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Abstract: The subspecies of the species Cornu aspersum, C. a. aspersum, and C. a. maximum are
the dominant farmed species in Greece. The morphological and molecular polymorphism of the
two aforementioned subspecies has not been studied in depth. In this study, the polymorphism of
snails of the two subspecies derived from seven snail farms throughout Greece was studied using
morphological and molecular markers. Firstly, the snail samples of both subspecies were categorized
in three shell patterns based on shell color and existence of bands. The conducted population structure
analysis revealed three major clusters among the farmed snail populations. As concerns genetic
diversity, six loci (Ha5, Ha6, Ha8, Ha9, Ha10, and Ha11) were tested for their polymorphism. Genetic
variation was reported within populations rather than among populations. Finally, the obtained data
highlighted a common gene pool broodstock for snail farms throughout Greece.

Keywords: farmed snails; C. aspersum; shell; polymorphism; heterozygosity; genetic structure

1. Introduction

Land snails have been considered as ideal organisms for phylogeographical and
ecological genetics studies because of their limited dispersal capacity and their habitat
requirements [1–3]. Phylogeographic studies have focused on historical factors affecting
species distribution and population through repeated cycles of population elimination and
isolation in regression, and led to the creation of biogeographic barriers [4,5]. The species
Cornu aspersum (Helix aspersa) (Muller, 1974) has two infraspecific taxa, C. a. aspersum
and C. a. maximum, which split in the mid-to-late Pliocene [6,7] and live sympatrically
in North Africa, while C. a. aspersum occurs in America, Australia, New Zealand, and
South Africa [8]. Among species widely distributed across the Mediterranean basin, the
land snail C. a. aspersum has proved to be a suitable model to discover phylogeographical
patterns across North Africa and surrounding regions of the Western basin, and to evaluate
hypotheses leading to population differentiation [9]. Studies based on molecular markers
have described two divergent lineages for C. a. aspersum, named “East” and “West” accord-
ing to their geographical location in North Africa [6,10,11], and since the Holocene, the
species C. aspersum has successfully colonized a large range of man-disturbed habitats in
Western Europe considered as an important pest in lands. Although the exact geographical
origin of the species remains unresolved, the first phylogeographical scenario, based on
mitochondrial DNA variation of European and North African populations, assumes that
ancestral populations of the species C. a. aspersum would have dispersed in the western
Mediterranean through microplate tectonics from Oligocene [12]. Many phylogenetic stud-
ies [5,9,13,14] have been carried out for the subspecies of C. a. aspersum while the origin of
the commercial species C. a. maximum is unknown apart from few historical references [11].
The two subspecies live sympatrically in North Africa, while C. a. aspersum occurs in
America, Australia, New Zealand, and South Africa [8].
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The comparison of anatomical features of organisms has been a central element in
biology for centuries [15] and can be used for studying polymorphism. Polymorphism is a
basic characteristic of shell morphology, which preserves the onto-genetic record of growth,
and is now the main subject of a sub-field of morphometrics [16]. The shell of C. a. aspersum
is characterized by pronounced polymorphism [17], a phenomenon which can be found in
several land snail species including Cepaea hortensis, Theba pisana, and C. a. aspersum [18,19].
The limited dispersal capacity of terrestrial snails [1] explains the high genetic diversity
and the polymorphism of the shell [20]. The coloration of the shell base varies from pale
yellow to dark brown, and dark elongate bands of various types and colors are present in
the shell. Differences in size, weight, and other morphometrical characteristics of the shell
can be explained by the species, the age of snails, the period of collection, the breeding
conditions and diet as concerns the farmed subspecies C. a. aspersum and C. a. maximum as
well as wild species [21–24]. More specifically, several studies attribute this polymorphism
to predation or climatic effects [25]. Dark banding occurs mainly in snails growing at low
temperatures, while in snails growing at temperatures above 25 ◦C the color of the banding
becomes red [26]. The assumption of a higher warming capacity in darker snail shells
should be regarded with caution, and alternative possibly selecting factors and correlations
have been proposed, among which are the humidity and the higher occurrence of parasites
under humid conditions in northern and/or sheltered habitats.

In addition, geographic polymorphism in edible snails of C. a. aspersum has been
studied by isozyme-allozyme analysis, mitochondrial DNA analysis and the recording of
shell morphological characteristics in snail populations from Western Europe and North
Africa [10,27,28]. In case of C. a. aspersum, polymorphism has been studied based on
morphological, biochemical, and molecular markers. In Greece, the polymorphism of
C. a. aspersum has been studied by isozyme–allozyme analysis [29]. Snails of this subspecies
from 24 sites in Greece and Cyprus were classified based on morphological markers into
three populations [29]. In addition, isozyme–allozyme and mitochondrial DNA studies
of snails from different regions of South Africa were carried out and they were distin-
guished into two populations, namely, east and west [6,10,28]. Polymorphic markers such
as microsatellites (SSRs) replaced allozymes or mitochondrial DNA in population and
hybridization studies. Additionally, microsatellites are the most commonly used molecular
receptors in population genetics due to their repeatability. Many studies about fish popula-
tion structure have been conducted using the aforementioned DNA markers [30], though
the population structure in the marine environment is sometimes cryptic due to complex
demographic expansion and distribution of the species [31].

