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Abstract: Mining processes produce a massive amount of waste which, if not treated properly, can
cause significant environmental and social impacts. Recently, some studies have focused on the
use of mining waste as an alternative raw material. This work developed new sustainable ceramic
formulations based on bentonite mining waste (BMW) for applications in porcelain stoneware.
The BMW was incorporated into the ceramic masses in different percentages (0, 2.5, 5, 10, 15, 20,
25, and 40 wt.%), in partial replacement to feldspar and total to quartz. X-ray diffraction (XRD),
differential thermal calorimetry (DTA), and thermogravimetry analysis (TGA) techniques were used
to characterize bentonite waste. Samples (50 mm × 20 mm × 5 mm) were obtained by uniaxial
pressing. Such samples were dried and sintered at 1150, 1200, and 1250 ◦C. The physical–mechanical
properties (apparent porosity, water absorption, linear shrinkage, apparent density, and flexural
strength) were evaluated for sintered samples. The phases formed after sintering treatments were
characterized by XDR and scanning electron microscopy (SEM). The BMW presented a mineralogical
composition suitable for use as ceramic raw material. In summary, our results presented that the new
sustainable ceramic formulations sintered at 1250 ◦C have the potential for use in stoneware and
porcelain stoneware.

Keywords: bentonite mining waste; ceramic masses; porcelain stoneware; physical–mechanical
properties

1. Introduction

Over the years, mineral extraction has established itself as a significant activity for the
world economy; because it contributes to the gross domestic product (GDP), generates jobs,
and is a source of extra income for small rural landowners. According to data from the
Brazilian Mining Institute (IBRAM), 2021 mineral production increased by 7% compared to
2020, from 1.01 million to 1.15 million tons in 2021. This increased the revenue of this sector
in Brazil from BRL 209 billion to BRL 339 billion from 2020 to 2021 [1].

The northeast Brazilian region stands out for having a large part of the mineral reserves.
Bentonite production, for example, is among the 10 most present and exploited minerals
in northeastern Brazil. The economic importance of bentonites is due to their numerous
industrial applications [2,3], such as use in cosmetics [4,5], pharmaceutical products [6,7],
drilling fluids [8,9], as adsorbents [10,11], waterproofing dams and landfills [12], etc.

The main bentonite deposits in Brazil are located in the Paraíba state. This state holds
about half of the national reserves and is responsible for more than 90% of the production of
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raw bentonite in the country [13]. Figure 1 shows the map with the location of the Paraíba
state and the geological map of Boa Vista city, where bentonite has been exploited for over
60 years.
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Bentonite is usually extracted by surface mining. Bentonite mines are covered by a
layer of soil, varying from 1 to 10 m, and interspersed with layers of basalt. Excavators
and tractor-scrapers remove the topsoil layers, subsoil, and the overburden of basalt
above the clay. The overburden of basalt is removed and often inappropriately deposited
in the environment. Although waste management, transport, treatment, and the final
destination are their generators’ responsibility [14,15], waste dunes are widespread near
mining companies, with tons of materials remaining after bentonite extraction. The impacts
of mineral activities become more relevant when there is no adequate destination for
the waste, which can generate soil, water, and air contamination and destruction of the
landscape, among others [16].

Given this scenario, studies on the reuse of mining waste have intensified in recent
years to reduce the impacts caused by incorrect allocation. Numerous mining residues
have been successfully reused as an alternative raw material to manufacture sustainable
materials, such as ceramic refractories [17,18], ceramic tiles [19–21], bricks [22–26], roof
tiles [27–30], porous ceramics [31–34], and sanitary ware [35], among others. Various
mining waste types stand out, including iron ore tailings [36–38], kaolin waste [39,40],
scheelite [41,42], ornamental rock waste [43,44], perlite waste [45–48], etc. In a recent
study, Araújo et al. [49] evaluated the potential for reusing waste from bentonite mining
as adsorbents for treating water contaminated with cationic dyes. The authors found that
bentonite waste can also remove cationic dyes in wastewater.

