban carbon emissions intensity
significantly and decreased carbon emissions per unit GDP in pilot areas by 0.1987 tonnes/10,000 CNY
compared to that in non-pilot areas. According to a heterogeneity analysis, the integration of smart
city developments could decrease carbon emission intensity in northern China’s cities and resource-
based cities significantly but had an insignificant influence on carbon emission intensity in southern
China’s cities and non-resource-based cities. The reason for this finding is that northern cities and
resource-based cities have a higher carbon emission intensity and enjoy more marginal benefits from
smart city construction. Based on an analysis of the influencing mechanisms, smart city construction
can decrease urban carbon emission intensity by stimulating green innovation vitality, upgrading
industrial structures, and decreasing energy consumption. These research conclusions can provide
directions for urban transformation and low-carbon development, as well as a case study and
experience for countries that have not yet established smart city construction.

Keywords: smart city; carbon emission intensity; difference-in-difference

1. Introduction

With the continuous progress in urbanisation and industrial civilisation, production
activities mainly based on fossil energy sources have led to a constant rise in carbon emis-
sions, posing significant challenges to the ecosystem and economic development [1]. The
emission of greenhouse gases such as carbon dioxide (CO2) increases global air temperature
and extreme weather. Burma’s Cyclone Nargis, melting glaciers at the North Pole, and
other extreme weather events are all highly related to carbon emissions [2,3]. In 2015, at
the 21st United Nations Climate Change Conference held in Paris, 197 state parties around
the world signed the Paris Agreement, which explicitly states its goal to ‘try to control
the global average temperature rise within 2 ◦C of the pre-industrial level in the current
century and try to control within 1.5 ◦C [4,5]. As a responsible developing country, China
plays a significant role in mitigating global climate change and participating in global
environmental governance. In September 2020, at the 75th United Nations General Assem-
bly, President Xi Jinping committed to a goal of ‘carbon peaking’ before 2030 and ‘carbon
neutrality’ before 2060 in China. Therefore, clarifying the influencing factors of carbon
emissions and seeking ways to reduce carbon emission intensity are not only critical topics
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in environmental economics research, but also the springboard for countries around the
world to formulate environmental policies and achieve low-carbon economic development.

Carbon emission intensity refers to the CO2 emission volume per unit of gross domestic
product (GDP). It reflects the mutual relationship between pollutants and economic growth
and is an important index for evaluating sustainable economic development [6]. The
existing literature on the influencing factors of carbon emission intensity is relatively
extensive, listing environmental regulation [7,8], the fiscal and taxation system [9,10],
urbanisation [11,12], FDI [13,14], international trade [15,16], etc., as factors. The impact
of urbanisation on carbon emissions is significant. However, the existing research on the
relationship between the promotion or inhibition of urbanisation and carbon emissions
is still inconclusive. On the one hand, urbanisation can promote industrialisation and
increase the energy consumption demand, leading to extensive carbon emissions [17,18];
furthermore, with the increase in population density, urban management faces greater
pressure [19]. On the other hand, with the development of urbanisation, the scale effect of
public goods and the accumulation effect of human capital can improve the efficiency of
energy use and create conditions for technological advances, thereby reducing the intensity
of carbon emissions [20,21].

Some scholars have ignored the differences in urbanisation brought about by differ-
ent urban development models and the key role of new urban development models in
reducing carbon emission intensity [22,23]. The traditional urban development model
blindly pursues the development speed of urbanisation, ignoring the development quality.
The high-investment and high-energy consumption development model significantly in-
creased environmental pollution, especially that in the form of carbon emissions [24]. Is the
traditional urban development model unable to eliminate the climate effects? In the era
of intelligence and digitalisation, the implementation of a new urban governance model
could be the key for countries around the world to fulfil their environmental protection
responsibilities and establish a new competitive advantage [25,26]. With the emerging dis-
advantages of the traditional urban development model, an increasing number of countries
have begun to explore new models. Scholars have also begun to study the economic and
social effects of these new urban development models, such as smart cities, confirming
the positive impact of smart cities on environmental pollution control [27], enterprise
technology innovation [28], energy efficiency improvement [29], and the advancement of
various industrial structures [30]. However, few scholars have investigated the impact of
smart-city-based urban development models on urban carbon emission intensity.

As a new urban development model, the smart city, proposed by IBM in 2010, refers
to making full use of information and communication technology to obtain, analyse, and
integrate various key data from the urban operation core system to intelligently respond
to various needs, including people’s livelihood, environmental protection, public security,
and urban services, and create a better urban life. China’s smart city pilot policy, which
was initiated in 2012 and aimed at changing the traditional urban development model
through digital technological reform, realised the refined and intelligent management of
cities, and created opportunities for both innovations and green development [31]. This
policy is conducive to decreasing resource consumption, eliminating urban diseases, and
realising the sustainable development of cities. Therefore, does smart city construction
decrease carbon emission intensity? Are there differences in the carbon emission reduction
effect of smart city construction among different cities? What is the influencing mechanism
of smart city construction on carbon emission intensity? The answers to these questions
have important theoretical and practical significance for exploring new urban governance
models and realising low-carbon urban development.

