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Abstract: The phenomenon of sudden changes in hydrodynamic coefficients cannot be neglected
when the resonance of a two-dimensional rectangular moonpool occurs; however, it may not be
meaningful to discuss the detailed values of hydrodynamic coefficients when the resonance occurs.
The analytical solution of the hydrodynamic coefficients of a two-dimensional rectangular moonpool
under sway motion derived based on the linear potential flow theory is first improved. The improved
analytical results and the results with the far-field method are then compared and verified. The
results show that the hydrodynamic coefficients of a two-dimensional rectangular moonpool under
sway motion change suddenly at the second resonant frequency, which was not found in the original
analytical solution of damping coefficient.
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1. Introduction

Most engineering ships and offshore platforms are equipped with a moonpool struc-
ture with openings at the bottom, and the water in the moonpool is connected to the
outside. The fluid movement in the moonpool can be divided into vertical piston mode
and horizontal sloshing mode [1]. On one hand, the moonpool can provide a stable marine
operating environment for the drilling equipment and riser, and can improve the efficiency
of wave energy conversion devices. On the other hand, when the external excitation fre-
quency is the same as the natural frequency of the moonpool, fluid resonance occurs in the
moonpool, which significantly affects the motion of the ship and the stability of navigation.
Therefore, it is of great significance to study the resonant phenomenon of the fluid inside
the moonpool as well as its hydrodynamic characteristics of the moonpool.

The natural modes of oscillation of the inner free surfaces of the moonpool are de-
termined under the assumption of infinite water depth via the linearized potential flow
theory, and the problem is addressed in two and three dimensions by Molin (2001) [2]. A
numerical method for the study of sloshing in tanks with a two-dimensional flow was
presented by Faltinsen (1978) [3]. The hydrodynamic interactions of water wave diffraction
on a super large floating structure composed of numerous box-shaped modules were
studied; a new resonant phenomenon, which is related to the draft of the structure, was
revealed, and the relationship between the draft of the structure and the gap width and
resonance frequencies was discussed by Miao et al. (2000) [4]. Combined theoretical and
experimental studies of the two-dimensional piston-like steady-state motions of the fluid in
a moonpool are presented, and a high-precision, analytically oriented, linear-potential-flow
method was developed by Faltinsen et al. (2007) [5]. The equations for solving the radiation
and diffraction problems of a two-dimensional rectangular moonpool were established
via the linearized potential flow theory, the expressions of the hydrodynamic coefficients
were derived, and the effect of the opening on the excitation force and hydrodynamic
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coefficients was evaluated, by Zhou et al. (2013) [6]. Based on Zhou et al. (2013) [6], the
radiation and diffraction problems of a two-dimensional rectangular moonpool in front of
a straight wall at a finite water depth were studied by Zhang and Zhou (2013) [7]. Based
on the CFD theory, a method that includes both numerical simulation and analysis of the
ship added mass and damping coefficient was outlined for ships oscillating in waves by
Zhu et al. (2009) [8]. Potential and N.-S. equation-based flows were numerically simulated
around a two-dimension floating rectangular body with a moonpool using Fluent software,
and the influences of the vorticity on the vertical motion of the moonpool under a forced
heave motion were evaluated by Heo et al. (2014) [9]. The differences in the moonpool
resonant frequencies between the fixed and free-floating conditions were studied using the
radiation-diffraction code WAMIT, and the effect of the vessel configuration on the offset of
the moonpool resonant frequencies was examined by Huang et al. (2019) [10]. Theoreti-
cal models for calculating the natural frequencies and modal shapes of two-dimensional
asymmetric and symmetric moonpools in finite water depth were proposed by Zhang et al.
(2019) [11]. In the case of a symmetric moonpool, single-mode approximations (SMA) have
been derived and can be used to quickly estimate the natural frequencies of the piston and
sloshing modes.

In this study, the analytical solution of a two-dimensional rectangular moonpool
under the sway motion deduced in Zhou et al. (2013) [6] was improved, and the varia-
tion characteristics of the hydrodynamic coefficients at the second resonance frequency
were supplemented. The far-field method results of the hydrodynamic coefficients were
compared with the improved analytical results.

