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Abstract: Measuring the traffic quality and congestion level is fundamental in highway engineering,
and several decades of studies and research have pursued this specific objective, especially for
freeways. Nowadays, smart technologies on personal devices and information shared by users have
made available various online information platforms that provide dynamic representations of the use
of the road network. If, on the one hand, these tools provide a simple and direct representation of
the quality of circulation, on the other hand, their aggregated information is only partial for those
dealing with traffic and highway engineering. This branch of engineering relies on multidimensional
knowledge of traffic flow phenomena, and only through their in-depth knowledge, we can assess
traffic quality and congestion risk. After identifying the different approaches for analyzing in
quantitative terms the traffic quality on the freeway, the paper deepens the reliability approach.
From this point of view, the paper aims to unite the two perspectives in the literature, namely, the
probabilistic analysis of traffic instability with the characterization of speed random processes and the
analysis of breakdowns with the survival analysis. For this purpose, the work outlines a procedure
based on the estimation and simulation of ARIMA models for speed random processes in a freeway
section, particularly on the leftmost lane, to assess the traffic reliability function. Applying the
Product Limit Method to the Monte Carlo simulation results makes it possible to obtain probabilistic
assessments of congestion, considering the Level of Service density limits defined in the Highway
Capacity Manual. Its application to a case study makes it possible to illustrate the application of the
method, which can be easily applied to historical and near-real-time data using a continuous flow
of information.

Keywords: traffic flow reliability; freeway traffic reliability; traffic congestion; Level of Service;
breakdown analysis; speed random process

1. Introduction

The availability of an accurate and effective method for measuring the traffic quality
and congestion level on a segment or part of the network represents a fundamental aspect
of the planning, designing, and controlling of a transport system. In the field of road
transport, especially for highways, several decades of studies and research have pursued
this specific objective. Various discussions have been proposed about the meaning of the
quality of circulation and congestion to define models and operating procedures that can
represent and observe it.

Over the years, the growing availability of information about mobility and traffic
has led to further considerations related to using these data to monitor traffic quality
and control/manage infrastructure systems and mobility demand. These systems are
known as Intelligent Transportation Systems (ITSs) [1]. As in [2], the ITS research topic in
the highway sector, although central in the last twenty years, has only occasionally been
transformed into medium- and long-term projects. However, today, the proliferation of
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intelligent technology, which we often refer to as smart technology, is the primary driver of
innovation in the highway sector [3]. The smart road represents the frontier of innovation
in the road and highway sector, where the most innovative automation and communication
technologies, big data, and artificial intelligence integrate each other to offer a transport
service suitable for the highly dynamic needs of modern mobility [3].

From this point of view, it is evident that the availability of data on the movements
of road users has experienced an incredible boost in recent years; today, data perform the
lion’s share of the work of smart technology, especially in the highway field. The ubiquitous
deployment of technology for tracking movement using personal and compact GPS or
cell phone devices has made available, for instantaneous and massive use, various online
information systems and platforms capable of providing representations of the state of use
of the road network. The analysis of this information, commonly referred to as big data
and complemented by social applications with information shared by users, has made it
possible to offer the public some immediate tools to inquire about the traffic situation in a
specific territorial context. Online platforms—among which we can mention the widely
used services provided by Google Traffic, TomTom Move, Bing Traffic, Inrix, and Waze—
provide some information on travel times and travel speeds on roads or sections of roads
on simple and easily navigable maps, both in real time (live traffic) and as average values
over selectable daily and hourly intervals (typical seasonal daily situations). On the one
hand, we can say that these tools provide a simple and direct representation of the quality
of circulation. However, on the other hand, the information transferred in terms of average
speeds or travel times, or even more aggregated qualitative indices, is only partial for those
dealing with the planning, designing, and controlling of transport systems and networks.

Traffic engineering relies on multidimensional knowledge of traffic flow phenomena,
and average information about speed or travel time on a sample of users, if not accompanied
by additional information, is inadequate to define the infrastructure operations. Only
through the in-depth knowledge of traffic phenomena and the macroscopic and microscopic
study of the involved variables, we can represent traffic conditions and circulation quality
and evaluate the distance from the congestion.

Starting with Greenshields’s seminal works in the first half of the last century [4],
several perspectives have been proposed, searching for a method to study traffic behaviors
and measure circulation quality. From this point of view, first, we can differentiate two
approaches [5]:

• A first one includes those methods that define the quality of circulation through a
functional relationship with some qualitative and quantitative parameters of driving
operations in the traffic flow (index approach);

• A second one defines the quality of circulation through the relationships between
the macroscopic variables of flow, speed, and density, using steady-state models to
estimate the Fundamental Diagram [1] and, starting from the latter, identifying typical
situations of the state of circulation, or Level of Service (LOS), from free to congested
(LOS approach).

Among the first traffic flow scholars of the last century, Greenshields, Platt, and
Drew proposed studies and methods related to the first approach, adopting time-to-time
specific quality indices [6–10]. As highlighted in [5], this approach has not had significant
applications, probably due to what appears to be an abstract definition of the quality of
circulation, to a certain arbitrariness in the selection of variables, and often to the difficulty
of measuring them in actual situations on the road.

The second approach includes the methods and procedures in the different editions,
up to the latest, current one, of the Highway Capacity Manual (HCM) [11], which is
widespread internationally and is adopted in various national contexts. The generalized
speed–flow curves for standard cases periodically updated in the various HCM editions
and their easy applicability for technicians and practitioners have made the fortune of this
approach, which is now extremely widespread all over the world for the analysis of the
quality of circulation.
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In addition to these two approaches, we can add a third one that links the traffic
circulation quality to some reliability measures, i.e., the reliability approach. As in [12], we
can consider a system reliable if it can fully perform the tasks for which it was designed.
From this point of view, system reliability is the probability that it adequately performs its
tasks within a given time interval and under specified environmental conditions. Going
beyond descriptive studies and applications based on the analysis of the travel time reli-
ability (e.g., [13–19]), the approach that we define here in terms of reliability collects the
theoretical contributions of the analysis of the speed random processes [1,12,20–25] and
the probabilistic analysis of breakdown phenomena and capacity [26–30]. In general, we
can observe that the contributions of the probabilistic analysis of breakdowns have found
various applications in recent years, up to also being included in the HCM (in a simplified
way) for the estimation of the probabilistic distribution of the lane capacity [11]. Despite
its numerous applications in the estimation of statistical models for short-term forecasts,
of which we find an interesting review in [31], the analysis of the speed processes has
been scarcely used in the assessment of the circulation quality, perhaps due to the greater
theoretical complexity and burden of calculation in practical applications.

