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Abstract: Stored-product commodities are attacked by numerous insect species. The adulticidal
effects of entomopathogenic nematodes (EPNs) on grains remain uninvestigated. Thus, in the current
study, seven doses of the EPNs Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae),
Steinernema carpocapsae (Weiser) (Rhabditida: Steinernematidae), and Steinernema feltiae (Filipjev)
(Rhabditida: Steinernematidae) were inoculated on wheat kernels against adults of Trogoderma
granarium Everts (Coleoptera: Dermestidae), Tenebrio molitor L. (Coleoptera: Tenebrionidae), and
Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae). Complete mortality (100.0%) of T. gra-
narium was recorded after exposure for eight days to the highest dose of 50,000 Infective Juveniles/mL
(IJs/mL) of all tested EPN species. At the same exposure interval, 62.2%, 85.6%, and 76.7% of T. molitor
were killed by 50,000 IJs/mL of H. bacteriophora, S. carpocapsae, and S. feltiae, respectively. The highest
mortality of A. diaperinus (11.1%) was documented eight days post-exposure to 50,000 IJs/mL of
H. bacteriophora. In general, T. granarium was highly susceptible, followed by T. molitor and A. dia-
perinus. Concerning EPN species, S. carpocapsae exhibited the highest insecticidal capacity, followed
by S. feltiae and H. bacteriophora. Trogoderma granarium and T. molitor can be sufficiently managed
by the highest dose of 50,000 IJs/mL of all three EPNs and by S. carpocapsae, respectively. However,
A. diaperinus was not affected by any EPNs.

Keywords: khapra beetle; yellow mealworm; lesser mealworm; entomopathogenic nematodes;
stored wheat

1. Introduction

Entomopathogenic nematodes (EPNs) are obligate or on occasion facultative round-
worm insect parasites that can be employed within a sustainable control regime of stored-
product pests since they are not harmful for humans, non-target organisms, and envi-
ronment [1–13]. They penetrate the host body through natural entrances i.e., spiracles,
anus, oral cavity, or sometimes the cuticular intersegmental membrane, when they reach
the third, infective stage of juveniles (IJ) [14,15]. These organisms are carriers of intesti-
nal entomopathogenic bacteria that belong to the genera Photorhabdus (Enterobacterales:
Morganellaceae) and Xenorhabdus (Enterobacterales: Morganellaceae) [15–19]. These mi-
croorganisms exit EPN bodies through the anus, oral cavity or by defecation. Then, they
proliferate into the nutrient-rich haemocoel of insects [14,17,18,20,21]. The microorganisms
secrete proteins and toxins that cause septicemia and eventually kill the insects [22–25].
Additionally, Steinernema carpocapsae (Weiser) (Rhabditida: Steinernematidae) was recently
reported to be able to kill insects by releasing venom proteins [17].

Entomopathogenic nematodes are members of two genera: Steinernema (Steinermati-
dae) and Heterorhabditis (Heterorhabditidae). Their life cycle comprises six stages: egg, the
first, second, third, and fourth juvenile stages (indicated as J1-4), and adult. Stage J3 is also
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referred to as IJ (infective juvenile), since it is the stage at which the EPN enters the host
body. Infective juveniles are soil-inhabiting, free-living, and non-feeding, and they are the
only stage occurring outside the body of the host insect [9]. When they enter the host body,
IJs release mutualistic bacteria that produce toxins and suppress the host’s immune system,
causing its septicemic or toxemic death, within 24–48 h. Insects that die on account of the
Steinernema–Xenorhabdus duo become pale or greyish depending on the species of the EPN,
whereas those killed by the Heterorhabditis–Photorhabdus duo acquire a dark-red color due
to the production of luminescent anthraquinone pigments by the bacteria [26,27].