2. Analysis of the Original Analytical Solution

Suppose that a rectangular moonpool floats on the free surface of water, and the struc-
ture oscillates with a small amplitude under external excitation. The Cartesian coordinate
system Oxyz is obtained, where the Oxy plane coincides with the still water level, and
the origin of the coordinate axis is located at the intersection of the symmetry axis of the
moonpool and still water level. The water depth is h. Assuming that the rectangular
moonpool is infinite in the y direction, the influence in the length direction can then be
neglected. The moonpool and flow field can thus be simplified into a two-dimensional
form, as shown in Figure 1, where the width of the moonpool is 2b, the width of the opening
is 2a, the draft depth of the moonpool is h1, and the height of the moonpool is h2.
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The hydrodynamic force on a body can be obtained from the integration of the pressure
based on the linear Bernoulli equation over the wetted body surface. For wave radiation
due to body oscillation, Zhou et al. (2013) [6] provided the expression of the excitation
force, τpq, in mode p due to the motion of unit amplitude in mode q:

τpq = iωρ
∫
Sb

[
−iωφ(q)(x, z)

]
npdS = ρω2

∫
Sb

φ(q)npdS (1)
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where, ω is the circular frequency, ρ is the water density, Sb represents the wetted body
surface, φ(q) is the normalized velocity potential of motion in mode q, and np is the normal
direction of the wetted body surface.

The force due to wave radiation can be written in terms of the added mass µpq and
damping coefficient λpq. The non-dimensional added mass µpq and damping coefficient
λpq derived by Zhou et al. (2013) [6] are expressed as follows:

µpq = Re
(
τpq
)
/
[
2ρh1ω2bb(δ3p+δ3q)

]
(2)

λpq

ω
= Im

(
τpq
)
/
[
2ρh1ω2bb(δ3p+δ3q)

]
(3)

where Re indicates that the real part of the complex function is taken, Im indicates that the
imaginary part of the complex function is taken, and δpq is the Kronecker delta function
given by

δpq =

{
0 p 6= q
1 p = q

. (4)

After the authors’ rederivation, it is inferred that the analytical solution derived by
Zhou et al. (2013) [6] is accurate. However, we found that the numerical variation of the
hydrodynamic coefficients, especially the damping coefficient under the sway motion at the
second resonant frequency, cannot be accurately captured because the calculation accuracy
is insufficient.

Assume h = 3.0 m, h1 = 1.0 m, 2b = 1.0 m, and a/b = 0.8. For this case, 2kb is the
same as the value of k. The hydrodynamic coefficients of the moonpool were calculated
according to the code provided by Dr. Zhou. It can be observed from Figure 2a that, under
the heave motion, significant numerical changes in the added mass appear in the frequency
range of 2kb = 0 ∼ 1, and two extrema, one large and one small, appear in this range. It can
be observed from Figure 2b that, under the heave motion, significant numerical changes
in the damping coefficient also appear in the same frequency range, and the extremum
variation of λ22 corresponds to the value change of the added mass.
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Figure 2. Analytical results of hydrodynamic coefficients of the moonpool under heave motion (by
Zhou’s program): (a) added mass; (b) damping coefficient.

It can be observed from Figure 3a that, under the sway motion, the first maximum of
the added mass appears in the range of frequency 2kb = 0 ∼ 1. The positive and negative
extrema of the added mass appear near the second resonant frequency of 2kb = 3.1. It
can be observed from Figure 3b that, under the sway motion, the peak of the damping
coefficient also appears in the range of frequency 2kb = 0 ∼ 1, whereas the damping
coefficient only fluctuates weakly near the second resonant frequency of 2kb = 3.1, where
the extremum of the added mass appears.
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Figure 3. Analytical results of hydrodynamic coefficients of the moonpool under sway motion (by
Zhou’s program): (a) added mass; (b) damping coefficient.

In the code provided by Dr. Zhou, ω is given first, ∆ω is taken as 0.1, and the wave
number k is then obtained through iteration of the dispersion equation. The dispersion
equation is expressed as follows:

ω2 = gk tanh(kh) (5)

where g is the gravitational acceleration. Furthermore, according to Equations (20)–(24)
by Zhou et al. (2013) [6], the eigenvalues, αn, βn, and γn correspond to three different
water depths, h, h1, and h2, respectively, and the subsequent solving is then carried out.
Table 1 shows the calculated frequency, wave number, and increments of the wave number
according to the method of Zhou. It can be observed from Table 1 that, with an increase in
ω, the step size ∆k gradually increases. Additionally, from a numerical point of view, ∆k
was greater than ∆ω. Although the given ω has an equal difference increment, k obtained
by iteration does not change uniformly in an equal difference, and ∆k is greater than ∆ω.
This may lead to an inaccurate capture of the resonant frequency and thus, the variation in
the damping coefficient near the resonant frequency is not captured.

