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Abstract: The online battery management system (BMS) is very critical for the safe and reliable oper-
ation of electric vehicles (EVs) and renewable energy storage applications. The primary responsibility
of BMS is data assembly, state monitoring, state management, state safety, charging control, thermal
management, and information management. The algorithm and control development for smooth and
cost-effective functioning of online BMS is challenging research. The complexity, stability, cost, robust-
ness, computational cost, and accuracy of BMS for Li-ion batteries (LiBs) can be enhanced through
the development of algorithms. The model-based and non-model-based data-driven methods are the
most suitable for developing algorithms and control for online BMS than other methods present in
the literatures. The performance analysis of algorithms under different current, thermal, and load
conditions have been investigated. The objective of this review is to advance the experimental design
and control for online BMS. The comprehensive overview of present techniques, core issues, technical
challenges, emerging trends, and future research opportunities for next-generation BMS is covered in
this paper with experimental and simulation analysis.

Keywords: lithium-ion battery; battery management system (BMS); electrical vehicle (EV);
battery charging; battery modeling; states estimation and fault diagnosis

1. Introduction

Electric vehicles have become more prominent in cutting carbon emissions by at least
30–50%. LiBs are primarily used as an energy storage system for plug-in hybrid electric
vehicles (PHEVs), hybrid electric vehicles (HEVs), and all-electric vehicles (EVs). The cost
of a battery is a critical distinguishing factor between conventional vehicles and electric
vehicles and needs to fall below 150 USD per kWh to make electric vehicles cost-effective [1].
LiBs have already captured 70% of the EV market (HEVs, PHEVs, and BEVs) due to their
promising features such as great power, high energy density, light weight, fast charge
capability, small self-discharge, and far-reaching life cycle compared to other batteries [2].
EVs experience high current rates, varying charge/discharge as they accelerate or brake,
deep discharge conditions, low and high operating temperatures, and different working
conditions [3]. Automotive battery management systems (BMSs) require estimating the
remaining energy for range calculation, limiting power for acceleration, regenerative
braking for cost-effectiveness, and calculating cycle life for safety. It is challenging as the
vehicle works in real time with changing road conditions, driving styles, temperature, and
electromagnetic interference, which can make the battery system complex, time-varying,
and nonlinear [4,5]. The essential features of the BMS comprise data collection, state
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monitoring, cell balancing, thermal management, safety, charging control, and information
management. The challenges associated with online BMS systems are given below.

(1) The challenge for the state-of-charge (SOC) estimation is the great amount of current in
EVs, leading to complex dynamics that are difficult to capture using a battery model.

(2) It is very difficult to predict battery aging or state of health (SOH) online by measuring
current, voltage, and temperature. No sensor has been developed yet to predict online
capacity and internal resistance.

(3) The battery state of power (SOP) and state of energy (SOE) also depend on aging
(SOH) and SOC. Therefore open-loop experimental methods such as ampere-hour
counting (AHC), and open-circuit voltage (OCV) are not suitable for online state
monitoring of BMS. The development of an algorithm to work on the relationship of
battery state with the combined estimation of all these measurements is challenging
for online BMS.

(4) The state of safety (SOS) depends on multi-fault diagnosis, which is still challenging
to achieve online.

(5) Fast and optimized charging is crucial for EVs. It is challenging to optimize charging
methods to prolong cycle life and enhance safety, speed up charging time, and increase
charging performance.

A comprehensive literature review was carried out on BMSs, including Li-ion charging
techniques, battery modeling, states estimation, cell balancing, and fault diagnosis [6–14].
This paper’s contribution is to develop the idea for an online BMS, which is essential for the
safety, cost, and reliable operation of an automotive vehicle. The algorithm development
of model-based and non-model-based (data-driven methods) is best for online BMSs. A
comprehensive review with experimental and simulation studies for online BMSs in electric
vehicle applications is performed from a technical perspective in the present paper. The
main objectives of this paper are as follows:

(1) Model-based and non-model-based (data-driven methods) algorithm development
for online state monitoring for complex, nonlinear, and time-varying battery systems.
SOC, SOE, SOH, and SOP estimation is the prime objective of the BMS.

(2) Algorithm development for battery state of safety (SOS), control, and fault diagnosis,
which is essential for BMS condition monitoring.