Therefore, this paper, considering China’s smart city pilot policy as a quasi-natural
experiment, uses the double-difference method (DID) to explore the effect of smart city
construction on carbon emission intensity. The main contributions of this study include the
following. (1) The research perspective of this study differs from that of existing studies,
which mainly focused on the influences of the traditional urban development model on
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carbon emission intensity. This study integrates smart city construction and environmental
governance into the same research framework to explore the causal relationship between
smart city construction and carbon emission intensity. (2) Concerning the research methods,
urban carbon emission intensity might be influenced by non-policy factors that change with
time and may have endogenous problems. In this study, other factors are separated from
policy factors through the quasi-natural experiment provided by smart city construction,
thus avoiding endogenous problems. (3) This study explores the multiple influencing
effects of smart cities on carbon emission intensity theoretically and empirically, based
on Schumpeter’s theory of innovation and innovation-driven theory, which enriched
the research.

The remainder of this paper is organised as follows. Section 2 provides a literature
review. Section 3 introduces the research method and data. Section 4 is the empirical
study of the influences of smart city construction on carbon emission intensity and details
the robustness test carried out. Section 5 provides an analysis of heterogeneity. Section 6
analyses and tests the influencing mechanism. Finally, Section 7 summarises the research
conclusions and proposes policy suggestions.

2. Theoretical Analysis and Research Hypothesis

As a typical representation of a new urban development mode, smart city construction
not only plays an important role in facilitating urban green development [32,33], stimu-
lating the innovation of cities [34,35], and promoting enterprise development [36,37], but
also has positive effects on the energy transition of cities. According to Schumpeter’s
innovation theory, a smart city can be understood as a comprehensive innovation system
integrating technological innovation, product innovation, market innovation, resource
allocation innovation, and organisational innovation [38]. Further combining Porter’s
innovation-driven theory, the five major innovations [39], which can effectively collabo-
rate with specialised production factors and information-sharing mechanisms, promote
digital information technology innovation, promote smart industry clusters, and expand
the ecological scenario of clean industry applications, thereby reducing carbon emissions.
Specifically, the construction of smart cities provides two guarantees, namely, elements and
systems, for reducing carbon emission intensity. On the one hand, the construction of a
smart city integrates data elements, information technology developments, new informa-
tion infrastructure, and other production factors to transform traditional industries into
advanced ones, providing guarantees for reducing carbon emission intensity. On the other
hand, the formation and effective output of intelligent innovation systems, such as digital
information knowledge innovation, technological innovation, and management system
innovation, provide an institutional guarantee for reducing carbon emission intensity.

In addition, smart city construction can indirectly affect urban carbon emission in-
tensity by stimulating green innovation vitality, promoting industrial structure advances,
and reducing energy consumption. Firstly, technological progress, especially green techno-
logical progress, effectively decreases carbon emission intensity [40,41]. Smart cities view
data with both green and technological attributes as the core production elements, and
the technological progress brought about by a smart city is indubitably green, low-carbon,
energy-saving, and emission-reducing [42]. Therefore, smart cities facilitate green tech-
nological progress and promote the economic transition to a low-carbon energy system.
Secondly, the primary aim of smart city construction is to optimise urban digital infrastruc-
ture. This not only facilitates the development of a new digital industry, but also accelerates
the integration and reconstruction of the traditional manufacturing industry and digital
technology, thus decreasing the dependence of industrial development on high-carbon
energy sources, facilitating the industrial structural transition to digital and low-carbon
models, decreasing energy consumption and carbon emission per unit output [43], and
facilitating the urban transition to low-carbon energy sources. Finally, based on mass data
sources and strong digital technologies, smart city construction can largely break spatial
and temporal constraints on traditional knowledge and technological exchange [44] and
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develop new technologies, industries, and business states (e.g., energy storage technology,
new energy sources, and intelligent traffic), which are closely related to energy production
and consumption, decrease energy consumption, and can help realise low-carbon energy
source development. To this end, we tested the following hypotheses:

Hypothesis 1. Smart city construction decreases urban carbon emission intensity.

Hypothesis 2. Smart city construction reduces the urban carbon emission intensity by promoting
green technology innovation, upgrading industrial structure, and improving energy efficiency.