Reuse studies of bentonite mining waste are still scarce. It is known that these wastes
are generally composed of iron and sodium silicate, calcite, feldspar, and smectite [49],
which makes it possible to use them as raw materials in ceramic industries. However, no
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studies were found in the literature that reused bentonite mining waste as a raw material
to manufacture ceramic products. In this work, new formulations of ceramic masses
containing bentonite mining waste were incorporated, developed, and characterized to
produce porcelain stoneware. The waste was subjected to chemical, physical, mineralogical,
and thermal characterizations; and was incorporated into the ceramic masses in the partial
replacement of feldspar and the total replacement of quartz. The effects of the different
waste incorporation contents (0, 2.5, 5, 10, 15, 20, 25, and 40 wt.%) and the temperature of
sintering (1150, 1200, and 1250 ◦C) in the physical–mechanical properties and mineralogical
phases were evaluated.

2. Materials and Methods
2.1. Materials

Kaolin (Rocha Minérios, Juazeirinho-PB, Brazil), plastic clay, quartz, feldspar (Armil
Mineração do Nordeste, Parelhas-RN, Brazil), and waste from bentonite mining (BMW).
The BMW was collected from various locations in the mineral deposits of the União
Nordeste Bentonita (BUN) industry, located in Boa Vista city, Paraíba, Brazil. The BMW
samples were mixed by the quartering technique. The raw materials were characterized by
X-ray fluorescence (Shimadzu, EDX 720) and X-ray diffraction (Shimadzu, XRD6000) using
Cu-Kα radiation (40 kV/30 mA), 0.02◦ step, and a 2θ angle range of 5–60◦. Differential
thermal analysis (DTA) (BP Engenharia, RB-300) and thermogravimetric analysis (TGA)
(Shimadzu, TA 60H) was performed under an atmosphere of air with a heating rate equal
to 12.5 ◦C.min−1. The laser diffraction (Cilas, 1064 LD) determined the BMW particle
size distribution.

2.2. Sample Preparation, Sintering Treatments, and Characterizations

Different BMW contents (0–40 wt.%) were incorporated into the ceramic masses in
total replacement to quartz and partial to feldspar. The nomenclatures for all ceramic
formulations used in this work are listed in Table 1. The raw materials were sieved to
74 µm, moistened (7% moisture), and mixed at the ball mill at 450 rpm for 60 min. Samples
(50 mm × 20 mm × 5 mm) were obtained from uniaxially pressed powders (Servitech
Press, CT-335) at 13.5 MPa for 10 s (pre-pressing), followed by pressing at 50 MPa for
20 s. Then, the samples were dried in an oven for 24 h at 110 ◦C. The sintered treatments
were performed with Flyever Equipamento equipped with Controller FE 50 RP for 40 min
at different temperatures (1150, 1200, and 1250 ◦C). For all samples, a heating rate of
30 ◦C·min−1 was used. Cooling occurred following the furnace inertia to room temperature
(~24 ◦C).

Table 1. Nomenclature of the ceramic compositions investigated and the proportion (wt.%) of each
raw material.

Formulations
Raw Materials (wt.%)

Kaolin Plastic clay Feldspar Quartz BMW

F1 23 27 35 15 0
F2 23 27 47.5 0 2.5
F3 23 27 45 0 5
F4 23 27 40 0 10
F5 23 27 35 0 15
F6 23 27 30 0 20
F7 23 29 23 0 25
F8 23 29 8 0 40

The water absorption (WA), apparent porosity (AP), and apparent density (AD) prop-
erties were measured by Archimedes’ method [50]. The length of samples with and without
heat treatment was measured to obtain linear shrinkage (LS) measurements. Shimadzu’s
universal mechanical testing machine (model Autograph AG-X 50 kN) was used for the
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three-point flexural strength (FS). The load, distance between support, and test speed
were 5 KN, 40.4 mm, and 0.5 mm·min−1, respectively. Ten samples were used for each
WA, AP, LS, and FS experiment. XRD experiments were accomplished to characterize the
mineralogical phases after sintering treatment. SEM experiments were used to analyze the
crystal morphologies.

3. Results and Discussion
3.1. Raw Materials (Chemical and Mineralogical Composition)

The chemical composition and the XRD patterns of the conventional raw materials
(feldspar, plastic clay, quartz, and kaolin) and the BMW are shown in Table 2 and Figure 2,
respectively. Kaolin and plastic clay presented SiO2 (42.62% and 48.49%) and Al2O3
(36.51% and 38.14%) as major oxides. These oxides are associated with the tetrahedral and
octahedral layers of the clay mineral kaolinite and free silica. Kaolinite (JCPDS 78-2110) was
the main crystalline phase identified in these clays, followed to a lesser extent by quartz
(JCPDS 46-1045) and mica (JCPDS 83-1808). The Fe2O3 contents were less than 3%, which
indicates that the standard sample (without BMW) will probably show a light color after
firing. Feldspar (JCPDS 84-0710), mica (JCPDS 83-1808), and quartz (JCPDS 46-1045) were
the main mineralogical phases detected in feldspar. Due to the high content of K2O (11.68%)
detected, the raw material was classified as potassium feldspar. The main function of the
alkalis present in the samples is to act as fluxes, favoring the formation of a glass phase [8].