Maintaining genetic diversity in captive populations is initiated with a small number
of individuals from wild remnant populations [32]. Genetic heterozygosity in wild, unman-
aged animal populations is often associated with protection against infectious disease [33].
In species such as sheep, studies have been focused on investigations into the heritability
or genetic susceptibility to footrot in sheep [33,34]. Additionally, the genetic basis of the
positive correlations observed between multi-locus heterozygosity at allozyme loci and
fitness-related traits such as growth rate, viability, feeding rate, or fecundity is reported
in several organisms [35,36]. As concerns snails, there is a lack of data mainly for land
snails. Multiple-locus heterozygosity at four polymorphic loci under low-density and
high-density laboratory conditions was examined with protein electrophoresis in the land
snail Otala lactea [37]. Snails with more heterozygous loci did not grow faster under high- or
low-density conditions, while significant differences in the initial weight among genotypes
occurred at the locus 6-phosphogluconic dehydrogenase, but no differences in weight gain
among genotypes occurred in the laboratory growth experiments. No differences were
found in weight gain or multiple-locus heterozygosity between banded and unbanded
snails. Correlations between heterozygosity and several fitness measures including juvenile
survival, survival to sexual maturity, and fecundity, and considered trends in the inbreed-
ing coefficient (FIS) over generations were examined for Achatinella lila snails after their
population decline. Snails with higher measures of heterozygosity had more offspring,
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and third-generation offspring with higher measures of heterozygosity were more likely to
reach maturity.

While snail species can be identified morphologically when fresh, when they are
processed other techniques must be used, which prevent consumer fraud. Food authenticity
is affected by genetic background and geographical origin [38]. The species, the age, and
the procedure followed during breeding might affect the unique qualitative characteristics
of snails and their authenticity. More specifically, in the species Helix pomatia, Helix lucorum,
and Achatina fulica, using four restriction enzymes and by testing 12S rRNA and 16S
rRNA fragments, researchers were able to distinguish the three snail species [39]. The
body morphology and the free amino acid (FAA) profile variability were used for stock
identification among farmed rainbow trout Oncorhynchus mykiss populations [40].

Snail food products are very famous and consumed throughout the world because
of their high nutritional value and their unique qualitative characteristics [24]. Our goal
was to investigate the morphological polymorphism and describe, for the first time, the
genetic structure of farmed snails, which are a food product consumed worldwide [21].
The results obtained in this research are a part of a research project focused on snail farming
in Greece. Our goal was to investigate the snail farms and the factors affecting snail quality.
C. a. aspersum and C. a. maximum snails, used for polymorphism studies, are the main
farmed subspecies in Greece [21]. Here, we chose to use snail populations of two farmed
subspecies C. a aspersum and C. a. maximum in order to analyze their genetic structure and
investigate their authenticity.

2. Materials and Methods
2.1. Snail Collection and Tissue Isolation

According to the sampling procedure, a total of 160 snail specimens of the two in-
fraspecific taxa of the species C.aspersum were used [7]. Forty C. a. aspersum one-hundred
and twenty 120 C. a. maximum snails were collected from 7 snail farms in Greece (Figure 1).

The 160 snails from the 7 snail farms comprised 8 populations with 20 snails each.
From the farms S1, S2, S5, S6, and S7, we collected snails of C. a. maximum and the
populations were coded as SDN, SRT, VOL, AGR, and VSL, respectively. Snails of the
species C. a. aspersum were collected from farm S4 and the population was coded as OMR.
In farm S3, both species were bred and the populations of C. a. aspersum and C. a. maximum
were coded as KNT1 and KNT2, respectively. All the information concerning age, farm,
and sample generators and productive procedure such as farm type, diet, and climate were
collected. The data about generators of snail farms, sample generators, and production
procedures are shown in Figure A1.

The polymorphism was assessed for farmed snails reached the appropriate marketable
size and their age ranged from 126 to 210 days. The sample generators mainly derived
the previous production period of the snail farm based on the operation years of the farm.
Despite snail farm S4, all the other farms had snails of marketable size from another snail
farm as first generators. As concerns farm type, only two snail farms belonged to the list of
open-field farms while farms with the subspecies C. a. maximum reported higher biotic load
(Figure 2). Additionally, all the farms of the sampling procedure used mainly a compound
diet for snail and less the combination of compound diet with plants, were equipped
with a low-pressure cooling system. All snails C. a. aspersum and C. a. maximum were
transported to the Laboratory of Ichthyology-Hydrobiology 2 days after their collection, in
December 2017.
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Figure 1. Map of Greece showing the sampling snail farms of C. a. aspersum and C. a. maximum. S1: 
Sidini (Xanthi) 41°04′35.8″ N 25°01′22.6″ E, S2: Souroti (Thessaloniki) 40°28′01.7″ N 23°05′27.1″ E, S3: 
Κondariotissa (Pieria 40°13′21.0″ N 22°27′16.9″ E, S4: Omorphochori (Larissa) 39°39′53.2″ N 
22°29′10.5″ E, S5: Alli Meria (Volos) 39°22′13.2″ N 22°58′40.1″ E, S6: Agrinio 38°37′36.3″ N 21°25′23.2″ 
E and S7: Vasileoniko (Chios) 38°19′44.8″ N 26°06′47.7″ E. Pies denote the presence of three putative 
clusters (K = 3) (white, grey color, black color) in each population revealed by STRUCTURE analy-
sis.* population of C. a. aspersum, ** population of C. a. maximum. 
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The polymorphism was assessed for farmed snails reached the appropriate market-
able size and their age ranged from 126 to 210 days. The sample generators mainly derived 
the previous production period of the snail farm based on the operation years of the farm. 
Despite snail farm S4, all the other farms had snails of marketable size from another snail 
farm as first generators. As concerns farm type, only two snail farms belonged to the list 
of open-field farms while farms with the subspecies C. a. maximum reported higher biotic 
load (Figure 2). Additionally, all the farms of the sampling procedure used mainly a com-
pound diet for snail and less the combination of compound diet with plants, were 