3. Research Design
3.1. Benchmark Model

IBM put forward the concept of a ‘smart planet’ for the first time in 2008, which
further highlighted smart cities as a critical paradigm in development strategy. China
officially launched smart city construction in 2012. The first batch of pilot areas included
90 prefecture-level (county-level) cities. The second and third batches were established in
2013 and 2014. Smart city construction was reported for the first time in 2015 and noted in
the report of the 19th National Congress of the Communist Party of China in 2017, together
with technology power, network power, traffic power, and a digital China. As a national
strategic measure, smart city construction in China is exogenous to carbon emissions and
plays an important role in facilitating the informatisation and intelligent development of
pilot cities. Hence, smart city construction was viewed as a quasi-natural experiment in
this study, and its carbon emission reduction effect was evaluated using the DID method.
As smart cities were expanded batch-wise, the following multiperiod DID model was
constructed with reference to Beck et al.’s [45] study:

Carbon_pgdpit = β0 + β1Policyit + β2Controlsit + ηt + γi + εit (1)

where i refers to the city, t indicates the year, and Carbon_pgdp denotes the urban carbon
emission intensity. Policy, a dummy variable, refers to the pilot policy of a smart city and
is the intersection between the policy dummy variable (Treat) and time dummy variable
(Post). If the city is a pilot area for a smart city, Treat = 1; otherwise, Treat = 0. If the city is
included in the scope of the smart city at t, Post = 1; otherwise, Post = 0. Controls refer to
the set of control variables. ηt is the time fixed effect, γi is the urban fixed effect, and εit is
the random disturbance term. The regression coefficient (β1) of Policy in the model was of
particular significance in this study, and it reflects the influences of smart city construction
on urban carbon emission. If β1 < 0 and it is significant, the smart city indeed has a carbon
emission reduction effect.

3.2. Variables

The explained variable is the carbon emission intensity. Previous studies generally
estimated urban carbon emissions according to the consumption of natural gas, liquefied
petroleum gas, and electric power [46]. Nevertheless, the carbon emissions produced by
other energy-consuming industries are not included; thus, the estimation results are slightly
lower than the actual value. For this reason, with reference to the study of Chen et al. [47],
the total carbon emissions of cities in China were deduced based on two sets of night
light data (DMSP/OLS and NPP/VIIRS) provided by the National Aeronautics and Space
Administration (NASA). Considering the significant differences in numerical values be-
tween these two sets of night light data, the particle swarm optimisation–backpropagation
(PSO-BP) algorithm was applied to adjust the two sets of night light data and guarantee
the uniformity of the data. Finally, total carbon emissions were normalised by the GDP of
prefecture-level cities, and the carbon emission intensity of different regions was calculated.
The average carbon emission intensities of cities in China from 2007 to 2019 are shown in
Figure 1. The spatial distribution of urban carbon emission intensity is shown in Figure 2
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(only distributions for 2007, 2011, 2015, and 2019 are shown). It was found that: (1) given
the variation trend, the average carbon emission intensity of cities in China from 2007 to
2019 generally presented a decreasing trend, except for a small increase in 2019. (2) With
respect to spatial features, urban carbon emission intensity in China was basically ‘high in
north and low in south’, and regions with heavy carbon pollution were concentrated in
northeast China and northern China.
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Together with existing studies [48,49], this study further controlled other variables
that may influence urban carbon emission intensity to relieve endogenous problems caused
by missing variables. These variables included: (1) economic development level (Pgdp),
expressed by the logarithm of the actual per capita GDP of a city; (2) population density
(Pop), expressed by population per unit area; (3) FDI, expressed by the percentage of actual
foreign direct investment in GDP; (4) financial development level (Finc), expressed by the
percentage of the balance of deposits and loans of financial institutions at the end of a
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year in GDP; (5) government support strength (Gtec), expressed by the percentage of fiscal
expenditures for technologies in GDP; and (6) urban green land area (Green), expressed by
the natural logarithm of urban green land area.

3.3. Samples and Data

The study period lasted from 2007 to 2019. According to research needs, sample
data were processed as follows: (1) city samples with significant administrative zoning
adjustments during 2007–2019 were eliminated; (2) city samples with extensive missing
data for key variables were eliminated. Based on data screening, 3679 samples from
283 cities were finally obtained, including 2132 smart city samples and 1547 non-smart city
samples. The approval data for the smart city were collected from the official website of
the Ministry of Housing and Urban–Rural Development of the People’s Republic of China
(MOHURD) and organised manually. Light data were obtained from NASA’s CEADs
database. Other city-level data were obtained from the China City Statistical Yearbook for
the period 2008–2020. Missing data were compensated for with information from provincial
statistical yearbooks and urban statistical bulletins. Descriptive statistics of variables are
listed in Table 1.

Table 1. Descriptive Statistics.