Aim of Research

In the context briefly outlined here, the work presented in this paper addresses the
two lines of the investigation cited above for the analysis of reliability—i.e., stochastic
speed processes and the probabilistic analysis of breakdown phenomena and capacity—to
propose a single procedural framework able to integrate both and to connect them with the
critical elements of LOS analyses according to the HCM.

Thus, the paper wants to examine the probability of a traffic breakdown, the proba-
bilistic distribution of lane capacity, and the probability of a lane operating at any LOS,
based on the analysis of the stochastic processes of vehicle speeds in a freeway section. The
objective is to propose a more general approach, going beyond the relationships that can
we find in the literature, obtained under certain initial and boundary conditions.

The proposed procedure can be useful for evaluating the circulation quality and the
Level of Service on a freeway segment from the reliability point of view by observing how
the speed processes develop in the situation that is under observation from time to time,
for historical data and applications in near real-time.

The paper is organized as follows: Section 2 addresses the primary literature references
and the theoretical and applicative assumptions for measuring the quality of freeway traffic.
Section 3 proposes some fundamental aspects related to the analysis of speed processes,
with some details in the Appendix A. Section 4 describes the model characterization and the
quantitative procedure that the paper proposes. Finally, Section 5 proposes an explicative
application to a real case on the Italian Brenner A22 freeway.

2. Approaches to the Analysis of the Quality of Circulation
2.1. Quality of Service

As anticipated in the introduction, we can identify three approaches to measuring
traffic circulation quality: indices, LOS, and reliability analyses.

An example of the first approach was proposed by Greenshields (Greenshields, 1961)
with the QI (Quality Index), based on the assumption that drivers evaluate the driving
experience on the infrastructure based on the speed they reach and the degree of uniformity
of this speed. Platt (Platt, 1963) also suggests something similar with the LTSI (Level
of Traffic Service Index), which considers some additional factors experienced by the
driver, such as the rate of change in speed, the counter-steering rate (which describes
the frequency in the modification of the direction of movement of the steering wheel
from counterclockwise to clockwise or vice versa), the rate of reversal of accelerations
(which describes the rate of the shift from acceleration to deceleration, or vice versa), and
the braking rate. Some studies by Drew [9,10,32] highlighted how the quality indices
proposed by Greenshields and Platt link to a description of average performance over
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the entire trip or, in any case, over a relatively long stretch of infrastructure. The same
author—remarking how some variables involved in the indices calculations link to the
infrastructure characteristics, which usually vary along the travel route—highlighted the
need to link any quantitative parameter to short and homogeneous infrastructure sections.
Drew (Drew, 1965) introduced a new quantity in the parameters that describe the quality of
the circulation, namely, the acceleration noise, considering the three fundamental aspects
for assessing traffic circulation quality: the driver, the road, and traffic conditions.

In general, the LOS approach defines the quality of circulation based on the rela-
tionships between the macroscopic traffic variables of flow, speed, and density, using
steady-state models to estimate the Fundamental Diagram [1] and, starting from the latter,
identifying typical situations of the state of circulation, namely, LOS, from free to con-
gested. This approach includes the analysis and evaluation methods in the HCM, with
its distinctive feature of associating the traffic circulation quality to some areas in the
speed–flow plane.

The attribution to a given situation of the six Levels of Service in HCM is based on a
measure that represents the traffic flow condition, the so-called Measure of Effectiveness
(MOE). In the case of interest concerning the basic highway sections, there have been
various hypotheses regarding the MOE over time considering speed, flow-to-capacity ratio,
and density. Since 1975 [33], the assumption of density as an MOE has been used in all
subsequent editions of the manual until the last edition in 2022 [11].

2.2. Traffic Flow Reliability and Stochastic Capacity

Regarding the last of the three approaches, i.e., the reliability one, we can say that a
system is reliable if it can perform the tasks for which it was designed [12]. Reliability is,
thus, the probability that engineering works can adequately perform their functions for a
given time and under certain environmental conditions. Initially developed for aviation
purposes, especially in the military field, the reliability analysis [34] has been increasingly
employed and is used in various fields of industrial engineering, such as mechanical,
chemical, and nuclear engineering, as well as in software communication. In the last
decade, significant developments related to the concept of reliability have influenced
civil engineering, especially the building sector [35], as well as transport and highway
engineering [1].

In highway engineering, the probabilistic analysis of the reliability of road infrastruc-
ture can be assessed by considering the reliability of the flow parameters along the lanes
of its section, using a stochastic approach that examines these quantities and their link
with congestion and service quality in probabilistic terms. As already mentioned in the
introduction, we can assess the reliability of a freeway section as the traffic flow reliability,
detailing it in the following [12]:

• The probabilistic analysis of traffic flow breakdowns;
• The probabilistic analysis of the traffic flow instability.

As regards the probabilistic and forecast analysis of breakdowns, this is essentially
based on models of analysis of traffic block phenomena (breakdown models) [26,36–38] and
capacity estimation starting from the observation of flow and velocity
values [27–29,39,40] according to the theoretical–operational approach of the survival
analysis or lifetime analysis and of the Product Limit [41].

Probabilistic breakdown analysis models are based on representing the lane capacity
with a random variable characterized by its probability distribution. Among the first
to introduce and document the probabilistic behavior of congestion and capacity with
empirical observations and interpretative models on freeway ramps and sections, we can
find [36]. According to the probabilistic point of view, the probability of congestion is
usually represented as a function of the traffic flow; low traffic volumes correspond to a
low probability of congestion; at very high volumes, congestion likely occurs. From an
initial free traffic flow, the onset of congestion characterizes what we usually identify as a
traffic breakdown.
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Several studies have calculated the breakdown probability function from empirical
data, such as [26] or [36], by grouping the flows, for example, by multiples of 100 vehicles
per hour, and finding the frequency of the breakdowns in each group. In terms of capacity,
which we intend here as the value of the flow that occurs before a breakdown phenomenon,
the empirical distribution function of the capacity Fc(q) = prob(qc ≤ q) can be identified
based on the probability of having a capacity value c = qc less than or equal to q. The
first method for estimating the capacity distribution was proposed by [42] based on the
analogy with the statistical analysis of the life duration and on the observation of traffic
flows downstream of a traffic bottleneck. A more in-depth discussion was reported by
Brilon (e.g., [27,28]), who identified the criteria for the correct identification of the survey
section and for the classification of traffic observations (flow and speed) and defined the
methodologies for the non-parametric and parametric estimation of the Fc(q) distribution.