(3) Algorithm development for charging control, which is crucial as the charging process
of the LiBs directly impacts the SOH and SOS of LIBs. Model- and non-model-based
charging optimization strategies are key to the safety and longevity of LiBs.

Each section of the present paper provides an in-depth observation, analysis, issues,
challenges, and future directions. Section 2 presents charging algorithms for enhancing
battery life and safety. In Section 3, the electrochemical model (ECM), analytical model
(AM), equivalent circuit model (ECM), thermal model (TM), electro-thermal model,
hysteresis model, fractional-order model, and integer-order model are discussed [15–17].
Section 4 presents the algorithm development for online parameter and state estimation.
The model-based algorithm development for online state estimation of LiBs is discussed
in depth. The Kalman filter algorithm and its variants are discussed for model-based
online parameter and state estimations in Section 5. In Section 6, data-driven-based
online battery state monitoring is presented [18]. The unique contribution of this
section is to develop emerging deep learning algorithms for online state forecasting for
EVs. Section 7 explores algorithm development for model- and non-model-based fault
diagnosis and control for BMSs. Section 8 concludes this review. These elements were
unexplored in past literature reviews.

The Panasonic NCR18650B, A123 LFP 26650, Sony Murata 18650 VTC6, and A123 LFP 18650
cells were chosen for battery testing at different temperatures. The BTS-4000 battery cycler and
temperature chamber were used for testing. Simulations were performed with MATLAB 2020,
Jupyter notebook, and python framework.
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2. Lithium-Ion Charging Strategy for Electric Vehicles

The charging time, loss, and control are significant concerns in BMS for E.V. applica-
tions. The charging and discharging of Li-ion batteries are very important for obtaining
battery characteristics [19]. The various vital factors on a cell level, module level, and sys-
tem level affect the performance of the vehicle’s charging level. The optimal charging profile
to control charging loss, charging time, battery aging, and balance with charging speed,
charging polarization, and temperature rise is challenging research in this area. The various
charging algorithms proposed in the literature that are most popular are CC-CV, CP-CV,
MCC-CV, VCP, boost, and pulse charging. The current-controlled and voltage-controlled
charging methods are very popular for charging the battery with constant current and volt-
age. If we apply a small current, then efficiency is increased, and battery temperature and
voltage do not increase sharply. A higher current takes less time to charge, but efficiency
is compromised, and the temperature and the voltage can rise. Overvoltage can avoid
the constant voltage method but a very high current, in the beginning, causes a reduction
in battery life. Therefore, a hybrid approach came into existence called CC–CV (constant
current–constant voltage), which integrates the two control methods to improve charging
efficiency, battery life, and safety [6,20].

The model- and non-model-based optical charging profile has been discussed in
various studies. In [21], the moth-flame optimization (MFO) algorithm was used to propose
a fractional model-based multistage charging strategy that divides the charging current
into various phases. The charging time, temperature rise, and energy loss are chosen as
optimization goals in consideration of the safety and efficiency of the charging procedure.
The MFO algorithm, which benefits from a straightforward structure and great local search
capability, is used to enhance charging performance. In [22], the fast-charging Bayesian
optimization approach suggested explicitly contained limitations that prevent degradation.
The suggested BO-based charging methods do not need first-principles models and are
sample-efficient. Different charging algorithms and key features are described in Table 1.

Table 1. Key features of charging algorithms.

Charging Algorithm Characteristics of Algorithm Variants of the Charging
Algorithm Comparison

Simple charging method

This charging protocol
includes controlled constant

current and voltage to avoid a
sharp increase in the battery’s

temperature and voltage.
Trickle charging is a

low-current charging method
when the battery is in a deep
discharge state. It shifts to CC
mode until voltage reaches a

threshold value.

Constant current charging
(CC)

Trickle charging
Standard CC charging

Constant voltage
charging (CV)

Simple, cost-effective, but not
currently popular compared
to other charging protocols.

Constant current–constant
voltage (CC–CV) [23]

CC is applied to charge the
battery until the predefined
voltage level after switching

to the CV mode until the
charge current reaches a

minimum threshold.