Variable Obs. Mean Std. Dev. Min Max

Carbon_pgdp 3679 5.6028 4.3504 0.4413 45.1543
Policy 3679 0.3381 0.4731 0.0000 1.0000
Pgdp 3679 10.4798 0.6873 4.5951 13.0557
Pop 3679 4.2309 2.9786 0.1757 13.6961
Fdi 3679 1.8728 1.8394 0.0064 8.696
Finc 3679 2.2667 1.1935 0.5600 21.3015
Gtec 3679 0.1353 0.1782 0.0014 1.1169

Green 3679 8.1393 1.0882 3.1355 12.0319

4. Empirical Analysis
4.1. Parallel Trend Test

The premise for the multipoint DID model is that the experimental group and the
control group have a consistent variation trend before policy implementation; that is, it
should meet the parallel trend test hypothesis, or the DID estimation results are unreliable.
Hence, with reference to the work of Du et al. [50], the parallel trend was tested using the
event study method. The model setting was:

Carbon_pgdpit = β0 + ∑7
k=−7 βkPolicyi,t0+k + β2Controlsit + ηt + γi + εit (2)

where Policyi,t0+k refers to the year k after the city i was included in the smart city list. The
remaining variables have the same meaning as those in Equation (1). The value of βk,
representing the difference in carbon emission intensity between the experimental group
and the control group in the year k, is a vital concern of this study. If it is within the interval
of k < 0, the estimation results of βk are not significantly different from 0, indicating that the
parallel trend test is met; otherwise, it is not met.

The parallel trend test results are shown in Figure 3. Obviously, the estimation results
of βk have no significant difference from 0 before the implementation of the Policy, and
it passed the parallel trend hypothesis test. After the implementation of the Policy, there
were significant differences in carbon emission intensity between the experimental group
and the control group every year after the first year. This preliminarily calculation proved
that smart city construction could significantly decrease the carbon emission intensity of
pilot cities.
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4.2. Benchmark Regression Results

The DID estimation based on Model (1) is shown in Table 2. Specifically, Column (1)
presents the univariate regression results based on the least-squares method. Column (2)
presents the univariate regression results based on the dual fixed- effects model. Columns (3)
and (4) added the control variables based on Column (1) and Column (2). According to the
results, the coefficients of Policy were smaller than 0, and they were at least significant at the
5% level, irrespective of whether a city, year fixed effect, or control variable was introduced.
Given the specific coefficients of Column (4) and other fixed factors, smart city construction
decreased the carbon emission per unit GDP in pilot regions by 0.1987 tonnes/10,000 CNY
compared to in non-pilot regions. This demonstrates that smart city construction plays a
vital [31] role in the actual practices of carbon peaking and carbon neutrality. Hypothesis 1
is thus confirmed.

With respect to control variables, Pgdp, Pop, and Green had significantly negative
influences on carbon emission intensity. FDI and Gtec had negative, but not significant,
influences on carbon emission intensity. Finc had significantly positive influences on carbon
emission intensity at the 1% level.

4.3. Robustness Test
4.3.1. Placebo Test

As some unobservable factors may cause errors in the regression results, a placebo
test was performed with reference to the work of Chetty et al. [51]. The placebo test was
performed as follows. Some cities were chosen randomly as the pseudo-test group, and the
remaining cities were chosen as the pseudo-control group. A year was chosen randomly for
the pseudo-test group, thus enabling the estimation of the obtained pseudo-samples and
the error regression coefficients. Finally, the above process was cycled 500 times, leading to
500 error coefficients. The probability distribution of error coefficients is shown in Figure 4.
The error coefficients were all near the null value and had a normal distribution. The true
estimation coefficient in this study was −0.2451, which is shown to be an abnormal value
in Figure 4. This conformed to the expectation for the placebo test. In other words, there
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were no other unobservable factors that may have significantly influenced the regression
results, and the benchmark regression conclusions were robust.

Table 2. Benchmark Regression results.

Variable
(1) (2) (3) (4)

Carbon_pgdp Carbon_pgdp Carbon_pgdp Carbon_pgdp

Policy −1.7102 *** −0.2947 *** −0.8153 *** −0.1987 **
(0.1469) (0.0933) (0.1563) (0.0898)

Pgdp −0.8823 *** −1.8985 ***
(0.1328) (0.1504)

Pop −0.3409 *** −0.2269 ***
(0.0260) (0.0732)

Fdi −0.0025 −0.0283
(0.0391) (0.0238)

Finc 0.2939 *** 0.3142 ***
(0.0611) (0.0462)

Gtec −0.4681 −0.2046
(0.4755) (0.2959)

Green −0.2549 *** −0.3363 ***
(0.0905) (0.0777)

_cons 6.1491 *** 8.2632 *** 18.0115 *** 29.8233 ***
(0.0854) (0.0861) (1.1912) (1.5931)

Adj. R2 0.0355 0.4591 0.1497 0.5084
N 3679 3679 3679 3679

City fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes

Note: Values in parentheses are standard deviations; **, and *** indicate significance at the 5%, and 1% significance
levels, respectively.
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4.3.2. Placebo Test

De Chaisemartin and D’ Haultfoeuille [52] and Baker et al. [53] found a heterogeneity
processing effect is likely to occur during policy evaluation when the multiperiod DID
method is used, which is attributed to differences in time points of policy processing. This
can further lead to errors in two-way fixed effect (TWFE) estimation. Essentially, TWFE is
equal to the weighted average of the processing effects of all individuals in the data:

TWFE = E (∑(gt):Dgt=1 Wgt∆gt ) (3)
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where ∆g,t and Wg,t are the policy effect and its weight for the smart city g at year t after
smart city construction, respectively. Since Wgt might be negative, the TWFE might be
negative, although the sum of the total processing effect weights is 1. To eliminate such a
possibility, the heterogeneity processing effect was tested in this study by the external order
of ‘twowayfeweights’ in the Stata software with reference to the work of De Chaisemartin
and D’ Haultfoeuille [42]. If the heterogeneity processing robustness approached 1 and
deviated from 0, it passed the heterogeneity processing effect test; otherwise, there was
a significant error in evaluating the entrepreneurship effect of ‘broadband China’ based
on the multiperiod DID method. The results show that the heterogeneity processing
robustness index was 0.8633, indicating that there is no heterogeneity processing effect in
the present study.