2.3. Traffic Flow Instability

Regarding traffic flow instability, the starting point is the observations of the stochastic
process of vehicle speeds [1,12,20–25,43]. When the traffic flow on a freeway carriageway
exceeds a certain threshold, there can be sudden drops in speed, causing hiccups (stop
and go) and often leading to a complete traffic blockage. This typical phenomenon is
what we can indicate as instability of the traffic flow, caused above all by the instability
of the distancing implemented among the vehicles on a freeway segment. In general, it
can be observed that a vehicle driving on a stretch of highway varies its driving speed
due to random phenomena related to the driving behavior of individual drivers or due
to the need to adapt its speed to the speed changes of the vehicle in front [1,44]. On
a multilane carriageway, lane change maneuvers are among the most frequent causes
of speed fluctuations. A vehicle moving from the right to the left lane reduces the gap
between two consecutive vehicles in transit on the latter, causing a reduction in speed in
the following vehicle. At the same time, in the right lane, the increase in the gap between
vehicles induces a speed increase in the follower. Speed change propagation in the flow
depends on the drivers’ reaction delay to changes in the speeds of the vehicle in front of
them. This phenomenon has random components, which concern the driver’s reaction to
the accelerations and decelerations of the previous vehicle and which vary randomly from
driver to driver and according to different situations. Traffic flow instability, therefore, arises
when a reduction in the speed of one vehicle causes an even more significant reduction in
the speeds of the following vehicles [20,21].

Thus, speed reductions in a freeway section without on- and off-ramps produce a
density increase, with increased maneuvering difficulties and interactions among vehicles
and instability. Therefore, studying speed variations allows us to address the problem of
traffic instability on a highway lane and traffic flow reliability. Experimental observations
show that, under many circumstances, traffic instability on a multilane carriageway first
occurs in the leftmost lane [20]. Thus, the study of traffic flow instability on the highway
carriageway coincides with the seemingly critical lane among all in the same driving
direction [45]; ultimately, the investigation of the probability of traffic flow instabilities on a
freeway carriageway can be approached by deepening the analysis of the speed variations
in the leftmost lane [12,20].

3. Speed Random Process
3.1. Speed Random Process Definition

To analyze the reliability of freeway traffic, it is necessary to investigate the behaviors
that characterize a vehicular flow made by vehicles that follow each other. Considering
the sequence of vehicles passing a section S of the leftmost lane of a freeway carriageway,
we consider t = 1, 2, . . . , n the instants in which each component of a vehicle succession
passes through section S and vt the speed of the vehicle passing at instant t. Therefore, the
sequence . . . vt−1, vt, vt+1 . . . is the realization of the random process that we indicate as
the speed process.
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If we denote by vt the dynamic mean value, or level, at instant t conditioned by the pre-
vious realization of the speed process up to t − 1, it can be verified that
vt = vt + at [12,20,25]. It means that the vehicle passing at time t has a speed devia-
tion at with respect to dynamic speed level vt due to the above realization, where at is
a random variable with mean zero and variance σ2 [12,20,25]. If we consider the whole
vehicle succession in t = 1, 2, . . . , n, all at are independent and identically distributed
random variables with zero mean and variance σ2. Some experiments have proved [20]
that if at instant t, there is a deviation at from level vt, this deviation influences the level
at t + 1, i.e., the conditional mean of the previous realization up to t, for a quantity λat,
with λ being a coefficient between 0 and 1. Thus, we can write vt+1 = vt + λat, and setting
(1− λ) = ϑ, it results that vt+1 = vt − atϑ + at+1 (see Appendix A), which corresponds to
an ARIMA (0,1,1) model [12,20,25].

It can be shown (see Appendix A) that the study of traffic reliability involves the
analysis of the speed process defined by vt = vt−k + λ ∑k

j=1 at−j. With at ∼ N
(
0, σ2)

and the distribution of λat completely defined by λσ, the same quantity λσ represents
a measure of the reliability of the speed process, i.e., of the greater or lesser probability
that the flow is stable over time. If, on the one hand, λ is small (at the limit equal to zero,
with low flow rate and large spacings) or if σ is small even in the presence of a non-low λ,
the probability that the process deviates enough from a constant value over time is low,
and the process can be considered to be stable, with vehicles that condition themselves
little; speeds appear normally distributed with constant mean equal to v and variance σ2

coinciding with that of residuals at and whose sequence is the realization of a renewal
process. If, on the other hand, λ and σ are not too small, the probability of a consistent
deviation from the constant value over time is high, and the speed process is constantly
unstable. In any case, parameters λ and σ2 are estimable considering the process defined by
wt = vt+1− vt = at(λ− 1) + at+1, which is a stationary process with at and at+1 identically
distributed, that is, a first-order moving average (MA) (1) process [12,20,25].

3.2. Speed Process and Flow Rate Analysis

Going back to section S on the leftmost lane of a freeway carriageway, we can consider
a succession ∆t(1), ∆t(2), . . . , ∆t(i−1), ∆t(i), ∆t(i+1), . . . of time intervals of duration ∆t
covering an interval of total duration T with an almost constant flow rate q∆t(i) . Let n(1),
n(2), . . . , n(i−1), n(i), n(i+1), . . . be the sequence of vehicles transited in each interval, each
one as the realization of a random process. Considering succession n(i) of the vehicles
passing during ∆t(i) as the realization of a first-order stationary process, if q∆t(i) is the flow
rate in generic interval ∆t(i), i.e., q∆t(i) = n(i)/∆t(i), and vt

(i) is the dynamic mean speed at
the instant of the passage of the t-th vehicle (1 ≤ t ≤ n(i)), density kt

(i) can be estimated as
the ratio between q∆t(i) and vt

(i), i.e., kt
(i) = q∆t(i)/vt

(i). If flow rate q∆t(i) is constant during
∆t(i), random variations in speed level vt

(i) generate random variations in density kt
(i). If

these random variations produce a kt
(i) exceeding a limit value

, we have traffic instability at the instant of the passage of the t-th vehicle. Thus, the
probability of having a certain instant t during ∆t(i) with kt

(i) > k∗ can identify probability
P∗(x|k∗) that a traffic block phenomenon x may occur in S during ∆t(i), assigned a density
threshold k∗.

Instability, as a random event, depends on the random process of the speed level.
Thus, the probability that the instability event does not occur in a certain instant defines
reliability ∅ of the flow. In these terms, the reliability of a constant traffic flow q∆t for a
time interval ∆t can be defined as the conditional probability that dynamic speed level vt
does not decrease during ∆t in such a way that density kt = q∆t/vt can reach limit density
k∗ (provided that in t0 = 1, the level of speed v0 corresponds to a stable flow). If this
occurs, the control mechanism implemented by the drivers goes into crisis, and the flow
becomes unstable.