To date, the most effective EPN species are S. carpocapsae, Heterorhabditis bacteriophora
Poinar (Rhabditida: Heterorhabditidae), and Steinernema feltiae (Filipjev) (Rhabditida: Stein-
ernematidae) [5,11]. In the past, these three EPNs have been evaluated against several
stored-product insects. Ramos-Rodríguez et al. [4] tested S. carpocapsae, S. feltiae and Stein-
ernema riobrave Cabanillas, Poinar & Raulston (Rhabditida: Steinernematidae) on filter
paper against adults, pupae and larvae of Ephestia kuehniella Zeller (Lepidoptera: Pyralli-
dae), Trogoderma variabile Ballion (Coleoptera: Dermestidae), Oryzaephilus surinamensis (L.)
(Coleoptera: Silvanidae), Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae), Tenebrio
molitor L. (Coleoptera: Tenebrionidae) and Tribolium castaneum (Herbst) (Coleoptera: Tene-
brionidae), as well as Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae) and Sitophilus
oryzae (L.) (Coleoptera: Curculionidae) adults. The least susceptible species was S. oryzae,
while the most susceptible was E. kuehniella. Similarly, Yuksel et al. [28] studied two strains
of S. feltiae and two strains of H. bacteriophora, inoculated on filter paper, against adults of R.
dominica and S. oryzae and larvae of E. kuehniella. Eight days post-exposure, E. kuehniella
larvae were the most susceptible species followed by S. oryzae and R. dominica adults.
Furthermore, three isolates of S. feltiae applied on filter paper caused variable mortality
rates to S. oryzae adults at variable temperatures [29].

Trogoderma granarium Everts (Coleoptera: Dermestidae), T. molitor, and Alphitobius dia-
perinus (Panzer) (Coleoptera: Tenebrionidae) are species that cause high qualitative damage
to stored commodities, as well as allergies that can potentially harm public health [30–37].
More specifically, T. granarium, T. molitor, and A. diaperinus are documented to infest 94,
46 and 77 commodities, respectively, e.g., grains, cereals, seeds, nuts, spices, tobacco and
products of animal origin [33]. Trogoderma granarium is a primary stored-product pest,
while the other two species are secondary pests [32,38]. All of them are cosmopolitan and
can usually be found in storage facilities, grains, pet shops, and mills [32,33,38]. Research
efforts tend to natural insecticides and/or biological control for their efficient management
to avoid environmental and human health risks [39–43]. Therefore, even though essential
oils (EOs), nanoemulsions (NEs), microemulsions (MEs), diatomaceus earths (DEs), and en-
tomopathogenic fungi have been used as grain protectants [42–49], there is little knowledge
about the efficacy of EPNs as grain protectants [5,11].

Previously, Athanassiou et al. [5] inoculated H. bacteriophora, S. carpocapsae and S. feltiae
on wheat against E. kuehniella larvae, R. dominica adults, S. oryzae adults, and Tribolium
confusum Jacquelin du Val (Coleoptera: Tenebrionidae) adults or larvae at 20 ◦C and 30 ◦C.
Entomopathogenic nematodes provided low-to-moderate mortalities at both temperatures.
Similarly, Karanastasi et al. [11] studied the aforementioned EPN applied on wheat kernels
to manage the tolerant T. granarium larvae [43]. Results were promising for both sizes of
larvae, since mortality reached 98.9% and 87.8% for small and large larvae, respectively,
after an 8-day exposure to 50,000 IJs/mL S. feltiae. Yet, there are no data about the adulticidal
effects of EPNs H. bacteriophora, S. carpocapsae, and S. feltiae against T. granarium, T. molitor,
and A. diaperinus adults. Thus, the current study examines the efficacy of these three EPNs
inoculated on stored wheat against adults of the aforementioned coleopterans.

2. Materials and Methods
2.1. Insects and Commodity

All three insect species were kept at the Laboratory of Agricultural Zoology and
Entomology (Agricultural University of Athens) at 30 ◦C, 65% relative humidity (RH) and
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an absence of light [44,45,50,51]. To culture T. granarium, whole wheat was used as the
rearing medium [45]. To culture T. molitor, oat bran plus potato cuts were used as the
rearing medium [44]. Finally, to culture A. diaperinus, yeast (1/4) plus wheat bran (3/4) plus
apple cuts were used as the rearing medium [51]. Potatoes or apples are used to enhance
the moisture content of the culture [44,45,51]. The unsexed selected adult individuals of
T. granarium, A. diaperinus and T. molitor were <1, 7 or 14 days old, respectively [44,45,51].
The commodity that was used for the experimentations was Triticum durum Desf. (Poales:
Poaceae) (var. Claudio). The grains were clean from pests, pesticides and impurities. Prior
to the trials, the wheat moisture content was estimated at 11.8% with a calibrated mini
GAC plus moisture meter (Dickey-John Europe S.A.S., Colombes, France).