4.3.3. PSM-DID

As preferences might be given to regions with unique characteristics (e.g., a high
economic development level), when choosing smart cities, the pilot cities were not cho-
sen via random selection, causing errors in the regression results. To decrease system-
atic differences between the experimental group and control group, the propensity score
matching–difference-in-difference (PSM-DID) method was applied for secondary regres-
sion. Specifically, the radius-matching method and the chosen covariables were consistent
with the control variables. The results are shown in Column (1) of Table 3. The regression
coefficient of the core explanatory variable Policy was significantly negative at the 5% level,
indicating that smart city construction indeed can significantly decrease carbon emission
intensity. The benchmark regression conclusions are robust.

Table 3. Robustness Test Results.

Variable

(1) (2) (3) (4) (5) (6)

PSM-DID
Phase I Lag
of Control
Variables

Eliminating Cities
with Partial Smart
City Construction

Eliminating
Municipalities
and Provincial
Capital Cities

Traditional DID
Elimination of

Disturbances by
Other Policies

Carbon_pgdp Carbon_pgdp Carbon_pgdp Carbon_pgdp Carbon_pgdp Carbon_pgdp

Policy −0.2822 ** −0.1850 ** −0.2685 *** −0.1869 * −0.2327 ** −0.2288 **
(0.1138) (0.0733) (0.1007) (0.0964) (0.1033) (0.0914)

Policy1 −0.0327
(0.0959)

Policy2 −0.3054 **
(0.1268)

Pgdp −1.8203 *** −1.6007 *** −1.9019 *** −1.8413 *** −1.8565 *** −1.8998 ***
(0.1863) (0.1274) (0.1664) (0.1591) (0.1604) (0.1506)

Pop −0.4525 *** −0.2052 *** −0.3341 *** −0.5015 *** −0.2498 *** −0.2226 ***
(0.1059) (0.0639) (0.0796) (0.0967) (0.0756) (0.0732)

Fdi 0.0004 −0.0454 ** −0.0134 −0.0244 −0.0512 ** −0.0220
(0.0301) (0.0194) (0.0279) (0.0267) (0.0255) (0.0239)

Finc 0.4330 *** 0.2186 *** 0.2811 *** 0.3900 *** 0.3417 *** 0.3118 ***
(0.0716) (0.0505) (0.0491) (0.0523) (0.0498) (0.0462)

Gtec −0.4725 −0.6394 ** −0.8609 ** −0.4905 −0.2094 −0.2503
(0.4423) (0.2589) (0.3756) (0.3436) (0.3135) (0.2977)

Green −0.3343 *** −0.2408 *** −0.2422 *** −0.3300 *** −0.3377 *** −0.3415 ***
(0.0926) (0.0641) (0.0870) (0.0816) (0.0844) (0.0777)

_cons 29.5245 *** 25.3383 *** 29.5258 *** 30.1928 *** 29.6290 *** 29.8539 ***
(1.9771) (1.3580) (1.7457) (1.6795) (1.7108) (1.5953)

Adj. R2 0.4856 0.5394 0.4987 0.5054 0.4920 0.5092
N 2848 3396 3042 3276 3224 3679

City fixed
effects Yes Yes Yes Yes Yes Yes

Year fixed
effects Yes Yes Yes Yes Yes Yes

Note: Values in parentheses are standard deviations; *, **, and *** indicate significance at the 10%, 5%, and 1%
significance levels, respectively.
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4.3.4. Phase I Lag of Control Variables

In the benchmark regression model, there might be a reverse causality between depen-
dent and independent variables, which is not always easily solved. To mitigate possible
endogenous problems and accurately estimate the influences of smart city construction
on carbon emission intensity, all control variables were lagged for one phase, and then
DID estimation was performed again. The results are shown in Column (2) of Table 3. The
regression coefficient of Policy was significantly negative at the 5% level, indicating that
the benchmark regression conclusions are robust.

4.3.5. Eliminating Cities with Partial Smart City Construction

In smart city construction, some cities may be included in the pilot regions for a county
or a district (Pudong New District of Shanghai, Shangcheng District of Hangzhou, and
Boye County of Baoding City were included as pilot smart cities). However, this study
used urban data, and using these county-level cities as pilot smart cities might have led
to the underestimation of the carbon emission reduction effect to some extent. Therefore,
cities with partial smart city construction were eliminated. The DID estimation was then
performed again. The results are shown in Column (3) in Table 3. The regression coefficients
of Policy were significantly negative at the 1% level, showing the benchmark regression
conclusions are robust.