Figure 1. Map of Greece showing the sampling snail farms of C. a. aspersum and C. a. maximum.
S1: Sidini (Xanthi) 41◦04′35.8′′ N 25◦01′22.6′′ E, S2: Souroti (Thessaloniki) 40◦28′01.7” N 23◦05′27.1′′

E, S3: Kondariotissa (Pieria 40◦13′21.0′′ N 22◦27′16.9′′ E, S4: Omorphochori (Larissa) 39◦39′53.2′′

N 22◦29′10.5′′ E, S5: Alli Meria (Volos) 39◦22′13.2′′ N 22◦58′40.1′′ E, S6: Agrinio 38◦37′36.3′′ N
21◦25′23.2′′ E and S7: Vasileoniko (Chios) 38◦19′44.8′′ N 26◦06′47.7′′ E. Pies denote the presence
of three putative clusters (K = 3) (white, grey color, black color) in each population revealed by
STRUCTURE analysis.* population of C. a. aspersum, ** population of C. a. maximum.
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Figure 2. The three shell patterns: p1 = light color shell with bands, p2 = light color shell without
bands and p3 = black color shell.

The collected snails were categorized according to their shell color and the existence
of bands in three shell patterns: p1 = light color shell with bands, p2 = light color shell
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without bands and p3 = black color shell (Figure 2). Finally, the mantle color was assessed
as dark, light or intermediate. The morphological characteristics such as shell diameter
(D), shell height (H), aperture diameter (d) and animal weight (W) were assessed for all
snails [21,41]. All anatomical analyses were carried out immediately. After the removal of
shell, the weight of the foot-head mass (Wf), referred as fillet [25], the weight of visceral
mass (Wv) and shell (Ws) were also assessed. Part of fillet was stored at –20 ◦C for later
molecular analysis.

2.2. DNA Extraction and PCR Amplification

Total cellular DNA was isolated from muscle samples of C. a. aspersum and C. a. maximum
snails following a modified phenol-chloroform protocol after [42].

A panel of 6 microsatellite DNA loci, Ha5, Ha6, Ha8, Ha9, Ha10, and Ha11 [10] was
tested (Table 1). A multiplex PCR Kit with hot start Taq (KAPA2G Multiplex Mastermix,
KAPA BIOSYSTEMS) was used for the DNA amplifications. The primers were divided into
three multiplex groups according to fluorescent primer pigment.

Table 1. Sequence of primers: Ha5, Ha6, Ha8, Ha9, Ha10, and Ha11 [10].

Primer Sequence Pigment

Ha5
F:GTGTGACACACTGCCCTGGA

(TG)19 117–207 FAM
R:CAATGGCAAACTACTGAAAGCAA

Ha6
F:TTATCCGCTTGATATATCCT

(GA)23(GGA)4 145–215 HEX
R:ACTCGTACATGGTTGAAAAC

Ha8
F:AGTTTGCTGGTTTGTACACTCG

(CA)14CGTG(CA)3AGATG(CA)2 152–210 FAM
R:CGTTTTTAGCTCTTGAATACGG

Ha9
F:AGCTAACCCACACTCAGATTT

(TG)5 . . . (CA)20 . . . (AT)6 108–172 TAMRA
R:AGCCAGCTAATATGTTTGGA

Ha10
F:GCGTTCAATGTAGTTTATGTGCG

(CA)6(CGCA)3(CA)4TACACG(CA)14 211–253 TAMRA
R:GAGAACATGCATACAAACAAACATG

Ha11
F:CGTGTACTACTGGGCAACGT

(TC)2ACTGTTCC(TC)33 175–240 HEX
R:ACGGAAAGAGACAGAAAGTGAG

The PCR cycling profile was 95 ◦C for 3 min; 30 cycles of 94 ◦C for 1 min, annealing
temperature for 50 s and 72 ◦C for 50 s; and 72 ◦C for 8 min. The length of PCR products
was verified by electrophoresis on 1.5% agarose gel containing 0.5 µg mL−1 ethidium
bromide. Amplified DNA products were screened on an ABI 3500 DNA Analyser (Applied
Biosystems). Each specimen’s alleles were scored by the software STRAND 2.0 [43].