Table 2. Chemical composition of the BMW, kaolin, plastic clay, quartz, and feldspar used in this work.

Samples
Oxides (wt.%)

SiO2 Al2O3 Fe2O3 K2O MgO CaO TiO2 Others LOI *

BMW 44.61 12.35 15.06 0.30 4.15 5.66 2.10 0.27 15.50
Kaolin 48.49 38.14 0.34 0.78 NP ** 0.07 NP ** 0.15 12.03
Plastic

clay 42.62 36.51 2.85 NP ** NP ** NP ** 0.01 0.30 17.71

Quartz 91.84 3.66 0.12 0.90 NP ** 0.14 NP ** 0.40 2.94
Feldspar 61.03 19.26 NP ** 11.68 NP ** NP ** NP ** 0.59 7.44

* LOI: loss on ignition. ** NP: not present.

The main constituents of the BMW were SiO2 (44.61%) and Al2O3 (12.35%). The high
contents of Fe2O3 (15.06%), CaO (5.66%), and MgO (4.15%) are related to the iron silicate
(JCPDS 17-0548), magnesium silicate (JCPDS 11 -0273), feldspar (JCPDS 22-687), and calcite
(JCPDS 05–0086), evidenced by XRD (see Figure 2). The high content of Fe2O3 (15.06%)
present in the BMW indicates that the samples with the waste showed a dark color after
firing. Some evidence of the clay mineral smectite (JCPDS 29-1497) was detected in the
BMW, which originates from the geological formation of bentonite.

3.2. Thermogravimetric Analysis of Raw Materials and Granulometry of the Bentonite Waste

The BMW showed a marked weight loss (12.7%) between 24 ◦C and 200 ◦C (Figure 3a),
related to a loss of free and adsorbed water. The hydroxyl loss from clay minerals, a typical
phenomenon of this raw material, was detected in the second stage of weight loss (2.0%),
between 200 and 500 ◦C. The decomposing of the calcite mineral, which releases CO2, was
detected in the last stage (5.6%) and occurred between 500 ◦C and 1000 ◦C. The total weight
loss was 20.3%. In the differential thermal analysis (DTA) curve, two endothermic events
were identified: the first and, more intense, at approximately 70 ◦C is characteristic of the
free water loss and the second, at about 640 ◦C, is due to the decomposition of the calcite
present in the waste.
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In the TGA/DTA curves of kaolin and plastic clay (Figure 3b,c) the following thermal
transformations can be observed: two endothermic peaks related to the loss of free water
(kaolin: ~52 ◦C, clay: ~106 ◦C) and of hydroxyls present in the structure of clays (kaolin:
~605 ◦C, clay: ~587 ◦C), and an exothermic peak (kaolin: ~975 ◦C, clay: ~985 ◦C) associated
with mullite nucleation [17,32]. No transition was observed in the quartz (Figure 3d) and
feldspar (Figure 3e) DTA curves. Kaolin, plastic clay, quartz, and feldspar showed a total
mass loss of 16.1%, 10.9%, 2.8%, and 4.8%, respectively.

Figure 4 shows the normal and accumulated granulometric distribution curves of
the BMW. Note that the normal distribution curve presents a bimodal behavior, i.e., the
curve presents two maxima (approximately 11.2 µm and 89.3 µm). The BMW has the most
considerable fraction of particles, with diameters above 20 µm (48.07% of accumulated
volume), a medium particle diameter of 6.11 µm, D10% = 2.18 µm, D50% = 18.17 µm, and
D90% = 142.84 µm. These values are similar to those found in the literature for use in
ceramic masses [17,35]. So, the BMW has an adequate granulometric distribution for use in
ceramic mass.