4.3.6. Eliminating Municipalities and Provincial Capital Cities

Compared with other prefecture-level cities, municipalities and provincial capital cities
might have significant differences in economic scale, resource endowment, and innovation
ability, to name a few variables. Therefore, this study eliminated these differences, and the
new sample data were estimated again. The results are shown in Column (4) in Table 3.
The regression coefficients of Policy were significantly negative at the 10% level, which is
consistent with the benchmark regression results. This further proved that the benchmark
regression conclusions are robust.

4.3.7. Re-estimation Based on Traditional DID Method

To further verify the robustness of the above research conclusions, the policy effect
of the first batch of smart cities in 2012 was investigated, and the influences of smart city
construction on carbon emission intensity were re-estimated using the traditional DID
method. Specifically, the implementation year of Policy was determined to be 2012, and
smart city samples set after 2012 were eliminated. The re-estimated coefficients are shown
in Column (4) in Table 3. The regression coefficients of Policy were significantly negative at
the 5% level, indicating that smart cities indeed have a carbon emission reduction effect.

4.3.8. Elimination of Disturbances by Other Policies

It was found that the pilot policy of the “Broadband China” strategy (Policy1) im-
plemented in 2014 and the pilot policy of innovative cities (Policy2) implemented in 2012
were closely related to this study. The dummy variables of these policies were added to
the benchmark model to control their influences on the estimation results. The results are
shown in Column (6) of Table 3. According to the estimation results, the dummy variable
coefficient of smart cities was significantly positive, indicating that smart city construction
can indeed significantly decrease carbon emission intensity.

5. Heterogeneity Analysis
5.1. Heterogeneity of Urban Locations

From a geology perspective, can smart city construction lead to different policy effects
with differences in urban location characteristics? According to existing studies, there are
significant differences between eastern China, central China, and western China in terms
of economic sources and natural resources. The differences between southern and northern
China in environmental pollution are even more significant, being closely related to the heat
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supply distribution caused by climatic differences. Hence, 283 cities in China were divided
into cities in northern China (heat supply) and cities in southern China (no heat supply) to
investigate heterogeneous influences of smart city construction on carbon emission intensity
under different urban locations. The policy effects of cities in northern China and southern
China correspond to Column (1) and Column (2) in Table 4, respectively. According to the
regression results, the policy effect of cities in northern China was significantly negative
at the 5% level, indicating that smart city construction can indeed significantly decrease
carbon emission intensity in cities in northern China. Nevertheless, there was no significant
influence of smart city construction on carbon emission intensity in cities in southern
China. This might be due to the following reasons. Smart city construction depends on the
continuous development of a digital economy. Cities in southern China, represented by
Hangzhou and Shenzhen in this study, are far superior to cities in northern China in terms
of their popularisation of big data, the Internet of Things (IoT), cloud computing, and other
digital technologies. Moreover, southern China presents low carbon emission intensity as
it does not require a significant heat supply and there are fewer high-carbon-consuming
industries. Hence, smart city construction is only a ‘superfluous aspect’ in cities in southern
China, resulting in a limited marginal effect on low-carbon development. On the contrary,
cities in northern China have relatively weak digitalisation implementation and heavy
carbon pollution. Smart city construction ‘offers timely help’ to cities in northern China.
It not only accelerates the digital economic development of cities but also significantly
contributes to the carbon emission reduction in cities.

Table 4. Heterogeneity Test Results.

Variable
(1) (2) (3) (4)

Cities in Northern China Cities in Southern China Resource-Based Cities Non-Resource Cities

Policy −0.2951 ** −0.0399 −0.3615 ** −0.0181
(0.1434) (0.1027) (0.1635) (0.1030)

Pgdp −5.8362 *** −0.3961 ** −1.3017 *** −2.5239 ***
(0.2861) (0.1737) (0.2329) (0.2091)

Pop 0.0717 −0.5787 *** −0.7942 *** 0.0267
(0.1121) (0.0871) (0.1418) (0.0801)

Fdi 0.0574 −0.0036 −0.0136 0.0131
(0.0360) (0.0298) (0.0522) (0.0253)

Finc 0.1886 *** 0.6322 *** 0.6014 *** 0.1829 ***
(0.0540) (0.1040) (0.1022) (0.0484)

Gtec 0.0360 −0.5300 * −0.6916 −0.5670 *
(0.5927) (0.3198) (0.6489) (0.3123)

Green −0.5425 *** −0.1408 −0.7813 *** −0.0315
(0.1217) (0.0898) (0.1376) (0.0902)

_cons 71.7606 *** 12.8950 *** 29.7317 *** 31.7995 ***
(2.9230) (1.9099) (2.3592) (2.2559)

Adj. R2 0.5806 0.5492 0.4945 0.5503
N 1586 2093 1456 2223

City fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes

Note: Values in parentheses are standard deviations; *, **, and *** indicate significance at the 10%, 5%, and
1% significance levels, respectively.