Thus, if we consider a sequence of speed values measured over a reasonably long
period of time T, during which flow Q varies in a sufficiently wide range for the same
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environmental conditions, traffic composition, and driver population, the whole sequence
of the detected speeds can be subdivided into sequences that are the realization of ho-
mogeneous processes. The generic i-th process is characterized by specific values of λ(i)

and σ2(i), lasting ∆t(i), with a certain flow q∆t(i) , and by a density kt
(i) = q∆t(i)/vt

(i) at the
instant of the passage of the t-th vehicle of the process realization. The values of λ(i) and
σ2(i) can be estimated considering that for each identified sequence, wt

(i) is the realization
of a first-order moving average process (MA) (1).

3.3. Speed Process and Traffic Stream Reliability

Parameter λ(i), which we can estimate for each sequence i, appears to be an increasing
linear function of the logarithm of average density k. Some previous studies [12,20–22]
demonstrated that regardless of the different circumstances in which the observations are
made, λ can be well represented by the following linear equation: λ = −0.126+ 0.274 ln(k).
The same studies also confirmed that the trend of σ2(i) is also linear with respect to ln(k)
and passes through point [k=30 (ln(k) = 3.4; σ2 = 1.5 m2s−2]. Linear equation σ2 = f (ln(k)),
and in particular angular coefficient M, summarizes the current characteristics of the
traffic flow with respect to its vehicular composition, the population of drivers, and the
environment. Its intersection with the axis of density k identifies average limit density klim,
at which the traffic flow is only possible if the speed fluctuations do not exist and beyond
which there is a high probability of a crisis of the traffic flow. In these terms, the limit value
represents a measure of critical density k∗.

In consideration of the above, we can observe that reliability ∅ depends on the
following:

• A time interval ∆t, in which we evaluate the probability that an instability event does
not occur;

• A flow rate q∆t, which we assume is constant throughout ∆t;
• An angular coefficient M of straight line σ2 = f (ln(k)), which summarizes the charac-

teristics of the traffic flow.

Through simulations of the random process of the speed levels between zero speed
and maximum speed, it is possible to obtain [12,20–23] the expressions of ∅ for a traffic
flow in the leftmost lane of a freeway carriageway depending on ∆t (in minutes), q∆t
(in vehicles/hour/lane), and M (in m2 km s−2). Considering the level of speed v0 at
t0 (corresponding to a stable flow) expressed by equation v0 = 125− 0.020q, according
to [20], we can consider the regression of ∅ with respect to T, q, and M, given by

∅ = 1− 19.80
( q∆t

10000

)8.82
∆t 1.933 M2 (1)

Furthermore, starting from this expression, it is possible to obtain the value of flow rate
q, which transits on the leftmost lane of a freeway carriageway with a reliability value ∅:

q̃ = 10000
(

1−∅
19.80 ∆t1.933 M2

) 1
8.82

(2)

If we set a reliability value ∅̃ close to one (generally, ∅̃ = 0.8–0.9) and a conventional
period (e.g., ∆t = 15 min), the q̃ value obtained with Equation (2) is capacity Cpass of the
fastest lane (i.e., the leftmost lane). The instability, which is reached with a probability
1− ∅̃ when the qpass flow rate on the leftmost lane reaches its capacity Cpass (qpass/Cpass = 1),
determines the flow instability over the entire carriageway. In this regard, in a two-lane
carriageway, we can determine carriageway capacity Cr by considering the experimental
relationships between flow rates qright and qpass on the two lanes, as the total flow rate, qr,
on the entire carriageway varies [12,46].

The knowledge of reliability ∅ in a section and of its variation over time can be used
to prepare functional criteria for activating traffic control strategies [1]. These can prevent



Sustainability 2022, 14, 16019 8 of 21

the onset of instability phenomena by acting on the values of q and M. Based on Equation
(1), in fact, if q and M are high, it is possible to increase ∅ by reducing M (hence, variance
σ2) even without acting on traffic flow rate q. If, on the other hand, the value of ∅ below
the reliability threshold occurs with a value of M that is already low, then the increase in ∅
cannot be achieved, except with an adjustment of flow rate q [20].

As we have seen, the analysis of the speed process allows us to obtain a formulation
of reliability ∅ expressed by Equation (1) and to derive the probabilistic distribution of
capacity based on Equation (2), according to the method introduced by [12,20]. It should be
emphasized, however, that Equations (1) and (2) are regressions obtained by the simulating
of random processes under specific boundary conditions. Therefore, they are not directly
generalizable but require a simulation and regression process for each application to
contextualize them time to time. On the other hand, the current simulation techniques and
the improvement of the computational performances make it possible to study the stability
through the analysis of the speed processes in near-real-time mode, with evaluations that
we can carry out under the current flow conditions. This type of analysis is the novelty
proposed in this paper. Details about the proposed model are presented in Section 4, and an
exemplificative application is presented in Section 5. Thus, the main goal of the proposed
method is to go beyond the use of standardized functions in the literature. As we said, these
functions result from regression using simulations made once and for all with well-defined
assumptions and boundary conditions [12,20–23], leading to Equations (1) and (2).

4. Simulation and Analysis Procedure
4.1. Speed Process Simulation Model for Reliability Analysis

As we mention in the previous sections, the study of the reliability of traffic in the
leftmost lane of a freeway carriageway, with hourly flow rate q∆t passing through a section
S in a time interval ∆t with a dynamic average speed level vt, involves the analysis of
the speed random process defined by vt = vt−k + λ ∑k

j=1 at−j, with at ∼ N
(
0, σ2) and the

distribution of λat fully defined by λσ, according to an ARIMA (0,1,1) model.
To try to estimate the probability that during a certain time interval ∆t, hourly flow

rate q∆t can determine a congestion phenomenon, i.e., when average density kt = q∆t/vt
exceeds a threshold value k∗ with vt below a limit value v∗, it is possible to simulate the
realization of a large number m of speed sequences on the basis of parameters λ and σ2.
For crisis probability estimation, we can verify how many simulated sequences produce
kt > k∗ or vt < v∗. Parameters λ and σ2, which particularize the ARIMA model (0,1,1), can
be estimated on the basis of the recorded speed sequence, considering the random process
defined by vt+1 − vt = −at(1− λ) + at+1, i.e., wt = at(λ− 1) + at+1, which is a stationary
process with at and at+1 being identically distributed according to a first-order moving
average (MA) (1) process.

In a real-life situation, with a succession of vehicle transits n = q∆t ∆t, we can assume
that the related speed sequence is the realization of the MA process with parameters λ and
σ2. Considering the recorded n speed values vt, the estimates of λ and σ2 can be obtained
using the models of econometric statistics, taking care to test the primary hypothesis of
adequacy of the auto-regressive model.