3.3. Ceramic Mass Formulations (Chemical, Mineralogical Composition, and Thermal Behavior)

The chemical composition of the ceramic mass formulations without the BMW (F1)
and with 2.5, 5, 10, 15, 20, 25, and 40 wt.% of the BMW (F2 to F8) are listed in Table 3. The
SiO2 (44.74 wt.%–55.62 wt.%) and Al2O3 (28.33 wt.%–30.60 wt.%) contents are similar for
most formulations. These constituents are responsible for forming refractory phases during
the sample sintering. The highest levels of fluxing oxides (Fe2O3 + K2O + MgO + CaO)
were observed for the formulations with the highest levels of the BMW (F6 (9.33 wt.%), F7
(9.30 wt.%) and F8 (11.59 wt.%)). Higher fluxing agent contents in the mass favor the liquid
phase formation during firing. The presence of a liquid phase during the firing is very
important as it contributes to the densification of the ceramic pieces. Furthermore, the liquid
phase helps the diffusion of aluminum ions, benefiting the nucleation and growth of the
mullite phase [17,41,51]. The XRD patterns (Figure 5) indicate that the BMW incorporation
up to 40 wt.% did not cause significant changes in peak intensity or the ceramic masses’
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mineralogical profile. Overall, the formulations presented quartz, kaolinite, feldspar, mica,
and calcite crystalline phases.
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Table 3. Chemical composition of ceramic mass formulations evaluated.

Formulations
Oxides (wt.%)

SiO2 Al2O3 Fe2O3 K2O MgO CaO TiO2 Others LOI *

F1 55.62 28.33 0.86 4.42 NP ** NP ** 0.18 0.29 10.30
F2 51.94 29.45 1.24 5.41 0.75 0.29 0.23 0.47 10.22
F3 49.86 30.01 1.64 3.77 0.83 0.69 0.32 1.10 11.78
F4 49.58 29.02 1.69 4.76 0.82 0.70 0.33 1.21 11.89
F5 47.86 30.48 2.73 3.51 0.95 1.32 0.42 0.18 12.55
F6 48.49 28.89 3.22 3.55 1.05 1.51 0.54 1.03 11.72
F7 47.08 30.60 3.92 2.60 1.15 1.63 0.60 0.46 11.96
F8 44.74 30.28 5.92 1.25 1.76 2.66 1.00 0.44 11.95

* LOI: loss on ignition. ** NP: not present.
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Figure 6a,b show the TGA and DTA curves of the ceramic formulations containing
the BMW (F2 to F8). In general, all formulations showed similar behavior. The total mass
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loss (Figure 6a) varied between 9.7% and 13.8%, corroborating the LOI data presented in
Table 3. An endothermic peak at approximately 58 ◦C was detected in Figure 6b. Such a
peak corresponds to free water loss and adsorbed water. On the other hand, the intensity
of the endothermic peaks around 500 ◦C is characteristic of the decomposition of the calcite
present in the masses.
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3.4. Sintered Samples (Physical and Mechanical Properties)

The Shapiro–Wilk and Levene tests analyzed data on physical and mechanical prop-
erties for normality and homoscedasticity, respectively. As the data differ significantly
from a normal distribution (p < 0.05), the non-parametric Kruskal–Wallis test was used
to verify if there were remarkable differences between the different content of bentonite
waste incorporation and the sintering temperature. The Multiple Comparisons test was
used to identify the samples that differed in cases where the Kruskal–Wallis test was signif-
icant. All analyses were performed using the Statistica® software version 14 (Data Science
Workbench, Palo Alto, CA, USA).

Figure 7a–d show the LS, AP, WA, and AD results of the samples after the sintering
step treatment (1150, 1200, and 1250 ◦C). In general, LS values (p = 0.0069) increase with
increasing sintering temperature (Figure 7a). Such behavior is due to the forming of a liquid
phase at higher temperatures favoring the diffusion process. The increase in the liquid
phase formation during sintering tends to densification and, consequently, the shrinkage
of the ceramic piece because the liquid phase penetrates the existing pores [51,52]. The
samples containing the BMW (F2 to F8) showed the highest LS values compared to the
sample without the BMW (F1) (p = 0.0000). This behavior can be attributed to the higher
content of fluxing oxides of the bentonite waste (Fe2O3 + K2O + MgO + CaO = 25.17 wt.%);
see Table 2. However, in the samples with 2.5 to 15 wt.% of BMW (F2 to F5), the temperature
increased from 1200 to 1250 ◦C and did not cause remarkable changes in LS values; this
indicated that the highest liquid phase formation was reached at temperature of 1200 ◦C.
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Figure 7. Physical properties of the sample without the BMW (F1) and with 2.5, 5, 10, 15, 20, 25,
and 40 wt.% of the BMW (F2 to F8), after sintering at 1150 ◦C, 1200 ◦C, and 1250 ◦C. (a) LS—Linear
shrinkage, (b) AP—apparent density, (c) WA—water absorption, and (d) AP—apparent porosity.