5.2. Heterogeneity of City Types

To investigate the differences in the transition to low-carbon sources among smart
cities with different levels of resources, city samples were divided into resource-based cities
and non-resource-based cities according to the classification standards stipulated by the
State Council in the National Sustainable Development Plan for Resource-based Cities
(2013–2020). Regression was performed for each group. The policy effects of resource-based
cities and non-resource-based cities are listed in Column (3) and Column (4) in Table 4,
respectively. According to the regression results, the influence of smart city construction
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on the carbon emission intensity of resource-based cities was significantly negative at
the 5% level, but the carbon emissions of non-resource-based cities were not significantly
decreased. These regression results could be explained as follows. Resource-based cities
possess abundant energy sources and resources, form resource-type industrial develop-
ment models based on local resources during the acceleration of industrialisation and
urbanisation, and present relatively low industrial digitalisation. Hence, the promotional
effect of digital technological development on urban development is significantly lower for
resource-based cities than non-resource-based cities. Additionally, with the continuous de-
velopment and utilisation of precious resources, resource-based cities face the dual pressure
of depleting resources and intensifying environmental pollution. Smart city construction
brings new opportunities for transition and development and can accelerate industrial
and digital industrialisation. The carbon emission intensity is decreased significantly.
Non-resource-based cities began the transition to digitalisation very early on, and urban
intelligence has reached a relatively high level, accompanied by light carbon pollution, in
these cities. Smart cities thus have a slight effect on reducing carbon emissions.

6. Influencing Mechanism Test

Based on the above empirical results, smart city construction decreases urban car-
bon emission intensity significantly and continues to benefit cities through low-carbon
governance. Several questions still remain. What is the mechanism by which smart city
construction aids the low-carbon urban transition? In other words, through which key
variables do smart cities decrease urban carbon emission intensity? Considering the imple-
mentation of smart city construction policy, the specific mechanisms by which smart city
construction decreases carbon emission intensity were investigated from the perspectives
of green technological innovation, industrial structure advances, and energy consumption
levels. With reference to the research of Shi and Wang [54], the direct regression method
was used for verification.

Firstly, the green technological innovation effect was verified. The level of urban green
innovation was measured using the natural logarithm of application quantity of green
invention patents (Lngreen) and green invention patent quantity per 10,000 people (Pgreen).
The regression results are shown in Columns (1) and (2) in Table 5. The influences of smart
city construction on the level of green innovation were significantly positive at the 5% level,
indicating that smart cities could facilitate the reduction in urban carbon emission intensity
through the green innovation effect. Secondly, the effect of advanced industrial structures
was verified. The proportion of value added by the second largest industrial GDP was
used to measure the industrialisation level, while the proportion of the value added by
the third largest industrial GDP was used to measure the service industrial development
level. The proportion of value added by the third and secondary industrial GDPs was used
to measure the optimisation of the industrial structure. The regression results are shown
in Columns (3)–(5) in Table 5. The influence of smart city construction on the degree of
industrialisation was significantly negative at the 1% level; its influence on the level of
service industrial development was significantly positive at the 1% level; and its influence
on the optimisation of industrial structure was significantly positive at the 1% level. These
results reflect that smart city construction can optimise industrial structure by advancing the
traditional manufacturing industry and developing new service industries, thus decreasing
urban carbon emission intensity. Finally, the energy consumption reduction effect was
verified. Per capita power consumption (Pec) and total power consumption (Lnec) were
used as mechanism variables for regression. Power consumption was used to represent
resource consumption because urban power consumption in China is mainly dominated
by coal power and correlates highly with carbon emission intensity. The regression results
are listed in Columns (6) and (7) in Table 5. The influences of smart city construction on
per capita power consumption and total power consumption were significantly negative
at the 1% level. This indicates that smart city construction decreases energy consumption
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through technological reform and industrial reform to some extent, thereby decreasing
urban carbon emission intensity. Hypothesis 2 is thus confirmed.

Table 5. Influencing Mechanism Test Results.

Variable
(1) (2) (3) (4) (5) (6) (7)

Lngreen Pgreen Ind2 Ind3 AIS Pec Lnec

Policy 0.0697 ** 0.3657 *** −0.6630 *** 0.5187 *** 0.0378 *** −0.0697 *** −0.0790 ***
(0.0313) (0.0520) (0.2376) (0.1968) (0.0127) (0.0211) (0.0258)

Pgdp 0.4548 *** −0.3367 *** 11.3797 *** −5.7244 *** −0.3061 *** −0.1996 *** 0.3432 ***
(0.0524) (0.0872) (0.3981) (0.3297) (0.0213) (0.0354) (0.0432)

Pop 0.0084 0.2399 *** 0.2665 −0.0957 0.0051 −0.0073 0.0450 **
(0.0255) (0.0424) (0.1937) (0.1604) (0.0104) (0.0172) (0.0210)