2.3. Data Analysis

Morphometric data were analyzed statistically using the analysis program SPSS [44].
To assess the significance of differences of morphometrical characteristics among groups,
One-Way-ANOVA test and independent-samples t-test were applied. Post-hoc compar-
isons were performed using the Tukey test (p < 0.05). Principal component analysis (PCA)
was applied for the morphological data of all snails used in this study. Exact tests for
Hardy–Weinberg equilibrium and the linkage disequilibrium method with 10,000 demem-
orization steps followed by 1000 batches with 10,000 iterations per batch were carried out
using GENEPOP 3.4 [45]. Expected heterozygosity (HEXP) and observed heterozygosity
(HOBS) were estimated using GENEPOP 3.4 [45]. Fixation indexes FST were measured by ge-
netic differentiation and FIS using the formulations described by Weir and Cockerham [46].
GenAlex 6.5 software [47] was also used for the estimation of statistical significance of
pairwise differentiation, taking into account the composite haplotype frequencies [47].
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Analysis of molecular variance (AMOVA) was applied using the GenAlex 6.5 [47]. Pop-
ulation structure was further assessed using STRUCTURE 2.3 [48] assuming correlated
allele frequencies. Three independent repeats were run for each value of K (1 ≤ K ≤ 9).
Following test runs, the burn-in length and length of simulation were set at 1,000,000 and
3,000,000 repetitions, respectively. STRUCTURE HARVESTER [49] was used to assess the
likelihood value of the different K values and to implement the ∆K method [50] reflecting
the highest hierarchical level of structuring [51]. Using software IR-macro, internal related-
ness IR Homozygosity by loci (HL) and HOBS were estimated and their correlations with
morphometrical characteristics (D, H, d) were assessed by estimating Pearson’s coefficient.

3. Results

The morphological characteristics of the shells (D, H, d) and the weights of whole
snails (W), fillets (Wf), visceral mass (Wv), and shells (Ws) were assessed for the 20 snails of
each population and mean values of these parameters and differences among populations
are presented in Table 2.

Table 2. Morphological characteristics of the population of the two snail species, C. a. aspersum and
C. a. maximum. Results are expressed as mean values ± S.D. (n = 20). For C. a. aspersum data, t-test
was performed and for C. a. maximum, one-way ANOVA followed by Tukey test and Kruskal–Wallis
test were performed. Data within the same column for each species that do not share a letter are
significantly different (p < 0.05). D = snail shell diameter, H = snail shell height, d = snail shell
aperture diameter, W = weight of whole raw snail, Wf = weight of raw fillet, Wv = weight of visceral
mass, and Ws = weight of shell. Small letters denote statistically significant differences (p < 0.05).

Subspecies Population D (mm) H(mm) d(mm) W(g) Wf (g) Wv(g) Ws(g)

C
.a

.
as

pe
rs

um KNT1 29.36 ± 1.58 a 28.74 ± 1.04 a 14.50 ± 1.80 a 6.52 ± 0.83 a 0.80 ± 0.12 a 3.26 ± 0.49 a 2.46 ± 0.52 a

OMR 27.20 ± 1.84 b 26.23 ± 1.33 b 13.61 ± 0.92 a 5.22 ± 0.78 b 0.72 ± 0.08 b 2.84 ± 0.60 b 1.67 ± 0.41 b

Statistics P = 0.00,
T = 3.98

P = 0.00,
T = 6.66

P = 0.058,
T = 1.98

P = 0.00,
T = 5.06

P = 0.022,
T = 2.40

P = 0.00,
T = 5.28

P = 0.019,
T = 2.45

C
.a

.m
ax

im
um

SDN 38.08 ± 2.08 b 36.83 ± 1.40 b,c 19.98 ± 1.57 b 12.36 ± 1.92 2.31 ± 0.26 3.99 ± 0.92 6.06 ± 1.20 c

SRT 35.37 ± 2.14 c 34.50 ± 1.96 d 18.17 ± 1.59 c 10.64 ± 1.69 2.10 ± 0.19 3.62 ± 0.90 4.92 ± 1.06 c

KNT2 37.74 ± 2.08 b 36.26 ± 1.96 c 20.19 ± 2.74 b 12.26 ± 2.03 1.77 ± 0.36 5.33 ± 0.90 5.16 ± 1.30 b

VOL 39.97 ± 2.57 a 38.26 ± 1.98 a.b 21.42 ± 1.58 a.b 14.06 ± 2.09 2.29 ± 0.28 5.68 ± 1.22 6.09 ± 1.43 b

AGR 41.78 ± 1.59 a 38.86 ± 1.81 a 22.24 ± 1.49 a 17.90 ± 2.02 3.00 ± 0.41 7.71 ± 1.57 7.19 ± 1.30 a

VSL 37.83 ± 1.55 b 35.81 ± 1.63 c.d. 18.28 ± 1.37 c 12.13 ± 1.85 1.94 ± 0.13 6.08 ± 1.43 4.10 ± 0.68 b