Let us consider a speed sequence over a time period T, during which hourly flow rate
Q varies within a sufficiently wide range of values for the same environmental conditions,
traffic composition, and driver population. The sequence of the detected speeds can be di-
vided into some sub-sequences, which are the realization of homogeneous speed processes.
The generic i-th random process consisting in n(i) speed values can be characterized by
specific values of λ(i) and σ2(i), by a certain hourly flow rate q∆t(i) , and by a density that
we can approximate with kt

(i) = q∆t(i)/vt
(i), regarding instants t of sub-period ∆t(i) that

sees the t-th vehicle.
Following [12,20], in practical applications, it is possible to identify sub-sequences

with a fixed number of transits n (e.g., 50 vehicles each) and with a variable duration
∆t(i). For each sub-sequence of n vehicles, it is possible to determine the corresponding



Sustainability 2022, 14, 16019 9 of 21

hourly flow rate (q∆t(i) ) and the average speed level (vt
(i)) and to approximate the average

density (kt
(i) = q∆t(i)/vt

(i)). As indicated above, for each sub-sequence, the values of σ2(i)

and λ(i) can be estimated, considering the first-order moving average process (MA) (1)
of the deviations of the vehicle velocities wt

(i) = vt+1
(i) − vt

(i) = at
(i)
(

λ(i) − 1
)
+ at+1

(i).
After verifying the adequacy of the MA (1) model according to specific hypothesis tests,
for each interval ∆t(i) that subdivides T, the estimated models can be used to simulate
a large number m of speed sub-sequences that are homogeneous with respect to the real
one. Based on the estimates obtained for the parameters of each process, we can simulate
the speeds of the vehicles in transit in a particular test interval τ, e.g., the 5 min interval
following ∆t(i). Thus, if q∆t(i) is constant even in test interval τ and speeds continue to
be generated according to the same random process, a large number m of sequences of
deviations w̃(i) in τ can be obtained through a Monte Carlo simulation. From the j-th
sequence of deviations w̃(i,j), we can generate the j-th speed sequence in τ, assuming, for
example, a starting value equal to the overall average (v∆t

(i)) of speeds in ∆t(i). In this way,
assuming that v1

(i,j) = v∆t
(i,j) is the speed of the first vehicle of the j-th simulated sequences,

the speed values of the other vehicles in the sequence can be generated accordingly as
v2

(i,j) = v1
(i,j) + w̃1

(i,j) for the second vehicle, v3
(i,j) = v2

(i,j) + w̃2
(i,j) for the third vehicle,

etc., until the end of period τ.
Assuming that density is the MOE to identify the onset of a crisis phenomenon,

following the view proposed by the latest editions of the HCM and supposing q∆t(i) to
be constant in test interval τ after ∆t(i), we can calculate for each 50 veh sub-sequence
i and for each Monte Carlo iteration j mean speed ṽτ|∆t

(i,j) at the end of τ and density
k̃τ|∆t

(i,j) = q∆t(i)/ṽτ|∆t
(i,j). Having identified a density threshold value k∗ for the traffic

crisis, we can calculate the number (m∗(i)) of sequences of simulated speed for which
k̃τ|∆t

(i,j) < k∗. Thus, ratio m∗(i)/m can be used to evaluate reliability ∅(k∗)(i) = 1 −
P∗ (x|k∗) (i) for flow rate q∆t(i) recorded in ∆t(i) during the next τ-long interval.

4.2. Application of the Product Limit Method for the Probabilistic Analysis of Traffic Performance

The results obtained through the simulations of the speed processes according to the
methodology proposed in Section 4.1 can be used to produce further assessments regarding
the distribution of the flow values with respect to various density thresholds on the leftmost
lane of the carriageway. A first analysis can be obtained by considering k∗ as the limit
density for reaching the capacity. For this purpose, we can use the Product Limit Method
(PLM) [41], considering the sequence of flow rates (q∆t(i) ) during T and, for each of them
in correspondence with a certain ∆t(i) and a fixed following time interval τ, the m values
of k̃τ|∆t

(i,j). Using average speed level v∆t
(i), we evaluate density k∆t

(i) = q∆t(i)/v∆t
(i) for

each term q∆t(i) of the flow rate sequence. If k∆t
(i) ≥ k∗, then q∆t(i) is beyond the capacity;

therefore, it is excluded from the subsequent analysis, since it does not contain information
on the value of the same capacity. If k∆t

(i) < k∗, then the m values of k̃τ|∆t
(i,j) take on

importance in evaluations. Thus, the entire set of q∆t(i) values that we find during T with
k∆t

(i) < k∗ is divided into two sub-sets:

• {A} is the set of q∆t(i) |k∆t
(i)<k∗ values for which k̃τ|∆t

(i,j) < k∗, indicating the density

threshold not exceeded both in ∆t(i) and in test time τ in Monte Carlo iteration j;
• {B} is the set of q∆t(i) |k∆t

(i)<k∗ values for which k̃τ|∆t
(i,j) ≥ k∗, indicating the density

threshold not exceeded in ∆t(i) and exceeded in test time τ in Monte Carlo iteration j.

In this way, in the case of k∆t
(i) < k∗, based on m Monte Carlo simulations, the value

of each q∆t(i) |k∆t
(i)<k∗ appears m∗ times in dataset {A} and m−m∗ in dataset {B}.

The Product Limit Method that we propose in these analyses presents similarities
with that indicated by Brilon (e.g., [27,28]), based on van Toorenburg’s approach [42]. The
difference is that in the application we discuss here, the breakdown is not evaluated in the
different ∆t(i) , but based on the probabilistic results in the m simulations for test interval τ



Sustainability 2022, 14, 16019 10 of 21

that would hypothetically follow each ∆t(i) , under the conditions of flow constancy and
speed process homogeneity.

The method is based on the estimate of the survival function of the hourly flow rate in
consideration of the crisis limit imposed by threshold k∗. The capacity distribution (i.e., for
k exceeding k∗) can be written as Fc(q) = prob(c ≤ q) and can be estimated with

F̂c(q) = 1−∏i:qi≤q
li − di

li
with i ∈ {B} (3)

where q is a certain value for the hourly flow rate between a minimum and a maximum
considered for evaluation; q∆t(i) is the hourly flow rate of generic interval ∆t(i); li is the
number of times when q ≥ q∆t(i) ; di is the number of times when k̃τ|∆t

(i,j) ≥ k∗ for q∆t(i) ;
and finally, {B} is the set of q∆t(i) |k∆t

(i)<k∗ values for which k̃τ|∆t
(i,j) ≥ k∗.