Double-loop control charger
(DL-CC/CV) [24]

Boost charger
(BC-CC/CV) [25]

Fuzzy logic
(FL-CC/CV) [26]
Gray-predicted

(GP-CC/CV)
Phased locked loop

(PLL-CC/CV)

Most popular, simple, and
inexpensive regarding other

charging protocols.



Sustainability 2022, 14, 15912 4 of 31

Table 1. Cont.

Charging Algorithm Characteristics of Algorithm Variants of the Charging
Algorithm Comparison

Duty-varied voltage pulse
charger (DVVPC) [27]

The duty-varied voltage pulse
charger can notice the

appropriate pulse-charge duty
and supply the battery’s
required pulse charge.

DFVPCS (duty-fixed voltage
pulse charger)

The charging speed is
improved compared

to CC–CV.

Multistage constant current
(MSCC) [24,28,29]

This protocol comprises
variable current magnitude
with two or more constant

current stages where shifting
conditions are based on upper
cutoff voltage or SOC interval.

Optimal five-stage charging
protocol using consecutive

orthogonal arrays [25].
Optimal multistage charging

pattern using PSO-based
fuzzy controlled [26].

Optimal charging pattern for
MSCC [28].

MSCC charging pattern is
based on the integration of the

Taguchi method and SOC
estimation [30].

The ant colony algorithm is
been used for implementing

the MSCC-based optimal
charging method [31].

MSSC protocol can decrease
the charging time and

enhance the
charging efficiency.

Lower charging time and
capacity fade compared

to CC–CV.

Boost charging [32]

This protocol is used for fast
charging in which a fully
discharged cell is charged

with a very high current for a
short period

without degradation.

CVCCCV

It is a rapid charging protocol
that can charge one-third of
battery-rated capacity in 5

min compared to
other protocols [32].

Pulse charging [33,34]
Noncontinuous CC and CV

can be defined
as pulse charging.

Constant current + pulse
charging (CCPC) [33]
Constant-current and

constant-frequency pulse
charging (CCCF-PC)
Constant-current and

variable-frequency pulse
charging (CCVF-PC)
Variable-current and

constant-frequency pulse
charging (VCCF-PC)
Variable-frequency

variable-current
pulse charging

Pulse charge with constant
voltage (CVPC) [27]

Cost-effective and
straightforward with

respect to
other charging schemes.
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Table 1. Cont.

Charging Algorithm Characteristics of Algorithm Variants of the Charging
Algorithm Comparison

Variable current profile [35]
Noncontinuous CC and CV

can be defined as
pulse charging.

Constant current + pulse
charging (CCPC) [33]
Constant-current and

constant-frequency pulse
charging (CCCF-PC)
Constant-current and

variable-frequency pulse
charging (CCVF-PC)
Variable-current and

constant-frequency pulse
charging (VCCF-PC)
Variable-frequency

variable-current
pulse charging

Pulse charge with constant
voltage (CVPC) [27]

Slower aging effect
compared to CC–CV [36].

Sinusoidal ripple current [37]

This charging protocol
superimposes the

low-frequency sinusoidal
current on a DC current.

SRC + CP
SRC + CT

The cycle life, temperature
rising, charging time, and

charging efficiency are better
than CC–CV [37].

Constant current–constant
voltage with negative pulse

(CC–CV-NP) [38,39]

This charging protocol
improves the low-frequency

sinusoidal current at the time
of CC to delay the

polarization that enhances the
battery charging capacity and

slows down the aging.

MCC–CVNP

CC–CVNP charging protocol
with small amplitude and a

minimum number of negative
pulses is more efficient than
other protocols in lowering
the diffusion time constant

and concentration
polarization resistance. This

property increases the
charging efficiency and

longevity [38].

Constant-power–
constant-voltage
(CP–CV) [24,40]

In the CP–CV charging
protocol, the current starts at a

high rate and steadily
decreases with the charging
time. In the meantime, a CP

co-relation exists between the
current and voltage. CV
charging is followed by
voltage reached to its

maximum cutoff until the
current decreases to a

predefined value.

CP

At a low charging rate,
capacity fade is in the order of

CP > MCC > CC.
At a high charging rate,

capacity fade is in order of
MCC > CC > CP [24].

Constant temperature–constant
voltage (CT–CV) [41,42]

The optimal CT–CV charging
protocol controls the charging

current magnitude
corresponding to the

temperature of the cell.
It is a closed-loop technique
that modulates the charging

current concerning the
battery’s temperature.