The AD values (Figure 7b) increase when the temperature increases from 1150 to
1200 ◦C and tend to decrease from 1200 to 1250 ◦C. However, this difference was insignif-
icant (p = 0.0076), suggesting that the effects of increasing temperature are less intense
for sample density. On the other hand, the WA and AP values (Figure 7c,d) decreased
with increasing sintering temperature (p = 0.0000). This was already expected since WA
and AP are closely related to the amount of liquid phase formed. It is also noted that the
incorporation of bentonite waste favored a decrease in the WA and AP values. Regardless
of the sintering temperature, sample F1 (without the BMW) presented WA and AP values
higher than the others (with waste) (p = 0.0000). These results indicate that the BMW can
potentially replace quartz and part of feldspar in ceramic masses to manufacture ceramic
tiles. The WA is an important parameter in the classification of ceramic tiles. Based on the
ISO 13006 standard [53], the samples containing the BMW and sintered at 1200 ◦C present
WA values suitable for application as stoneware (0.5% < WA < 3.0%), while those sintered
at 1250 ◦C have the potential to be used as porcelain stoneware (WA ≤ 0.5%).

The flexural strength values (FS) increase with the incorporation of the BMW (p = 0.0000);
see Figure 8. In general, the highest FS values (>30 Mpa) were observed in samples with
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BMW contents above 15 wt.% (F5, F6, F7, and F8). When the temperature increases from
1150 to 1200 ◦C led to a significant increase in the FS values of the sample without the
BMW (F1: from ~15.4 MPa to 24.1 MPa) (p = 0.0000), such behavior is attributed to the
vitrification of the samples and the mullite phase formation that start to go nuclear around
980 ◦C [32,54]. Probably, at 1150 ◦C, the vitrification of the F1 sample was not facilitated
well; this sample showed a high apparent porosity (~24%) (see Figure 7d), which indicates
that the liquid phase formation was insufficient to promote the sample densification. Above
1200 ◦C, the formation of a liquid phase is probably more significant, favoring densification
and consequently strengthening the material.
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Figure 8. Flexural strength of the sample without the BMW (F1) and with 2.5, 5, 10, 15, 20, 25, and
40 wt.% of BMW (F2 to F8) after sintering treatments (1150, 1200, and 1250 ◦C).

For the samples with BMW (F2 to F8), the increase in FS values with increasing
temperature is more discrete, except sample F6 (with 20 wt.% BMW), which showed a
slight decrease. This behavior can be attributed to the higher content of fluxing oxides
present in the waste, which favors the formation of a liquid phase at lower temperatures.
From 1200 ◦C to 1250 ◦C, the mechanical strength increases only for F3 (with 5 wt.%
BMW) and decreases slightly in the other samples. The highest FS value (37.92 MPa) was
reached for sample F8 (with 40 wt.% BMW) sintered at 1200 ◦C. Therefore, according to the
requirements determined by the standard ISO 13006 [53], all samples sintered at 1150 ◦C
and containing between 5 and 40 wt.% of bentonite waste can be used as semi-stoneware
(WA values between 3.0% and 6.0% and FS ≥ 22 MPa); those with 10 to 40 wt.% of BMW
and sintered at 1200 ◦C as stoneware (WA values in the range of 0.5–3.0% and FS ≥ 30 MPa)
and, finally, F3 (5 wt.% BMW), F7 (25 wt.% BMW) and F8 (40 wt.% BMW) sintered at
1250 ◦C as porcelain stoneware for presenting WA values ≤ 0.5% and FS ≥ 35 MPa.
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3.5. Mineralogical Phases and Morphology of the Samples after Sintering

The XRD patterns of the samples sintered at 1250 ◦C are shown in Figure 9. It is
possible to observe that, for all samples, only the mullite (JCPDS 79-1276) and quartz were
detected. A decrease in the intensity of the main quartz peak (2θ = 26.64◦) was observed
with the addition of BMW, which was expected since the bentonite waste was incorporated
into the standard formulation as a substitute for quartz and a partial for feldspar. Regarding
the samples containing bentonite waste (F2 to F8), the patterns practically show identical
peaks, which indicates that the increase in the BMW content (up to 40 wt.%) did not cause
considerable changes in the mineralogical profile of the samples. Mullite forms a network
of needle-shaped structures responsible for increasing the material’s strength [55,56]. At
2θ = 20–30◦, the glass phase is a characteristic halo [20,57].