As known, the PLM does not require the assumption of a specific type of distribution
function. However, it should be noted that the maximum value of the estimated distribution
function reaches the unit value only if the maximum flow observed in the section belongs to
set {B}. On the other hand, if the maximum observed flow does not belong to {B}, then the
estimated distribution function F̂c(q) stops at a value of less than 1;therefore, the complete
trend cannot be estimated. To overcome this problem, it is necessary to hypothesize the
mathematical form assumed by distribution function Fc(q). As in [27], we can consider
Weibull functions as follows:

F(x) = 1− e−(
x
β )

α

with x ≥ 0 (4)

where α and β are distribution parameters that can be estimated with the maximum
likelihood approach [27].

For k∗, the threshold values can be assumed based on the analysis of the dispersion of
the experimental points in the two-dimensional diagrams of the macroscopic variables of
the traffic or through the calibration of the Fundamental Diagram according to a preselected
mathematical formulation that allows the value of the critical density at capacity to be
identified [45]. However, a conventional value can also be assumed, for example, using the
density threshold that identifies the limit between LOS E and LOS F according to the latest
editions of the HCM [11], i.e., considering k∗E→F = 28 vehicles/kilometer/lane.

The PLM analysis can be extended towards the probability of exceeding the limit
density for Levels of Service that come before LOS F in the HCM density ranges. To
this end, we can proceed by reiterating the PLM after choosing a new value for k∗. To
explore the probabilities of exceeding the flow rates for LOS A, B, C, and D (thus of having
LOS B, LOS C, D, and E), we can use the limit density values provided by the HCM, i.e.,
k∗A→B = 7, k∗B→C = 11, k∗C→D = 16, and k∗D→E = 22 vehicles/kilometer/lane. In this
way, probabilistic charts for the LOS analysis based on the hourly flow can be created, as
we see in the case study in Section 5 of this paper.

It should be noted that no considerations are made regarding the type of vehicles in
transit. We only consider vehicles, which we can assume here belong to a single homoge-
neous class, i.e., passenger cars. If the flow consists of different vehicle classes, for example,
passenger cars and freight vehicles, this classification should be taken into consideration.
Even the reference densities of the HCM consider equivalent vehicle units, based on ade-
quate homogenization coefficients [11]. These aspects, excluded in this study stage, will be
the subject of future investigations and may produce an even more robust generalization of
the procedure.

5. Application of the Simulation Model to a Real Case

In this section, for illustrative purposes, we propose applying the simulation model
described in Section 4 to a case study on the Italian freeway network, a two-lane section
of the A22 Brenner freeway between the Trento Sud and Rovereto Nord toll stations. The
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detection devices were placed at Km 156 on the southbound carriageway on a straight and
flat segment, at a sufficient distance from the exit ramp at Rovereto Nord (about 2.5 km).

Figure 1 shows the location along the route of A22 and the positioning of the counting
devices. Data received from the freeway concessionaire were analyzed relating to the tran-
sits between 1 June 2014 and 30 June 2014, previously validated by the same concessionaire
with the relative quality controls and consistency of measurements.
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Figure 1. A22 del Brennero freeway: (a) location of the monitoring section—Km 156 Trento
Sud/Rovereto Nord; (b) inductive loop position on the southbound carriageway.

The data collected using the cross-sectional monitoring systems (inductive loop detec-
tors) allowed us to qualify each transit concerning the following information: transit instant
(Unix date format in seconds from 1 January 1970); identification code of the detection
apparatus; lane identification; space headway; time headway; compliant/wrong direction
flag; speed in km/h; vehicle length in cm.

The database included 732,700 vehicle passages on the two lanes, 416,057 on the
rightmost lane and 316,643 on the leftmost lane, with an average daily traffic of about 24,400
total daily vehicles. Individual transit data were aggregated by 5 min intervals carrying
out the flow rate in veh/h/lane and the harmonic mean of the speed as an approximation
of the space average speed. Figure 2 shows the scatter diagrams of the experimental points
in the speed–flow plane in 5 min intervals, both as regards the carriageway as a whole (a)
and with detail of the leftmost lane (b).

The analysis of the reliability using the method proposed in Section 4 can be based on
observing the vehicle sequences on the leftmost lane of the freeway carriageway grouped
into sub-sequences consisting of 50 vehicles each. In the case study, we proceeded by
dividing the whole vehicle succession on the leftmost lane per monitoring interval (i.e.,
316,643 between 1 June 2014 and 30 June 2014) into sequences of 50 vehicles and calculating
for each of them the corresponding hourly flow rate (q), the harmonic mean speed (v), and
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the mean density (k). However, the application, made here on historical data, can also
be produced in near-real-time mode, based on the sequences of 50 vehicles found In the
current state as time progresses.
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These time series considered a term for each sub-sequence of 50 vehicles in instant t in
which the passage of the last vehicle took place, measured in seconds. The time origin was
the instant of the first transit of the first sub-sequence (start monitoring) on the leftmost lane.

For each sub-sequence of 50 vehicles, we can assume that a first-order moving aver-
age process (MA) (1) is the generating process for speed deviations wt+1 = vt+1 − vt =
at(λ− 1) + at+1. Based on this assumption, discussed in the previous sections and as
detailed in Appendix A, we can estimate the λ and σ2 parameters of the 6332 MA (1)
models (i.e., one model for each sequence of 50 vehicles). It should be specified that before
estimating the MA (1) models, we verified the time series stationarity with the ADF (aug-
mented Dickey–Fuller) unit root test. Based on the ADF test, all 6332 series of wt confirmed
their stationarity with 95% confidence.

The MA (1) models were estimated using the regARIMA function in Matlab 2020a with
specification (0,0,1). For each of the 6332 series of wt, the adequacy of the MA (1) model
was evaluated using the portmanteau test by Ljung and Box, verifying the null hypothesis
that the residuals did not show autocorrelation. In 92% of cases (5845 series out of 6332),
there was insufficient evidence to reject the null hypothesis of no residual autocorrelation
(20 lags). Thus, also in this case study, it was possible to confirm, as in the literature, the
adequacy of the MA (1) model to represent the succession of speed deviations wt.

Using each of the 6332 MA (1) models estimated considering the sequences of 50 vehi-
cles passing the leftmost lane, we simulated 200 alternative realizations for each sequence.
The simulations were obtained with the Monte Carlo method using the simulate function
in Matlab 2020a, which allows one to simulate a sample path from an ARIMA model (MA
(1) in this case). For each sub-sequence i of 50 vehicles, which took place in an interval of
variable duration ∆t(i) , j=1, 2, . . . , 200, the vehicle speed successions were simulated for
a test interval τ represented by the following 5 min. As mentioned, the hypothesis was
to consider hourly flow rate q∆t(i) , corresponding to 50 passages in each ∆t(i) , to also be
constant in test interval τ and their speeds to be generated according to the same random
process of the original sub-sequence.