Statistics P = 0.00,
F = 23.17

P = 0.00,
F = 15.98

P = 0.00,
F = 16.76

P = 0.00,
H = 61.85

P = 0.00,
H = 73.73

P = 0.00,
H = 51.68

P = 0.00,
F = 31.34

According to Table 2, KNT1 and OMR snails presented significant differences as con-
cerns the size and mass. The diameter of the aperture was the same in two populations
of C. a. aspersum. C. a maximum snails presented significant differences as concerns the
morphometrical characteristics of shells and mass of shells according to one-way ANOVA
(P < 0.05). According to the PCA results (Figure A2), based on the morphometrical charac-
teristics of the shell and mass of whole snail, fillet, visceral mass, and shell of the farmed
snails among populations, the amount of variation explained by each axis was 86.7% for
the first component and 7.4% for the second component. According to the PCA results
for each subsecies (Figure 3), the amount of variation explained by each axis is 11.45% for
Coordinate 1 and 8.29% for Coordinate 2 for C. a. aspersum and 6.79% for Coordinate 1 and
4.8% for Coordinate 2 for C. a. maximum (b).
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FIS 0.391 0.221 0.303 0.126 0.069 0.453 0.233 0.144 0.373 0.234 
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HOBS 0.474 0.700 0.587 0.650 0.500 0.500 0.700 0.684 0.550 0.597 
No 14 14 21 13 16 15 17 14 13 25 
FIS 0.483 0.169 0.333 0.238 0.444 0.466 0.264 0.258 0.395 0.345 
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(a) and 6.79 % for Coordinate 1 and 4.8% for Coordinate 2 for C. a. maximum (b).

As concerns shell color and bands, snails from both subspecies were categorized in
three patterns; p1 was for light = color shells with bands, p2 for light-color shells without
bands, and p3 for black-color shells. No significant differences (P = 0.807, F = 0.0535)
were reported among and within populations of the two farmed subspecies of C.aspersum
as concerns the shell patterns. According to results, the majority of both populations of
C. a. aspersum had light-colored shells with bands. In the population KNT1, 10% of the
snails had dark shells, while 15% had light shells without bands. In contrast, the OMR
snails had no light-colored shells without banding, as 90% of the snails belonged to p1 and
only 10% belonged to p3. In all C. a. maximum populations, the majority of snails (80–95%)
were categorized as p1 because they had light-colored shells with bands. According to
the same figure, the snails of KNT2 were the only ones that did not have a light-colored
shell without bands. In the other five populations, p2 was represented by 5–20% of the
snails. Finally, the SRT and KNT2 populations were the only ones in which 10% of the
snails presented with p3 shells.

The mantle colors were categorized as light, intermediate, and dark. According to the
results, the highest percentage (65%) of C. a. aspersum snails of the population of KNT1
and OMR snails had light-colored mantles. Only 35% of the KNT1 snails belonged to a
farm that also rears C. a. maximum snails, which showed an intermediate mantle colors. In
five of the six populations, the snails as a whole had black mantles. A small percentage
(15%) of the VSL snails coming from a farm that formerly also reared C. a. aspersum had
white mantles.

Regarding the results of Table 3, pairwise FST for C. a. aspersum was significant
(P = 0.01). All pairwise FST for C. a. maximum populations were not significant. The use
of software STRUCTURE 2.3 unraveled three putative clusters (K = 3) among the eight
populations considering the membership coefficients which sum to 1 for each individual.
The vast majority of populations appeared to have individuals in all clusters.

According to the ANOVA results obtained, 100% of the overall genetic diversity was
attributed to be within populations in both subspecies (Table 4). The genetic variation at
each locus for each population of both farmed subspecies, C. a. aspersum and C. a. maximum,
is reported in Table 5 (including HOBS, HEXP, number of alleles, and FIS).
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Table 3. FST pairwise values of the farmed snail populations of the two subspecies. An asterisk
indicates significance with alpha set to 0.05 after Bonferroni correction.

C. a.
aspersum

KNT1

OMR 0.034 *

KNT2 SDN SRT AGR VOL

SDN −0.0065 0

SRT −0.0026 −0.0013 0

AGR 0 0.0095 0.0082 0

VOL −0.0014 0.0053 0 −0.0027 0

VSL −0.0016 0.0009 −0.0021 0.0088 0.0092

Table 4. Analysis of molecular variance (AMOVA) among and within populations of the subspecies
C. a. aspersum and C. a. maximum. The FST index represents the sum of variation among populations
and variation within populations divided by the total variation.

C. a. aspersum

df Sum of squares Percentage of
variation Fixation index

Among populations 1 0.175 0 FST = 0.030 P = 0.001

Within populations 38 10.7 100

Total 39 10.875

C. a. maximum

df Sum of squares Percentage of
variation Fixation index

Among populations 5 1.517 0 FST = 0.002 P = 0.197

Within populations 114 51.450 100

Total 119 52.967

In Table 5, as concerns C. a. aspersum, the farmed population OMR snails showed the
highest HOBS values for all loci while FIS values for all loci of KNT1 snails were higher
than those of OMR snails. Locus Ha6 presented the highest number of alleles (23) and the
highest HOBS (0.650). As illustrated in Table 5, the farmed populations of C. a. maximum
showed HEXP values ranging from 0.88 to 0.91 and HOBS values ranging from 0.57 to 0.65.
For loci Ha6 and Ha11, C. a. maximum had the highest number of alleles (26). C. a. maximum
snails from Kondariotissa (KNT2), where both subspecies were bred, had the lowest value
of FIS (0.483) among all loci.