2.2. Entomopathogenic Nematodes

All tested EPNs that were utilized in the current study were provided by Bio-insecta
(Nea Silata, Greece).

2.3. Bioassays

After conducting preliminary trials by using all examined coleopterans, the EPN doses
that were used in the current study were 100 IJs/mL, 500 IJs/mL, 1000 IJs/mL, 5000 IJs/mL,
10,000 IJs/mL, and 50,000 IJs/mL. The experiments were conducted in glass vials (12.5 cm
height; 7.5 cm diameter). Lids of the vials had one circular opening (1.5 cm diameter) for the
ample aeration of their inside space. The upper internal side of these vials was covered with
polytetrafluoroethylene (Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany) to prevent
insects from escaping. Three 10 g wheat samples were placed inside each vial after being
weighed by a Precisa XB3200D electronic compact balance (Alpha Analytical Instruments,
Gerakas, Attica, Greece), conducted on a filter paper. Afterwards, the wheat was inoculated
with 1 mL of tap water that contained the aforementioned doses of EPNs, and subsequently
the grains were hand-shaken for one minute to ensure the even distribution of the EPNs to
the whole mass of the commodity [11]. The tested doses were equivalent to 10 IJs/adult,
50 IJs/adult, 100 IJs/adult, 500 IJs/adult, 1000 IJs/adult, and 5000 IJs/adult [5,11]. The
moisture of kernels was then recalculated, reaching 13.7%. Vials that were inoculated
only with tap water were used as control. Thereupon, ten adults of each species were
separately inserted into each vial. The prepared containers were conveyed into incubators
at 30 ◦C and 65% RH until the end of the experimental period. Mortality data were acquired
after 4 days and 8 days under an Olympus SZX9 stereomicroscope (Bacacos S.A., Athens,
Attica, Greece). An individual was declared dead after no motion was detected when the
adults were poked with a brush. The dead insects were withdrawn from the vials and
subsequently dissected (Figure 1) to confirm the presence of EPNs in the dead insect bodies.
The entire bioassay was repeated two more times using fresh EPNs, insects, vials and grains.
In total, 5670 individuals were used in the experiments (3 replications × 3 subreplications
(i.e., three dishes with wheat inoculated with a given dose of EPN) × 10 individuals ×
7 doses/control × 3 EPN species × 3 insect species).

2.4. Data Analysis

Control mortality was <5%; hence, no correction of data was required. To acquire
a normal variance, prior to the analysis, data were converted to log (x + 1) [52,53]. The
repeated-measures model (MANOVA) was utilized for each insect separately [54]. The
repeated factor, response variable and main effects were exposure, mortality and nematode
dose/nematode species, respectively. Means were discriminated with the Tukey–Kramer
test HSD (compare all pairs) at the 5% significance level [55]. Analysis was conducted on
JMP 16.2 software [56].
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Figure 1. Trogoderma granarium and Tenebrio molitor adults infected with the entomopathogenic
nematodes Steinernema feltiae ((a,b), respectively), Heterorhabditis bacteriophora ((c,d), respectively), and
Steinernema carpocapsae ((e,f), respectively). The images were acquired at the end of the experiments
(8 days).

3. Results
3.1. Mortality of Trogoderma granarium Adults

All main effects and interactions of T. granarium adults between and within exposure
intervals were significant except for the exposure × nematode species × nematode dose
(Table 1). For the first 4 days of the experiment, all doses of H. bacteriophora, S. carpocapsae
and S. feltiae provided low-to-moderate mortalities, i.e., 21.1–36.7% at 100 IJs/mL and
46.7–72.2% at 50,000 IJs/mL (Table 2). About half of the individuals (51.1%) were dead
after exposure for 4 days to 1000 IJs/mL S. carpocapsae. Eight days post-exposure, all EPNs
provided complete mortality when the dose was 50,000 IJs/mL. Steinernema carpocapsae
killed 96.7% and 97.8% of T. granarium adults at 5000 IJs/mL and 10,000 IJs/mL. The
lowest dose of the three EPN species (100 IJs/mL) caused 55.6–76.7% mortality at the end
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of the experiments. Control mortality (0 IJs/mL) provided 1.1% mortality at the end of
the experiments.