Thus, for each sub-sequence i, we simulated m = 200 sequences of deviations w̃(i,j) in
τ, and starting from them, we generated the relative speed sequences, assuming a starting
value equal to mean speed v∆t

(i) in each ∆t(i) . In this way, for each sequence i and each
simulation j, we found v1

(i,j) = v∆t
(i,j), v2

(i,j) = v1
(i,j) + w̃1

(i,j), v3
(i,j) = v2

(i,j) + w̃2
(i,j),

up to the last simulated vehicle. Based on the simulated speeds, for each of the 6332
sub-sequences and each of the 200 alternative realizations, we calculated average speed
ṽτ|∆t

(i,j) at the end of τ and density k̃τ|∆t
(i,j) = q∆t(i)/ṽτ|∆t

(i,j). Figures 3 and 4 show two
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heatmap graphs of the average speed and density values obtained in the simulation with
200 iterations (x-axis) for the 6332 sequences of 50 vehicles (y-axis).
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Using k̃τ|∆t
(i,j), it is possible to identify the number of sequences m∗(i) out of the total

m = 200 simulated for which k̃τ|∆t
(i,j) < k∗. This value can be used to estimate reliability

∅(k∗)(i) = m∗/m of the flow rate in ∆t(i) , i.e., q∆t(i) , during the subsequent test interval
τ. For threshold value k∗, we assumed the conventional density threshold that identifies
the entrance to the LOS F according to the latest editions of the [11], i.e., k∗E→F = 28
vehicles/kilometer/lane. Figure 5 shows the trend of the reliability over the entire duration
of the time series, ∅(k∗E→F = 28)(i), while Figure 6 shows a zoom of a time window in
which the reliability shows substantial reductions. Figure 7 shows the trend of q∆t(i) for
the whole monitoring period, with the superimposition (red dots) of values for which
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∅(k∗E→F = 28)(i) resulted to be less than 80%, i.e., with a probability of exceeding the
conventional density at capacity per lane identified by the HCM greater than 20%. Figure 8
shows the dispersion diagram of the q∆t(i) values and of the respective reliability values,

∅(k∗E→F = 28)(i), during the monitoring period.
As mentioned in Section 4.2, the results obtained through the simulations of the speed

processes can be used to produce further evaluations concerning the distribution of the
flow rates for various density thresholds. A first analysis can be obtained by considering
k∗E→F = 28 as the limit density for reaching lane capacity and using the PLM [41]. The
PLM can also be applied by proceeding with an extension of the analysis to investigate the
probability that the limit ranges of LOS C, D, and E are exceeded using the limit density
values provided by the HCM, i.e., k∗B→C = 11, k∗C→D = 16, and k∗D→E = 22. The
dotted curves in Figure 9 show the trend of the reliability functions with different values
of k∗, which correspond to the probabilities of exceeding k∗ as a function of q, which were
obtained considering the m = 200 simulations of the 6632 sub-sequences of 50 vehicles.
The continuous curves in Figure 9 show the reliability trend using Weibull functions. The
interpolating functions showed an excellent fit, as shown by the graphical comparison with
the discontinuous data, with high values of R2.
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Figure 10 shows the trend of the reliability function of the hourly flow rates for
exceeding k∗E→F = 28 together with the Weibull function estimated according to [27]. The
latter is represented by points (green dots), obtained using the same dataset and considering,
as the breakdown threshold, a speed value of 80 km/h and 5 min fixed intervals for data
aggregation. Table 1 shows the two estimated functions and the relative parameters, which
appear essentially superimposable as in Figure 10.
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Figure 10. Comparison between the Weibull curve estimated for the reliability function with
k∗E→F = 28 and the Weibull curve obtained with the method by [27], with breakdown speed
being equal to 80 km/h and aggregation intervals of 5 min.

Table 1. Weibull curves and related calibration parameters with k∗E→F = 28 and with the method by
Brilon et al. (2005) [27].

Reliability Function with k*
E→F=28 Reliability Function According to [27]

General model: General model:
f(x) = exp(−(x/β)ˆα) f(x) = exp(−(x/β)ˆα)
Coefficients (with 95% confidence bounds): Coefficients (with 95% confidence bounds):
α = 5.395 (5.341; 5.448) α = 5.127 (4.945; 5.31)
β = 2431 (2426; 2437) β = 2440 (2410; 2469)
Goodness-of-fit: R-square: 0.9909 Goodness-of-fit: R-square: 0.9937

Based on the reliability functions with the different values of k∗ as the limits between
LOS B and C, LOS C and D, LOS D and E, and LOS E and F, Figure 11 shows the probability
curves 1−∅(k∗) of exceeding the limits of density for each LOS.

These curves can represent a helpful tool for the probabilistic analysis of the perfor-
mance of the leftmost lane and the entire freeway section. Figure 11 shows as an example
the case of a flow rate equal to 1500 vehicles/hour/lane. From the intersection with the
different probabilistic curves, it is possible to identify the probability of exceeding each den-
sity limit. In the case study, based on the data collected for the entire monitoring period and
the simulations of the speed processes, we can state that a flow rate of 1500 vehicles/hour
in the leftmost lane is such as to exceed the LOS B limit in this lane with a probability of
99.5%, 33.2% for LOS C, 10.3% for LOS D, and 7.1% LOS E. Using the same curves, we can
say that a flow rate of 1500 vehicles/hour/lane is such as to generate LOS A or B with 0.5%
probability, LOS C with 66.3% probability, LOS D with 22.9% probability, LOS E with 3.2%
probability, and LOS F with 7.1% probability. For this analysis, we can use the probabilistic
distributions of the LOSs for each value of the hourly flow shown in Figure 12.
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6. Conclusions

The reliability approach to circulation quality involves the most recent research, re-
sorting to a probabilistic description of traffic phenomena and the effects of interactions
between vehicles on the quality of traffic. In this context, the paper retraces the probabilistic
point of view of the traffic circulation quality, which concerns the analysis of breakdown
phenomena and capacity on the one hand and the analysis of the reliability based on the
random processes of vehicle speeds on the other hand. In particular, the paper explores the
main aspects of this latter approach, addressing and deepening the literature regarding the
description of the speed random processes in the leftmost lane of a motorway carriageway,
in which congestion phenomena occur first.