CT + SRC
CT + PC

CT–CV is a fast-charging and
low-temperature rise method

compared to CC–CV.



Sustainability 2022, 14, 15912 6 of 31

2.1. Simulation Comparison between CC–CV and CP–CV Charging Profile for EVs

As shown in Figure 1, SOC increases over time linearly in the constant-current portion
during a test, while SOC still increases but not as quickly after switching to the constant-
voltage portion. Therefore, the graph’s slope possesses a nonconstant value as SOC steadily
proceeds to desired final values. The above result is also manifested as one reason that
the system charges rapidly until 80–90%, before taking a long time to reach 100% SOC or
exceeding the manufacture voltage of the cell. The first interval current remains constant
in the graph, demonstrating the relationship between power and time. However, the
magnitude of power increases with an increase in voltage. The magnitude of power
increases with an increase in voltage. In the second interval, the current magnitude
continuously decreases; hence, the power magnitude decreases over time. The sign value
increases, but the magnitude decreases.
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2.2. Issues, Challenges, and Future Directions

Several charging algorithms and controls were discussed in the present paper, but
there is room for improvement in this area, as discussed below.

(1) The waveform-based charging techniques include CC–CV, SCV, and the pulse
charging usage open-loop technique based on previous information on cell parameters.
MSCC charging protocols implement optimization algorithms to overcome this limita-
tion. Sometimes these optimized algorithms also take numerous charge/discharge cycles
to converge at the expected profile. There is also the possibility of temperature and pa-
rameter variation before the optimization algorithm resolves. There is a requirement for
optimization algorithms that can close the loop in shorter time frames using cell parame-
ters/temperatures to regulate the charging current magnitude.

(2) The scope of improving the smooth optimal charging current profile is to reduce
noise in temperature, current, and voltage sensors.

(3) experimental optimization should be adopted to save time and cost of BMSs. Ma-
chine Learning can be utilized for closed-loop optimization of charging protocols for LiBs.

3. Li-Ion Battery Modeling

There are different types of modeling techniques defined in the literature for EV
application, in which electrochemical models (ECM), analytical models (AM), data-driven
models (DD), electrical equivalent circuit models (EECM) or equivalent circuit (EC) models,
thermal models (TM), and electro-thermal models are usually discussed (Figure 2).
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Electrochemical models (ECMs) develop the scientific understanding to enhance and
optimize the physical design (electrodes and electrolyte) features of Li-ion cells, describe the
power generation tools, and perform a multiscale approach to understand the macroscopic
(battery voltage and current, discharge/charge, capacity, power, and SOC) and micro-
scopic (SOH, aging, and durability) physiochemistry [44,45]. Electrochemical modeling
is not accessible for dynamic and system-level modeling as they include the system of
coupled time-variant nonlinear partial differential equations with a significant number
of unknown parameters, which is time-consuming, complex, and computationally and
resource-intensive as battery-specific information is also needed [46]. Simple circuit-based
models (EC) are suitable for vehicle applications [47,48]. The modeling is the electrical
representation of battery behavior under different driving profiles or loads. EC represents
the terminal voltage reaction under distinct load types or driving profiles for dynamic
and nondynamic (resistive) methods. The RC circuit defines the battery’s dynamics. The
equivalent circuit model simulates the dynamic characteristics and estimates SOC, SOH,
available power, and energy using resistance, capacitance, a voltage source, and another
circuit component to form a circuit.