Table 1. MANOVA parameters for main effects and associated interactions for mortality of Trogoderma
granarium, Tenebrio molitor, and Alphitobius diaperinus adults between and within exposure intervals
(error DF = 144).

Effect Trogoderma granarium Tenebrio molitor Alphitobius diaperinus

Between exposure intervals
Source DF F p F p F p

Intercept 1 39,131.4 <0.01 2600.6 <0.01 29.9 <0.01
Nematode species 2 26.3 <0.01 4.3 0.02 4.4 0.02

Nematode dose 5 27.0 <0.01 33.4 <0.01 8.3 <0.01
Nematode species × nematode dose 10 2.0 0.04 1.4 0.19 1.0 0.41

Within exposure intervals
Exposure 1 571.0 <0.01 371.5 <0.01 25.3 <0.01

Exposure × nematode species 2 10.6 <0.01 18.2 <0.01 9.2 <0.01
Exposure × nematode dose 5 5.5 <0.01 1.4 0.21 7.5 <0.01

Exposure × nematode species × nematode dose 10 1.1 0.36 9.1 <0.01 1.9 0.05

Table 2. Mean mortality of (% ± SE) Trogoderma granarium adults after 4 and 8 days on wheat treated
with Heterorhabditis bacteriophora, Steinernema carpocapsae, and Steinernema feltiae applied at six doses.
Within each row, means followed by the same uppercase letter are not significantly different in all
cases. DF = 5, 53; Tukey–Kramer test at p = 0.05. Within each column, means followed by the same
lowercase letter are not significantly different, in all cases DF = 5, 53; Tukey–Kramer test at p = 0.05.

100 IJs/mL 500 IJs/mL 1000 IJs/mL 5000 IJs/mL 10,000 IJs/mL 50,000 IJs/mL F p

4 Days H. bacteriophora 21.1 ± 3.5 Cc 23.3 ± 3.7 BCc 28.9 ± 3.1 ABCe 51.1 ± 7.2 ABb 53.3 ± 4.4 Acd 55.6 ± 3.4 Ac 7.3 <0.01
S. carpocapsae 36.7 ± 5.0 Bbc 48.9 ± 5.9 ABb 51.1 ± 5.6 ABcd 52.2 ± 6.2 ABb 68.9 ± 4.2 Abc 72.2 ± 3.6 Ab 7.0 <0.01

S. feltiae 23.3 ± 4.1 Cc 24.4 ± 1.8 BCc 37.8 ± 2.2 ABde 38.9 ± 4.2 ABb 42.2 ± 7.0 ABd 46.7 ± 5.0 Ac 5.7 <0.01
8 Days H. bacteriophora 55.6 ± 5.0 Bab 57.8 ± 3.6 Bab 58.9 ± 4.6 Bbc 83.3 ± 4.7 Aa 84.4 ± 2.4 Aab 100.0 ± 0.0 Aa 17.6 <0.01

S. carpocapsae 76.7 ± 4.4 Ba 78.9 ± 4.6 Ba 86.7 ± 2.4 ABa 96.7 ± 1.7 Aa 97.8 ± 1.5 Aa 100.0 ± 0.0 Aa 11.4 <0.01
S. feltiae 61.1 ± 5.6 Cab 73.3 ± 6.5 BCa 80.0 ± 3.7 ABCab 84.4 ± 2.9 ABa 85.6 ± 4.4 ABab 100.0 ± 0.0 Aa 7.0 <0.01

F 11.1 31.1 26.2 16.1 18.9 34.6
p <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

3.2. Mortality of Tenebrio molitor Adults

The main effects were significant between the exposure intervals for T. molitor adults.
Within the exposure intervals, exposure × nematode species and exposure × nematode
species × nematode dose were significant (Table 1). Mortalities caused by the three EPNs
were low at all tested doses at 4 days post-exposure, not exceeding 7.8% for the lowest dose
of 100 IJs/mL and 27.8% for the highest dose of 50,000 IJs/mL (Table 3). Mortality values
8 days post-exposure were higher but still moderate for the doses 100 IJs/mL, 500 IJs/mL,
1000 IJs/mL, and 5000 IJs/mL for all EPNs. The doses 10,000 IJs/mL and 50,000 IJs/mL of
S. carpocapsae killed 70.0% and 85.6%, respectively, while 50,000 IJs/mL of H. bacteriophora
and S. feltiae did not exceed 62.2% and 76.7% mortality, respectively, at the same exposure
interval. Control mortality was 0% after 8 days of exposure.