According to Figure 4, the IR value (0.42) of C. a. aspersum belonging to P2 was
the highest, while no significant differences were reported (P = 0.6, F = 5.12). Although
higher IR (0.36) was observed in P1 snails, no significant differences were reported (P = 0.3,
F = 1.20) for C. a. maximum snails. In both subspecies, P3 snails had the lowest values
of IR. According to Pearson’s values for the subspecies C. a. aspersum, shell diameter
(D) had a positive correlation with shell height (H) and aperture diameter (d) (0.589 and
0.648, respectively). A very strong positive relationship was reported between internal
relatedness (IR) and Homozygosity by loci (HL), as Pearson’s coefficient was estimated as
0.999, while between IR and HOBS and between HL and HOBS we observed strong negative
correlations (−0.996 and −0.999, respectively). Regarding the subspecies C. a.maximum,
similarly to C. a. aspersum, D had a positive relationship with H and d with Pearson’s
coefficient values of 0.861 and 0.770, respectively, while H also had a positive correlation
with d (0.739). Moreover, it was reported that HOBS had a strong negative relationship with
C. a. aspersum HL (−0.901). On the contrary, in C. a. maximum, snails IR had a very strong
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negative correlation with HOBS with a Pearson’s value of −0.917 and a very strong positive
correlation between IR and HL (0.993). Finally, we observed that the heterozygosity of
locus Ha5 had a strong relationship with the biotic load and the expected heterozygosity of
Ha6 had a strong correlation with total rain during the production period (Pearson’s 0.827
and 0.855, respectively).

Table 5. Genetic variation at each locus for each population of C. a. aspersum and C. a. maximum. Het-
erozygosity expected (HEXP), Heterozygosity observed (HOBS), Number of alleles (NO), and FIS values
per population for each locus are reported. * HWE indicates the deviation from Hardy–Weinberg
equilibrium. Statistically significant FIS values are indicated in bold.

Population

C. a. aspersum C. a. maximum

Locus KNT1 OMR All SDN SRT KNT2 VOL AGR VSL All

Ha5

HEXP 0.885 0.856 0.882 0.922 0.891 0.924 0.891 0.877 0.876 0.904

HOBS 0.450 0.400 0.425 0.500 0.500 0.300 0.550 0.706 0.650 0.528

No 11 12 14 13 10 11 11 13 10 16

FIS 0.498 0.539 0.518 0.464 0.445 0.681 0.389 0.200 0.263 0.416

Ha6

HEXP 0.894 0.958 0.933 0.913 0.858 0.904 0.908 0.919 0.869 0.900

HOBS 0.550 0.750 0.650 0.800 0.800 0.500 0.700 0.790 0.550 0.690

No 16 19 23 14 13 13 13 15 14 27

FIS 0.391 0.221 0.303 0.126 0.069 0.453 0.233 0.144 0.373 0.234

Ha8

HEXP 0.905 0.838 0.879 0.847 0.889 0.924 0.945 0.916 0.900 0.912

HOBS 0.474 0.700 0.587 0.650 0.500 0.500 0.700 0.684 0.550 0.597

No 14 14 21 13 16 15 17 14 13 25

FIS 0.483 0.169 0.333 0.238 0.444 0.466 0.264 0.258 0.395 0.345

Ha9

HEXP 0.684 0.878 0.786 0.815 0.746 0.845 0.810 0.809 0.763 0.806

HOBS 0.632 0.550 0.587 0.632 0.750 0.450 0.650 0.579 0.500 0.596

No 10 10 14 11 10 10 10 10 9 18

FIS 0.079 0.380 0.249 0.230 −0.005 0.474 0.202 0.290 0.350 0.260

Ha10

HEXP 0.928 0.923 0.934 0.935 0.941 0.921 0.939 0.956 0.921 0.947

HOBS 0.450 0.800 0.625 0.632 0.500 0.450 0.400 0.526 0.500 0.501

No 15 14 20 16 16 12 16 18 13 23

FIS 0.522 0.136 0.331 0.330 0.475 0.518 0.580 0.456 0.463 0.471

Ha11

HEXP 0.921 0.928 0.933 0.937 0.955 0.941 0.928 0.946 0.941 0.950

HOBS 0.550 0.650 0.600 0.667 0.579 0.700 0.526 0.611 0.700 0.631

No 16 14 20 15 17 16 14 15 16 27

FIS 0.409 0.305 0.357 0.294 0.400 0.261 0.439 0.361 0.261 0.336

All loci

HEXP 0.869 0.897 0.895 0.880 0.910 0.903 0.904 0.878

HOBS 0.518 0.642 0.647 0.605 0.483 0.588 0.649 0.580

HWE * * * * * * * *

No 13.67 13.83 13.67 13.50 13 13.50 14.17 12.50

FIS 0.411 0.290 0.281 0.318 0.475 0.355 0.293 0.351
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4. Discussion

The current study indicated the morphological and genetic variation of populations of
the snail subspecies of the dominant commercial species in Greece. Food authenticity is
a crucial parameter of product quality and there is a lack of data concerning the genetic
profile of farmed species such as the subspecies of the Cornu aspersum, C. a. aspersum,
and C. a. maximum, which are the main farmed species in Greece [52]. The abundance
of microsatellite gene sites, the high degree of polymorphism of microsatellite DNA, and
many technical advantages make it a valuable molecular tool for demographic studies
and studies of genetic structure of populations. Genetic diversity is the basis of ecosystem
diversity and species diversity and each species has its own unique gene pool or form of
genetic organization. To date, there have been many studies on the genetic diversity of
species, including plants, insects, fish, and marine mollusks. Molecular polymorphism
has not been studied in farmed snails. In this study, genetic variation was examined in six
genetic loci: Ha5, Ha6, Ha8, Ha9, Ha10, and Ha11 [10].