Table 1. k and ∆k under different ω.

ω k ∆k

. . . . . . . . .
5.2 2.75637 0.10449
5.3 2.86340 0.10703
5.4 2.97248 0.10908
5.5 3.08359 0.11111
5.6 3.19674 0.11315
5.7 3.31193 0.11519
5.8 3.42915 0.11722
5.9 3.54842 0.11927
6.0 3.66972 0.12130
6.1 3.79307 0.12335
6.2 3.91845 0.12538

3. Solution Improvement and Comparative Analysis
3.1. Improvement of Analytical Solution

We adjust part of the analytical solution code of the hydrodynamic coefficients under
sway motion, which is related to the solution of the wave number. The relevant parameters
are the same as those described in Section 2. The program is changed to specify k first, then
obtain ω using Equation (5), and then αn, βn and γn. The step size ∆k was set to 0.1, and
the comparisons between the adjusted new analytical results and original analytical results
are shown in Figure 4. It can be observed from Figure 4a that, after the adjustment, the
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value of the positive extremum of the added mass increases significantly near the second
resonant frequency of 2kb = 3.1 compared with the original one. As shown in Figure 4b,
however, the damping coefficients are almost the same.
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The ∆k near the second resonant frequency (2kb = 3.14~3.15) is more carefully adjusted,
and ∆k is set as 0.01, 0.001, and 0.0001, respectively. The hydrodynamic coefficients for the
different ∆k values are shown in Figure 5. As shown in Figure 5a, when ∆k = 0.01, the values
of the two extrema of the added mass, which are 380.040 and−89.876 at 2kb = 3.14 and 3.15,
respectively, vary greatly compared with ∆k=0.1. It can be observed from Figure 5b that,
when ∆k = 0.01, the damping coefficients, which are 0.00265 and 0.530 at 2kb = 3.14 and
3.15, respectively, no longer fluctuate weakly near the second resonant frequency; instead,
it shows an obvious numerical change. As shown in Figure 5c, when ∆k = 0.001, the two
extrema of the added mass, especially the negative extreme values, tend to infinity, which
are 787.393 and −10,580.496 at 2kb = 3.141 and 3.142, respectively. It can be observed from
Figure 5d that, when ∆k = 0.001, the minimum of the damping coefficient at 2kb = 3.140
is 0.00265, and the maximum tends to infinity and appears at 2kb = 3.142 with a value
of 251.760. As shown in Figure 5e, when ∆k = 0.0001, the two extrema of the added
mass, which are 23,681.718 and −10,580.496 at 2kb = 3.1419 and 3.1420, respectively, tend to
infinity. As shown in Figure 5f, when ∆k = 0.0001, the damping coefficient has a minimum of
0.00014 at 2kb = 3.1402 and a maximum of 1129.184 at 2kb = 3.1419. Regardless of the value
of ∆k, the damping coefficient is always greater than 0, which is in line with the physical
reality. As mentioned above, if ∆k is more accurate, then the second resonant frequency is
captured more accurately. The damping coefficient also appears as an extremum near the
second resonant frequency, and the value approaches infinity.

To observe the variation of the hydrodynamic coefficients more carefully with an
accuracy of ∆k, the hydrodynamic coefficients for different values of ∆k are amplified
in local details. Figure 6 shows the comparisons among the details of the added mass
and damping coefficient near the second resonant frequency for different sizes of ∆k. As
shown in Figure 6, when ∆k = 0.0001, near the second resonant frequency, the curves of the
added mass and damping coefficient change more smoothly, and the resonant frequency is
captured more accurately.

Figure 7 shows the comparisons among the details of the added mass and damping
coefficient in finite numerical intervals for different sizes of ∆k. It can be observed from
Figure 7 that, regardless of ∆k, the results of the added mass and damping coefficient are
almost identical in finite numerical intervals.
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shown in Figure 6, when Δ𝑘 = 0.0001, near the second resonant frequency, the curves of 

the added mass and damping coefficient change more smoothly, and the resonant fre-

quency is captured more accurately. 