3.3. Mortality of Alphitobius diaperinus Adults

Between and within exposures, the main effects and interactions were significant, ex-
cept those of nematode species × nematode dose interaction for A. diaperinus adults (Table 1).
Mortality values were 0.0% after 4 days and 8 days of exposure to 100–10,000 IJs/mL of
S. feltiae and 100–1000 IJs/mL of S. carpocapsae, while no mortality (0.0%) was recorded
4 days or 8 days post-exposure to 100–5000 IJs/mL or 100–1000 IJs/mL of H. bacteriophora,
respectively (Table 4). The highest doses of 50,000 IJs/mL killed 1.1–2.2% of A. diaperinus
adults after the first four days of experimentation and 3.3–11.1% at the termination of the
experimental period. Control mortality was 0% at 8 days post-exposure.
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Table 3. Mean mortality of (% ± SE) Tenebrio molitor adults after 4 and 8 days on wheat treated
with Heterorhabditis bacteriophora, Steinernema carpocapsae, and Steinernema feltiae applied at six doses.
Within each row, means followed by the same uppercase letter are not significantly different in all
cases. DF = 5, 53; Tukey–Kramer test at p = 0.05. Within each column, means followed by the same
lowercase letter are not significantly different in all cases. DF = 5, 53; Tukey–Kramer test at p = 0.05.

100 IJs/mL 500 IJs/mL 1000 IJs/mL 5000 IJs/mL 10,000 IJs/mL 50,000 IJs/mL F p

4 Days H. bacteriophora 7.8 ± 2.2 Bab 12.2 ± 4.7 ABab 14.4 ± 1.8 ABa 16.7 ± 1.7 ABc 17.8 ± 2.8 ABd 20.0 ± 4.1 Ab 3.6 0.01
S. carpocapsae 7.8 ± 2.8 Bab 13.3 ± 2.4 ABa 16.7 ± 1.7 Aa 21.1 ± 3.5 Abc 24.4 ± 2.4 Ad 26.7 ± 4.1 Ab 6.4 <0.01

S. feltiae 2.2 ± 2.2 Bb 3.3 ± 1.7 Bb 3.3 ± 1.7 Bb 23.3 ± 4.1 Abc 26.7 ± 4.1 Acd 27.8 ± 2.8 Ab 24.0 <0.01
8 Days H. bacteriophora 16.7 ± 4.4 Ca 20.0 ± 4.4 BCa 25.6 ± 3.4 ABCa 43.3 ± 5.5 ABa 46.7 ± 2.4 Aab 62.2 ± 8.5 Aa 6.9 <0.01

S. carpocapsae 12.2 ± 4.0 Dab 18.9 ± 3.1 CDa 27.8 ± 4.0 BCa 51.1 ± 6.8 ABa 70.0 ± 4.1 ABa 85.6 ± 3.4 Aa 13.4 <0.01
S. feltiae 15.6 ± 3.4 Ca 20.0 ± 2.9 BCa 24.4 ± 3.8 BCa 40.0 ± 5.8 ABab 42.2 ± 4.9 ABbc 76.7 ± 6.7 Aa 10.6 <0.01

F 3.3 4.8 20.0 8.1 19.8 24.7
p 0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Table 4. Mean mortality of (% ± SE) Alphitobius diaperinus adults after 4 days and 8 days on wheat
treated with Heterorhabditis bacteriophora, Steinernema carpocapsae, and Steinernema feltiae applied at six
doses. Within each row, means followed by the same uppercase letter are not significantly different in
all cases. DF = 5, 53; Tukey–Kramer test at p = 0.05. Within each column, means followed by the same
lowercase letter are not significantly different in all cases. DF = 5, 53; Tukey–Kramer test at p = 0.05.