The snail farms used for the sampling procedure were based in different localities and
regions of Greece and a wide assortment of climatic types was indicated. Additionally, the
open field farms were more vulnerable to local climatic conditions and low temperatures
led to shorter production periods [53]. Controlled conditions during the production period
lead to optimum growth rates in farmed snails compared with the wild ones. The age
of collected snails ranged from 126 to 210 days. The production procedure of samples
of both subspecies was similar, as the farms were equipped with low-pressure cooling
systems and followed a feeding program mainly based on a compound diet. In our study,
most farms used snails from other farms as farm generators and in the production period
when sampling took place, snails of marketable size from the previous period were used as
generators. Snail fillet, which is the main edible part of snails, has a commercial value and
can be used an indicator of productivity, though it is not analyzed in depth. Differences in
size, weight, and the morphometrical characteristics of snail shells can be explained by the
species, the age of snails, the period of collection, the breeding conditions, and the diet for
farmed species. Although the association between habitat use and relative shell height is
consistent among species, the associations between habitat use and other shell variables
(aperture diameter) differ among species in Hirasea snails [54]. After the F5× F5 generation,
the final size of the snails decreased [55]. In our study, all populations of C. a. maximum
snails were bigger in size and weight than the populations of C. a. aspersum [24]. Farmed
and wild C. a. aspersum snails had no significant differences in terms of weight and shell
morphometrics [24]. In the current study, PCA revealed that the amount of variation of shell
morphometrical characteristics and mass explained by each axis was 63.5% for the First
Component and 12.2% for the Second Component in the case of C. a. aspersum populations
and 73.7% for the First Component and 11.8% for the Second Component in the case of
C. a. maximum populations.

We conducted the analysis of morphological characteristics and the grouping in three
shell patterns was confirmed by the three resulting clusters after molecular analysis. More
specifically, the population structure analysis revealed the existence of three haplotype clus-
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ters among the population of the two farmed subspecies, C. a. aspersum and C. a. maximum,
in Greece. In all the populations of the aforementioned subspecies, the coexistence of
haplotypes from the three clusters highlighted the common gene pool not only for the
populations from Kondariotissa, Sidini, and Souroti, which derived from snail farms S1, S2,
and S3 belonging to the same snail farmer’s cooperative. Martsikalis et al. [56] assessed
the genetic variation of 10 populations of farmed trout in Greece and they found that
samples derived from the common gene pool. The two monophyletic populations of Egyp-
tian and Saudi Arabian Eobania vermiculata were found to represent two distinct groups,
leading to the conclsusion that the two separate groups could be considered two separate
subspecies [20]. Morphology is usually a feature associated with fitness and is therefore
limited to strong selective pressures. The morphology of the gastropod shell is one of
the most frequently studied morphological features due to its importance for taxonomic
and evolutionary studies [17,56]. The snail shell color is diverse. In C. a. aspersum the
shell can have three basic colors, yellow, red and brown, each of which is due to an allele
of site C. Heterozygotes are usually intermediate in color. In this study, most snails of
each population of both farmed subspecies, C. a. aspersum and C. a. maximum, belonged
to shell pattern characterized by a light-colored shell with bands. Only, C. a. aspersum
snails form Omorphochori and C. a. maximum snails from Agrinio did not have light-
colored shells without bands. Additionally, the C. a. maximum populations which were
collected from farms located at Sidini, Souroti, Alli Meria, and Vasileoniko did not have
dark-colored shells. As reported in wild species Cepaea hortensis and Theba pisana and the
farmed subspecies C. a. maximum, darker shells were observed in habitats with colder
climates, while the lighter shells were observed in habitats with warmer climates [57].
The biotic load of the snail farm and the fact that farmed snails were used as ancestral
populations most times without renewals might lead to breeding depression and similar
morphologies. The snail mantle of farmed snails is another anatomical feature which was
examined in the frame of polymorphism analysis. Mantle color presents polymorphism
due to Mendelian inheritance at single loci, such as the heavily dark-spotted versus pale
mantle in Trichia striolata (Pfeiffer) (Hyromiidae) [22]. C. a. aspersum snails were bred in
Kondariotissa, with exception to the species C. a. maximum; a percentage of C. a. aspersum
snails had an intermediate-colored mantle instead of a light-colored one. C. a. maximum
shells were light-colored in snails that came from a farm where only this species was bred.
C. a. maximum snails were from Vasileoniko, which was the only sea area of this study and
where, in the past, C. a. aspersum snails were bred; these snails presented a small percentage
of light-colored mantle. The local adaptation model generates predictable patterns [58]. As
the environment of all farms did not present differences, local adaptation sets predictable
outcomes regardless of whether a phenotype is the result of plastic or genetic adaptation.