Figure 5. Comparisons of hydrodynamic coefficients with different increments of ∆k: (a) added
mass (∆k = 0.1, ∆k = 0.01); (b) damping coefficient (∆k = 0.1, ∆k = 0.01); (c) added mass
(∆k = 0.01, ∆k = 0.001); (d) damping coefficient (∆k = 0.01, ∆k = 0.001); (e) added mass
(∆k = 0.001, ∆k = 0.0001); (f) damping coefficient (∆k = 0.001, ∆k = 0.0001).

The analytical solutions discussed in this paper are based on the assumptions of an
ideal fluid and a small motion amplitude. After the improvement of the solution process,
from the above analyses and comparisons among the hydrodynamic coefficient results, it
can be deduced that, although the values of the extrema of the two hydrodynamic coeffi-
cients at the second resonant frequency are different, their tendency to infinity is obvious.
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The point of resonance in the analytical solution discussed in this study is a singularity.
The point of resonance was profound; however, it is regarded as an infinitesimal “point” in
geometry, it does not exist, and all physical laws fail at that point. Therefore, the specific
values of the hydrodynamic coefficients at the resonance point are meaningless. Moreover,
infinity does not correspond to the physical reality; thus, it is not necessary to examine the
specific values of the hydrodynamic coefficients in depth studies. However, the sudden
change in hydrodynamic coefficients near the second resonant frequency is very important
and cannot be neglected.

3.2. Comparison to Far-Field Results

The analytical solution discussed above is based on the near-field method, that is,
the fluid force is calculated by integrating the pressure on the moonpool along the wet-
ted body surface. The damping coefficient can also be calculated based on the wave
amplitudes at infinity, which is referred to as the far-field method. The damping coeffi-
cient of a two-dimensional rectangular moonpool with the far-field method derived by
Zhou et al. (2013) [6] is expressed as

λpq

ω
=

gCg

(
A−q A−

∗
q + A+

q A+∗
q

)
2h1b1+δ3p+δ3q ω3

(6)
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where

Cg =
g

2ω
tanh kh

(
1 +

2kh
sinh2kh

)
(7)

is the group velocity, A+
q and A−q are complex wave amplitudes at x → +∞ and x → −∞ ,

respectively, and the superscript ∗ indicates a complex conjugate.
Figure 8 shows the comparisons between the damping coefficients of the moonpool

under sway motion obtained using the two methods. This indicates that the results obtained
with the two methods are in good agreement, which further proves that the improved
analytical results are reasonable and correct.
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3.3. Comparisons of Results with Different Openings

The hydrodynamic coefficients of the moonpool under sway motion with different
a/b values are calculated to verify whether the improved analytical solution is applicable
to the moonpool with different opening ratios. Assuming a/b as 0.2, 0.4, 0.6, and 0.8,
respectively, the other parameters are the same as those in previous section. Figure 9 shows
the comparisons among the hydrodynamic coefficients of the moonpool with different a/b
values in finite numerical intervals. It can be observed that, under sway motion, the opening
has little effect on the hydrodynamic coefficients, and the hydrodynamic coefficients have
slight differences only at the first peak. For different a/b values, both the added mass and
damping coefficients tend to be infinite near the second resonant frequency. Therefore, it
is not accidental that the value of the damping coefficient tends to infinity at the resonant
frequency; instead, it is universal.
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4. Conclusions

It is of great physical significance to discuss sudden changes in the hydrodynamic
coefficients at the resonant frequency when a two-dimensional rectangular moonpool
oscillates. In this study, the analytical solution of the hydrodynamic coefficients of a
two-dimensional rectangular moonpool under sway motion based on the linear potential
flow theory is improved. In the improved analytical solution, the phenomenon that the
damping coefficient also appears as an extremum near the second resonant frequency
was found. The variation characteristics of the hydrodynamic coefficients at the second
resonant frequency of the moonpool, namely, the phenomenon in which the values of the
added mass and damping coefficient tend to infinity at the second resonant frequency, is
studied in detail. The improved analytical solution is verified by comparing the results of
the near- and far-field methods and comparing the results under different opening ratios.
In addition, we also simulated the forced oscillation motion of the moonpool using Fluent
software, and the numerical results of the hydrodynamic coefficients are compared with
the improved analytical solutions. Although there is no need to list the relevant calculation
results, and the calculation method is also a commonly used method, the accuracy of the
improved analytical solutions can be further illustrated from the perspective of numerical
solutions. All the results show that the added mass and damping coefficient have extrema
corresponding to each other at the resonant frequencies when the moonpool is under sway
motion. The phenomenon in which the extremum appears cannot be neglected, although
the detailed values of the extrema are insignificant for discussion.