Fdi −0.0088 −0.0990 *** 0.0590 0.0551 −0.0072 ** −0.0015 0.0096
(0.0083) (0.0138) (0.0629) (0.0521) (0.0034) (0.0056) (0.0068)

Finc 0.0079 0.0103 −0.2511 ** 0.5880 *** 0.0347 *** 0.0032 −0.0031
(0.0161) (0.0268) (0.1224) (0.1013) (0.0066) (0.0109) (0.0133)

Gtec 1.0611 *** 3.4313 *** 1.1432 −0.9588 −0.0750 * 0.1006 −0.0965
(0.1030) (0.1715) (0.7830) (0.6485) (0.0420) (0.0695) (0.0850)

Green 0.1254 *** −0.0453 0.1575 0.0968 −0.0032 0.0476 *** 0.1158 ***
(0.0270) (0.0450) (0.2056) (0.1703) (0.0110) (0.0183) (0.0223)

_cons −3.1395 *** 2.6500 *** −64.3062 *** 90.4224 *** 3.7424 *** 1.7774 *** 8.1459 ***
(0.5546) (0.9234) (4.2161) (3.4921) (0.2259) (0.3744) (0.4579)

Adj. R2 0.7887 0.3075 0.5698 0.7206 0.4927 0.1435 0.6945
N 3679 3679 3679 3679 3679 3679 3679

City fixed
effects Yes Yes Yes Yes Yes Yes Yes

Year fixed
effects Yes Yes Yes Yes Yes Yes Yes

Note: Values in parentheses are standard deviations; *, **, and *** indicate significance at the 10%, 5%, and
1% significance levels, respectively.

7. Conclusions and Policy Enlightenment

Smart city construction is critical to changing the urban governance model and pro-
moting high-quality economic development. Exploring a smart city’s carbon emission
reduction effect has theoretical and practical significance for future sustainable urban de-
velopment. Based on panel data from 283 cities in China during 2007–2019, the causality
between smart city construction and urban carbon emission intensity was evaluated using
a multiperiod DID method. The results show the following: (1) Smart city construction
decreased urban carbon emissions intensity significantly and decreased carbon emissions
per unit GDP in pilot areas by 0.1987 tonnes/10,000 CNY compared to that in non-pilot
areas. (2) According to the analysis of heterogeneity, smart city construction significantly
decreased carbon emissions intensity in cities in northern China and resource-based cities
but had insignificant influences on carbon emission intensity in cities in southern China
and non-resource-based cities. (3) Based on the analysis of influencing mechanisms, smart
city construction could influence urban carbon emission intensity by stimulating green
innovation vitality, promoting the advancement of industrial structures, and decreasing
energy consumption.

Based on the above conclusions, some insights can be provided for low-carbon urban
development. Firstly, the government should continue to increase support for smart
city construction, acknowledging construction tasks such as digital infrastructure and
smart government as the most critical, provide basic support for sustainable economic
and social development, and promote the carbon emission reduction effect of smart city
construction to the maximum extent. Moreover, the expansion of smart city pilot policy
should be promoted to allow more cities to enjoy its benefits. Secondly, differences in
the policy effect of smart city construction in different cities should be considered fully.
The government should formulate policy orientations following local resource availability
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and development status, continue to increase smart city construction in northern China
and resource-based cities, and facilitate the implementation of a low-carbon development
model. Further, the government should change existing practices in southern China’s cities
and non-resource-based cities and explore more effective smart city construction models.
Finally, it is suggested that the government continues to optimise policy incentives for
green innovation, industrial advances, energy-saving practices, and emission reductions.
The government must become an ‘aggressive government’ and offer enterprises a good
market environment for green innovation based on new digital technologies, such as 5G,
big data, and the industrial IoT. Moreover, the government must increase support for
emerging industrial development and provide convenient services and financial support to
manufacturing enterprises to promote digital transformation. In general, in the context of
urbanisation and industrialisation, countries around the world should learn from this case
study on smart city construction and actively explore new urban development models that
meet their own development needs.

Unlike previously published articles on the relationship between urbanisation and
carbon emissions, this paper focuses on the key role of new urban development models in
reducing carbon emission intensity. This paper confirms that smart city construction can
effectively mitigate carbon emission pollution in the process of urbanisation. This provides
a decision-making basis for countries around the world to aid in the control of urban
diseases. Due to the different development levels, technological conditions, and resource
availability of smart cities, the effects of smart city construction may vary greatly. In the
heterogeneity analysis, we only considered the influence of urban locations and city types
on the policy effect of smart city construction. In the next step, the interactions between
city size, industrial characteristics, transportation conditions, and smart city construction
policies will be further analysed. The spatial spillover effect of smart city construction
would also be an interesting topic to explore. In addition, can other new urban development
models, such as innovative cities, also reduce urban carbon emission intensity? This is a
question worthy of further exploration.
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