In natural populations, environmental conditions are variable and this can affect
the evolution of phenotypic plasticity [59]. In the same way that inbreeding can affect
fitness and fitness-related traits, it may also affect trait plasticity [60]. Inbreeding may
directly affect plasticity by altering phenotypic expression in one environment or by alter-
ing the organism’s ability to detect or respond appropriately to different environmental
conditions. Heterozygosity and population size should be positively correlated with fit-
ness among populations of a species. It was reported that commonly used surrogates for
fitness—heterozygosity, population size, and quantitative genetic variation—were posi-
tively and significantly correlated with population fitness but they explained only 15–20%
of the variation in fitness [61]. We collected samples from F4–F13 generations except for
KNT1 snails, which were an F1 generation for the farm. Most snail farms chose generators
from other farms; the exact generation of our samples is unknown. According to the theory,
low heterozygous individuals have a relative reduced fitness, possibly due to inbreeding
depression [62]. The rate at which molecular heterozygosity is lost per generation (1/2
of the effective population size) also applies to the loss of additive genetic variation [63].
As reported in the last study [63], the rate at which molecular heterozygosity is lost per
generation (1/2 of the true population size) also applies to the loss of additive genetic
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diversity. A positive correlation was observed between the generation of snails used for the
analyses and the HOBS of the Hα10 genetic locus and the HEXP of Hα9. In contrast, the age
of snails of both subspecies did not show a correlation with heterozygosity at the tested
genetic loci. HWE deviations are expected because of the gene pool.

Moreover, the level of differentiation between C. a. aspersum populations was sig-
nificant while FST among C. a. maximum populations ranged from −0.0009 to 0.095 and
no significant genetic differentiation was reported. The FST indicated between the two
populations C. a. aspersum was 0.034, a value between the 0.019 and 0.634 observed in
pairs of populations of Murella muralis [64]. The genetic differentiation among populations
of both subspecies used in our research measured by the Fst value is generally described
as negligible according to the categories for cultivated populations: negligible (0–0.05),
moderate (0.05–0.15), great (0.15–0.25), and very great (above 0.25) [65].

In our data, for both farmed subspecies the observed heterozygosity of all populations
of both species was lower than the expected due to the majority of homozygous individuals,
as was also reported in populations of farmed trout in Greece [56]. Lower values of ob-
served heterozygosity than the expected heterozygosity were also reported after molecular
analysis of five microsatellite loci of the Helicidae species Arianta arbustorum [66]. In the
aforementioned study, the observed heterozygosity had a value of zero for three loci. The
study in land snail M. muralis revealed that almost all populations had a mean number of
alleles greater than three [64]. As was reported by Arnaud et al. [67], microsatellite loci
of C. a. aspersum snails belonging to the same colony were highly polymorphic with an
overall total of 114 alleles, number of alleles per locus ranging from 5 (Ha2) to 32 (Ha13)
while in our study C. a. aspersum populations were less polymorphic and presented from
14 alleles (Ha5) to 23 alleles (Ha6). Although snails of the aforementioned subspecies
derived from farm in Omorphochori and generators that were renewed four times, the
number of alleles for each locus was almost the same as snails from Kondariotissa. The
aforementioned values of alleles were reported to snails derived from a farm where the
only farmed species was C. a. aspersum. As was illustrated by mean values of alleles for all
loci of each population C. a. maximum, these loci were more polymorphic.

In our study, farmed C. a. aspersum snails had no significant differences in weight
and shell morphometric characteristics. In the case of subspecies C. a. maximum, snail
mass, fillet mass and viscera mass did not show a normal distribution. In the present
study, Principal Component Analysis (PCA) revealed that the amount of variation in shell
morphometric characteristics and mass explained by each axis was 63.5% for the First
Component and 12.2% for the Second Component in the case of C. a. aspersum populations
and 73.7% for the First Component and 11.8% for the Second Component in the case of
C. a. maximum populations. When the morphometric characteristics of the shell and masses
of both subspecies were studied, a variation was observed with the First Component,
showing a variability of 86.7%.

Developing a founder stock of the economically important species that have the genetic
ability to use feed and resources efficiently [68] is not only crucial in aquaculture, but also in
land species. Authenticity depends on the genetic background [38] and both morphological
and molecular markers can reveal mislabeled food products such as aquatic products with
uncommon trade names [69,70].

5. Conclusions

The current study comprises the first attempt to assess the morphological and genetic
variation among and within farmed snail populations throughout Greece. The farmed
populations of both subspecies presented three shell patterns. The percentage of genetic
variation within populations reflected the admixture of initial populations, highlighting a
common gene pool broodstock for snail farms throughout Greece.
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other farm) and generation of sample generators, origin of first farm generators (farm/wild) and 
times of renewals, type of farm (open filed/net covered greenhouse), biotic load, mean temperature 
and total rain during the production period, cooling system and feed (compound diet/and plants). 

Figure A1. Breeding conditions and generators of snail populations until their collection. Yellow color
is used for C. a. aspersum populations. For each population: age (days), origin (same farm/another
farm) and generation of sample generators, origin of first farm generators (farm/wild) and times of
renewals, type of farm (open filed/net covered greenhouse), biotic load, mean temperature and total
rain during the production period, cooling system and feed (compound diet/and plants).
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