100 IJs/mL 500 IJs/mL 1000 IJs/mL 5000 IJs/mL 10,000 IJs/mL 50,000 IJs/mL F p

4 Days H. bacteriophora 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.1 ± 1.1 ab 1.1 ± 1.1 b 0.8 0.56
S. carpocapsae 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.1 ± 1.1 2.2 ± 2.2 ab 2.2 ± 2.2 b 0.6 0.70

S. feltiae 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 b 1.1 ± 1.1 b 1.0 0.43
8 Days H. bacteriophora 0.0 ± 0.0 B 0.0 ± 0.0 B 0.0 ± 0.0 B 6.7 ± 3.3 AB 7.8 ± 3.2 ABa 11.1 ± 2.6 Aa 6.7 <0.01

S. carpocapsae 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 2.2 ± 1.5 2.2 ± 2.2 ab 5.6 ± 2.9 ab 1.9 0.11
S. feltiae 0.0 ± 0.0 B 0.0 ± 0.0 B 0.0 ± 0.0 B 0.0 ± 0.0 B 0.0 ± 0.0 Bb 3.3 ± 1.7 Aab 4.0 <0.01

F - - - 2.2 2.4 3.6
p - - - 0.07 0.05 0.01

4. Discussion

The current study sheds light for the first time on the adulticidal efficacy of H. bacterio-
phora, S. carpocapsae and S. feltiae against T. granarium, T. molitor and A. diaperinus as grain
protectants. Regarding T. granarium adults, the results revealed the remarkable efficacy
of all EPN species at the highest dose. The effective management of this stage is crucial
for this species, since its offspring at the egg or larva stages are tolerant to numerous
synthetic or natural insecticides [43,46,57–59]. Therefore, adults determine the growth of
the population of this species and the establishment of larvae in storage facilities, leading
to dangerous population outbreaks [45,49]. Recently, Karanastasi et al. [11] reported almost
total mortality to small T. granarium larvae and ~88% to large T. granarium larvae. Taking
these results into account along with those of the current study, we can conclude that the
use of H. bacteriophora, S. carpocapsae and S. feltiae on wheat can efficiently control adults
and larvae (large and small) of this noxious insect. Furthermore, we propose the dose
of 50,000 IJs/mL for all EPN species to achieve complete or almost complete adult or
larval mortalities.

Regarding T. molitor adults, S. carpocapsae provided higher mortality (85.6%) than
H. bacteriophora (62.2%) or S. feltiae (76.7%). Previously, 10 IJs/adult of S. carpocapsae, S. feltiae,
and S. riobrave have been tested against T. molitor adults on filter paper [4]. Steinernema
carpocapsae and S. riobrave could kill 90% and 95% of the exposed individuals, while S. feltiae
could kill only 20% after 4 days of exposure. Virulence differences within the same EPN
species can be attributed to the different strains of EPN that are used to manage T. molitor
adults, a fact that could partially explain the high mortality related to the utilization of
S. feltiae in our results vs. the low levels of mortality reported by Ramos-Rodríguez et al. [4].
For instance, four strains of H. bacteriophora caused the death of 30–90% of the exposed
T. molitor larvae [7]. Similarly, Mbata and Shapiro-Ilan [3] noticed significant differences
in the mortality values exhibited by H. bacteriophora strains against P. interpunctella adults.
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In a recent study, 2000 IJs/mL S. riobrave or 3000 IJs/mL H. bacteriophora applied on filter
paper could kill 10.0% or 20.0% of the exposed T. granarium individuals, three days post-
exposure [13]; these are very low percentages compared to our findings (100.0%).