Author Contributions: Conceptualization and methodology, Y.Z. and H.Z.; validation and formal
analysis, Y.W., Z.Z. and H.Z.; writing—original draft preparation, Y.W., Z.Z. and H.Z.; writing—review
and editing, Z.Z. and Yu Zhang; funding acquisition, Y.Z. and H.Z.. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (NSFC) (Grant
Nos. 52201321 and 51679132). This work was also supported by Shanghai Frontiers Science Center of
“Full Penetration” Far-Reaching Offshore Ocean Energy and Power.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This paper was completed after a thorough discussion with Wu G. X. His serious
attitude toward scientific research was impressive. We express our sincere gratitude to Wu for taking
time out of his busy schedule to answer the authors’ questions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fukuda, K. Behavior of Water in Vertical Well with Bottom Opening of Ship, and its Effects on Ship-Motion. J. Soc. Nav. Archit.

Jpn. 1977, 1977, 107–122. [CrossRef]
2. Molin, B. On the piston and sloshing modes in moonpools. J. Fluid Mech. 2001, 430, 27–50. [CrossRef]
3. Faltinsen, O.M. A Numerical Nonlinear Method of Sloshing in Tanks with Two-Dimensional Flow. J. Ship Res. 1978, 22, 193–202.

[CrossRef]
4. Miao, G.P.; Ishida, H.; Saitoh, T. Influence of gaps between multiple floating bodies on wave forces. China Ocean. Eng. 2000, 4,

407–422.
5. Faltinsen, O.M.; Rognebakke, O.F.; Timokha, A.N. Two-dimensional resonant piston-like sloshing in a moonpool. J. Fluid Mech.

2007, 575, 359–397. [CrossRef]
6. Zhou, H.W.; Wu, G.X.; Zhang, H.S. Wave radiation and diffraction by a two-dimensional floating rectangular body with an

opening in its bottom. J. Eng. Math. 2013, 83, 1–22. [CrossRef]
7. Zhang, H.-S.; Zhou, H.-W. Wave radiation and diffraction by a two-dimensional floating body with an opening near a side wall.

China Ocean. Eng. 2013, 27, 437–450. [CrossRef]
8. Zhu, R.C.; Guo, H.Q.; Miao, G.P. A computational method for evaluation of added mass and damping of ship based on CFD

theory. J. Shanghai Jiaotong Univ. (Chin.) 2009, 43, 198–203.

http://doi.org/10.2534/jjasnaoe1968.1977.107
http://doi.org/10.1017/S0022112000002871
http://doi.org/10.5957/jsr.1978.22.3.193
http://doi.org/10.1017/S002211200600440X
http://doi.org/10.1007/s10665-012-9609-2
http://doi.org/10.1007/s13344-013-0038-4


Sustainability 2022, 14, 15952 10 of 10

9. Heo, J.-K.; Park, J.-C.; Koo, W.-C.; Kim, M.-H. Influences of Vorticity to Vertical Motion of Two-Dimensional Moonpool under
Forced Heave Motion. Math. Probl. Eng. 2014, 2014, 424927. [CrossRef]

10. Huang, H.Y.; Xu, X.; Zhang, X.S. Study on three-dimensional moonpool resonance of fixed and free-floating vessels. Chin. J.
Hydrodyn. (Chin.) 2019, 34, 482–488.

11. Zhang, X.; Huang, H.; Song, X. On natural frequencies and modal shapes in two-dimensional asymmetric and symmetric
moonpools in finite water depth. Appl. Ocean. Res. 2019, 82, 117–129. [CrossRef]

http://doi.org/10.1155/2014/424927
http://doi.org/10.1016/j.apor.2018.08.014

	Introduction 
	Analysis of the Original Analytical Solution 
	Solution Improvement and Comparative Analysis 
	Improvement of Analytical Solution 
	Comparison to Far-Field Results 
	Comparisons of Results with Different Openings 

	Conclusions 
	References