Sustainability 2022, 14, x FOR PEER REVIEW 12 of 17 
 

the material’s strength [55,56]. At 2θ = 20–30°, the glass phase is a characteristic halo 
[20,57]. 

 
Figure 9. XRD patterns were measured from samples without the BMW (F1) and with 2.5, 5, 10, 15, 
20, 25, and 40 wt.% of the BMW (F2 to F8) after sintering treatment at 1250 °C. 

The morphology of sintered samples sintered at 1250 °C was investigated by SEM 
micrographics. Figure 10 shows SEM images acquired from the surface of the samples. 
The surface is dense and vitrified in all samples with small, isolated pores. It is observed 
that the microstructure is characterized by an abundant amount of glass phase and some 
small needle-like crystals (squares highlighted in red in the images). These crystals are of 
mullite, which develops and form a network of intertwined needles that contribute to the 
increase in the material’s strength. Mullite is formed from the dissolution and crystalliza-
tion of the aluminosilicate present in the liquid phase. During this process, aluminum ions 
react with silicon ions from the amorphous phase (rich in SiO2), promoting the growth of 
mullite crystals [58,59]. The mullite formation process can be accelerated by the action of 
impurity present, such as Fe2O3, TiO2, K2O, and Na2O [58,60]. The small spherical grains 
can be attributed to the residual quartz phase (circles highlighted in yellow in the images). 
These results corroborate the X-ray analysis, which indicates mullite and quartz as the 
main crystalline phases. 

Figure 9. XRD patterns were measured from samples without the BMW (F1) and with 2.5, 5, 10, 15,
20, 25, and 40 wt.% of the BMW (F2 to F8) after sintering treatment at 1250 ◦C.

The morphology of sintered samples sintered at 1250 ◦C was investigated by SEM
micrographics. Figure 10 shows SEM images acquired from the surface of the samples. The
surface is dense and vitrified in all samples with small, isolated pores. It is observed that
the microstructure is characterized by an abundant amount of glass phase and some small
needle-like crystals (squares highlighted in red in the images). These crystals are of mullite,
which develops and form a network of intertwined needles that contribute to the increase
in the material’s strength. Mullite is formed from the dissolution and crystallization of
the aluminosilicate present in the liquid phase. During this process, aluminum ions react
with silicon ions from the amorphous phase (rich in SiO2), promoting the growth of mullite
crystals [58,59]. The mullite formation process can be accelerated by the action of impurity
present, such as Fe2O3, TiO2, K2O, and Na2O [58,60]. The small spherical grains can be
attributed to the residual quartz phase (circles highlighted in yellow in the images). These
results corroborate the X-ray analysis, which indicates mullite and quartz as the main
crystalline phases.
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4. Conclusions

Based on the results of this study, the waste from bentonite mining can be used as an
alternative raw material for producing porcelain stoneware, as a substitute for quartz, and
partially for feldspar. The bentonite mining waste showed adequate chemical composition
and granulometric distribution for use in ceramic mass. The incorporation of the bentonite
waste and the increase in the sintering temperature favored the reduction in the water
absorption and porosity and the growth of the flexural strength of the samples. Regardless
of the sintering temperature, the sample without bentonite waste showed the highest water
absorption values and lowered flexural strength than the samples with the waste. The
samples with waste percentages above 15 wt.% (F5, F6, F7, and F8) showed flexural strength
>30 MPa, with the highest value (37.92 MPa) reached for the sample with 40 wt.% waste
and sintered at 1200 ◦C. The X-ray diffraction patterns of the samples sintered at 1250 ◦C
indicated mullite and quartz as the main crystalline phases. SEM images from samples
revealed mullite crystals amid the glass phase and small spherical grains attributed to
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the residual quartz phase. In general, based on the standard ISO 13006 [54], all samples
that were sintered at 1150 ◦C and contained between 5 and 40 wt.% of bentonite waste
showed potential to be used as semi-stoneware; those with 10 to 40 wt.% sintered at
1200 ◦C as stoneware and those with 5, 25, and 40 wt.% of waste sintered at 1250 ◦C as
porcelain stoneware.
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