According to the reviewed literature, the study of the reliability of the traffic in the
leftmost lane of a freeway carriageway involves the analysis of the speed random process
according to an ARIMA (0,1,1) model. The literature provides regression equations for the
reliability function and the capacity distribution. However, these regressions were obtained
by simulating random processes under specific boundary conditions. For these reasons,
the paper highlights that the regression equations for traffic reliability and lane capacity



Sustainability 2022, 14, 16019 18 of 21

are not directly generalizable, requesting the reiteration of the simulation and regression
process more correctly to particularize them each time to the specific case.

For this purpose, the work outlines a general procedure based on the estimation
and simulation of ARIMA models for speed random processes in a freeway section to
assess the traffic reliability function using historical data or near-real-time information
flow obtained using speed monitoring devices. The paper shows a further novelty in the
reliability analysis through the estimation and simulation of ARIMA models for speed
random processes, proposing a method for the analysis of the distribution of the flow
rate concerning various density thresholds on the leftmost lane of the carriageway. For
these analyses, the study shows the use of the PLM, widely used in the breakdown and
capacity analysis approach. This operation is performed precisely in consideration of
the purpose of this research, which was to enclose in a single operative framework the
probabilistic approaches to the quality of circulation—i.e., the random speed processes and
the probabilistic analysis of breakdown phenomena and capacity in the critical lane—and
to connect them with the critical elements of LOS analyses according to the HCM.

The procedure outlined in the paper starts from analyzing and simulating the speed
processes of vehicle sequences to evaluate the traffic reliability, i.e., the probability of not
exceeding a certain criticality density threshold in the leftmost lane in a 5 min interval with
a constant flow rate. Thus, it obtains the probabilistic distribution of the corresponding flow
rate values through the application of the PLM. This distribution represents the probabilistic
distribution of the capacity if we consider the critical density at capacity as the threshold,
e.g., by setting the value indicated by the HCM as the limit for LOS E. Further distributions
can be characterized by varying the threshold value considering the density values that
separate the Levels of Service, from A/B to E/F, according to the HCM.

At the end of these conclusions, we would like to underline the current limitation of
this procedure. This limit consists in considering only one vehicle class. In illustrating the
procedure, we consider vehicles that we can assume here belong to a single homogeneous
class, i.e., passenger cars. On the other hand, this is true in the case study concerning
A22 del Brennero, where heavy vehicles cannot transit on the leftmost lane due to the
overtaking ban on the infrastructure. In the most general case, this classification should
be considered if the flow consists of different vehicle classes—for example, passenger cars
and freight vehicles. Even the reference densities of the HCM consider equivalent vehicle
units based on adequate homogenization coefficients. These aspects, which the study does
not deal with in this stage, will be the subject of future investigations and may produce an
even more robust generalization of the procedure.

Author Contributions: Conceptualization, R.M. and A.P.; methodology, R.M. and A.P.; software,
A.P.; data curation, A.P.; writing—original draft preparation, R.M. and A.P.; writing—review and
editing, R.M. and A.P.; visualization, A.P.; supervision, R.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The authors are not allowed to disseminate the data.

Acknowledgments: The authors thank the concessionaire Autostrada del Brennero SpA, who kindly
provided the data that were used to illustrate the application of the model in the case study.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The speed levels conditioned by the previous realizations between two successive
vehicular passages at instants t and t + 1, respectively vt and vt+1, are linked by a quantity
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λat, with λ being a coefficient between 0 and 1 and at being a random variable with zero
mean and variance σ2.

We can write vt+1 = vt + λat, that is, vt+1 − vt = λat. Since vt = vt − at and
vt+1 = vt+1 − at+1, we have that vt+1 − at+1 = vt+1 = vt + λat = vt − at + λat; therefore,
vt+1 − at+1 = vt − at + λat.

Ultimately, we can write vt+1 = vt− at(1− λ)+ at+1; therefore, by setting (1− λ) = ϑ,
it results that vt+1 = vt − atϑ + at+1.

Considering the generic form of a self-regressive and integrated moving average
ARIMA(p,q,d) model expressed as xt − ϕ1xt−1 − . . . − ϕpxt−p − . . . ϕp+dxt−p−d = at −
ϑ1xt−1 − . . . − ϑqxt−q, the expression vt = vt−1 − at−1ϑ + at corresponds to an ARIMA
(0,1,1) model, where xt = vt and ϕ1 = 1.

To proceed more easily, it is useful to consider the following operators:

• Difference operator, ∇xt = xt − xt−1;
• Sum operator, Sxt = ∇−1xt = ∑t

−∞ xj;
• Back operator, Bxt = xt−1;
• Forward operator, Fxt = B−1xt = xt+1.

The associative property, the commutative property of the sum and of the product,
and the distributive property of the product are valid for these operators.

Since vt = vt−1 − at−1ϑ + at, we can write vt − vt−1 = ∇vt and at − at−1ϑ = at −
ϑBat = (1− ϑB)at.

Thus, (1− ϑB) = (1− ϑ)B + (1− B) and (1− ϑB) = λB + (1− B).
Since (1− B)xt = xt − Bxt = xt − xt−1 = ∇xt, it holds in general that ((1− B) = ∇,

and we obtain (1− ϑB) = λB +∇.
With this result, we can write ∇vt = λBat +∇at.
Now, we apply sum operator S to both sides, and we have S(∇vt) = S(λBat +∇at) =

S(λBat) + S(∇at) = S(λat−1) + S(∇at), with S(∇vt) = ∇−1(∇vt) = vt, S(λat−1) =
λS(at−1) = λ ∑∞

j=1 at−j, and S(∇at) = ∇−1(∇at) = at.
Thus, we have that vt = λ ∑∞

j=1 at−j + at, i.e., the speed of the vehicle passing in instant
t, can be defined as a function of all the deviations occurring from the beginning of the
process up to time t. Furthermore, since vt = vt− at = λ ∑∞

j=1 at−j + at− at, the conditional
mean of the speeds results to be vt = λ ∑∞

j=1 at−j.
Considering an instant t − f , we have that vt− f = λ ∑∞

j= f+1 at−j, and being

vt = λ ∑
f
j=1 at−j + λ ∑∞

j= f+1 at−j, we have vt = vt− f + λ ∑
f
j=1 at−j.

This last equation shows that the trend of the levels of vt starting from instant t− f is
the result of a random walk generated by variable λat. It is a non-stationary process with
constant mean and variance that grows indefinitely over time.

If at ∼WN
(
0, σ2) and σ2 are constant over time, λat has standard deviation λσ.

Therefore, if at ∼ N
(
0, σ2), λσ fully defines the distribution of λat and thus represents

the measure of the stability of the speed process generated on the lane by a traffic flow that
is affected by the interactions among vehicles. It can be observed that the random walk that
produces the speed level trend is limited by the two barriers, consisting of the zero speed
value and the maximum speed value that the vehicles can maintain in the lane section.
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