In the case of A. diaperinus, former studies have confirmed that mortality levels depend
on the strain of the EPN. Ten strains of Heterorhabditis sp. applied on filter paper killed
between 1.0 and 40.0% of the exposed A. diaperinus adults [2]. The results of this study
revealed that none of the three EPNs could kill more than 11.1% of the individuals 8 days
post-exposure. In general, the existing studies of EPN efficacy against A. diaperinus adults
show tolerance of this species to EPN. For instance, 60 or 120 IJs/adult Steinernema glaseri
(Steiner) (Rhabditida: Steinernematidae) killed 0.0% or 3.3% of the A. diaperinus individuals,
respectively, after 7 days of exposure on filter paper. On the other hand, 60 IJs/adult
S. carpocapsae led to 26.7% mortality of the A. diaperinus individuals after 7 days of exposure
on filter paper [1]. Furthermore, different strains of insects may have variable susceptibility
to EPNs. For example, Koc et al. [60] studied four geographical strains of A. diaperinus. After
5 days of exposure to 200 IJs/mL S. carpocapsae, adult mortalities ranged between 40.0%
and 66.6%, while larval mortalities ranged from 73.3% to 90.0%. It is worth noting that
mortalities caused by EPNs can vary when they are applied to different types of materials.
For example, Del Valle et al. [8] revealed that the strains CUL of Steinernema rarum (Doucet)
(Rhabditida: Steinernematidae) and SMC of H. bacteriophora killed 32.7% and 60.0% of
A. diaperinus adults when they were applied to filter paper while they killed only 2.7% and
16.7% when they were applied to dry rice hull, 4 days post-exposure, respectively. In the
same study, when the rice hull was wet, mortalities were higher, reaching 9.3% and 33.3%
for the S. rarum CUL and H. bacteriophora SMC, respectively.

Another factor affecting the virulence of the EPN is temperature. For instance, the
B49 and B30 strains of S. feltiae caused the death of more S. oryzae adults at 20 ◦C than at
15 ◦C, 25 ◦C, or 30 ◦C, vs. the 3162 strain, which caused higher mortality at 25 ◦C than at all
other temperature levels [61]. Similarly, S. carpocapsae and S. feltiae killed more E. kuehniella
larvae at 20 ◦C than at 30 ◦C, but the same temperature increase yielded opposite results
regarding H. bacteriophora [5]. Interestingly, the same temperature change (from 20 ◦C
to 30 ◦C) increased the efficacy of S. feltiae against R. dominica adults and decreased the
virulence of H. bacteriophora against T. confusum larvae and adults. However, mortalities
caused by S. carpocapsae, H. bacteriophora and S. feltiae to S. oryzae adults were approximately
the same when temperature increased [5]. At 30 ◦C, Karanastasi et al. [11] provided >91%
and >98% mortality of T. granarium small larvae after 8 days of exposure to 50,000 IJs/mL
of S. carpocapsae and S. feltiae, respectively, an issue that was confirmed in the case of adults
in the current study. Whether the complete mortality (100.0%) of T. granarium adults found
in the current study remains the same under lower or higher temperatures merits further
investigation. Moreover, Kung et al. [62] revealed that as RH levels decreased from 100%
to 25%, the numbers of S. carpocapsae and S. glaseri IJ gradually decreased. Interestingly,
the same RH decrease led to gradually lower pathogenicity of the aforementioned EPNs.
Therefore, abiotic factors such as temperature and RH play a significant role in the survival
and the efficacy of the EPN. Due to variable findings, apparently there is no general trend
between temperature and the virulence of EPN.

5. Conclusions

In conclusion, the highest dose (50,000 IJs/mL) of the EPNs H. bacteriophora, S. car-
pocapsae and S. feltiae inoculated on wheat are highly efficient for the management of adults
of T. granarium, an important quarantine species in several countries of the world. The
same dose of S. carpocapsae can provide adequate protection of wheat from T. molitor adults,
while all EPNs were ineffective against A. diaperinus adults. The susceptibility rank (from
most to least susceptible) of the tested insect species was T. granarium > T. molitor > A. dia-
perinus. The EPN efficiency rank (from most to least efficient) was S. carpocapsae > S. feltiae
> H. bacteriophora. Entomopathogenic nematodes have already been suggested for insect
management in soil-less cryptic environments, as they are an excellent substitute for chemi-
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cal control. The current study provides additional information on their adulticidal ability;
nonetheless, to assess their entire potential as grain protectants, additional experimentation
is required, including experimentation on more EPN species/strains and the use of a wide
variety of grain commodities against stored-product insects and their developmental stages
under a series of variable abiotic conditions.
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