The Li-ion battery’s performance under varying drive cycle conditions depends on the
different operating temperatures and charge/discharge rates. Battery performance highly
depends on thermal conditions such as low temperature, high temperature, thermal run-
away, abuse based on overcharging, over-discharging, high C-rates, and external heating.
The key objective of thermal modeling (TM) and electro-thermal modeling (ETM) is to avoid
exceeding the heat dissipation rate to avoid the thermal runaway of a cell. Determining the
effect of battery parameters on temperature dynamics is also a reason for thermal modeling.
We need to model the heat generation rate and dissipation in a cell to perform actual ther-
mal management in battery packs. There are multiple types of thermal models for original
applications available in the literature, such as experimental, lumped parameter, multiscale,
multidimensional, and multi-physics models including thermal–electrochemical coupled,
SPM, pseudo, 2D, and 3D models. Zhuo Yang [49] proposed the electrical and thermal
behavior of the cell under different drive cycles. These electrothermal model parameters
are dependent on temperature and current rate. Tedjani et al. [50] proposed a dynamic
battery model focused on voltage, temperature, and the aging phenomenon and offered
the dynamic relationship among battery electric, thermal, and aging behavior to test the
exactness of range. Tarun Huria proposed a high-fidelity electric model with the thermal
dependence of Li-ion batteries for characterization and simulation [51]. This model can
express nonlinear electrochemical phenomena and is suitable for system-level modeling
(ex-power-train electrification).

3.1. Electrical Equivalent Circuit Model (EECM) or Equivalent Circuit Model (ECM) of
Li-Ion Batteries

The EECM modeling of Li-ion cells or packs is system-level modeling mainly developed
for applications such as EVs. The battery modeling is crucial in estimating battery parameters,
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including OCV, internal resistance, RC networks, terminal voltage, polarization voltage, and
states, including SOC, SOE, SOH, SOP, SOF, and SOS [52,53]. The equivalent circuit model
(ECM) is a tradeoff between complexity and accuracy. ECM is easily well-suited to the circuits
of BMSs and easily embedded into BMSs for EVs. Table 2 presents the battery models used
extensively in the literature. The accuracy of the ECM mainly depends on its states, parameter,
current rate, temperature, and environmental or operating conditions. It also reflects the
nonlinearity and hysteresis effect under a high and dynamic current rate for EVs [54].

Table 2. Comparison of battery models and discretization equation for EV applications [55,56].

Models Equation and Description Parameters/Optimization Applications

1RC

Vk = OCV(sock)− IkR0 + u1,k
u1,k = exp(−∆t/τ1)u1,k−1
+ R1[1 − exp(−∆t/τ1)]Ik

Vk = terminal voltage
OCV = open circuit voltage,

sock = state of charge,
R0 = internal resistance, Ik = current

u1,k = voltage of RC network,
τ1 = R1C1 = time constant of RC network

4/FMIN This model is the perfect selection
for NMC chemistry.

1RCH Vk = OCV(sock)− IkR0 + u1,k + uh,k
uh,k = voltage of hysteresis network FMIN

1RCH-based online SOC, SOH
estimation, which is applicable in

EVs and PHEVs.
Further enhancement can be

achieved with SOP
and SOF analysis.

Thermal and aging effects can
also be integrated with this model.

This model is the best fit
for LFP cells.

2RC

Vk = OCV(sock) + IkR0 + u1,k + u2,k
u2,k = exp(−∆t/τ2)u2,k−1
+ R2[1 − exp(−∆t/τ2)]Ik

u2,k = voltage of 2RC network,
τ2 = R2C2 = time constant of 2RC

6/PSO

The 2RC model demonstrates a
balance between accuracy and

complexity, making it the
preferred choice for

EV applications.

2RCH Vk = OCV(sock) + IkR0 + u2,k + uh,k 8/PSO

The 2RCH model does not
advance its accuracy but reduces

its reliability in the case of
parameter estimation; thus, it is

not a correct choice
for EV application.

3RC

Vk = OCV(sock) + IkR0 + u1,k + u2,k + u3,k
u3,k = exp(−∆t/τ3)u3,k−1
+ R3[1 − exp(−∆t/τ3)]Ik

u3,k = voltage of 3RC network,
τ3 = R3C3 = time constant of 3RC

8/FA
Not appropriate for online

identification of parameters
and states

3RCH Vk = OCV(sock) + IkR0
+ u1,k + u2,k + u3,k + uh,k

10/FA
Not appropriate for online

identification of parameters
and states.

4RC

Vk = OCV(sock) + IkR0
+ u1,k + u2,k + u3,k + u4,k
u4,k = exp(−∆t/τ4)u4,k−1
+ R4[1 − exp(−∆t/τ4)]Ik

u4,k = voltage of 4RC network,
τ4 = R4C4 = time constant of 4RC

10/FA Not suitable for online BMS
applications for EVs.

4RCH Vk = OCV(sock) + IkR0
+ u1,k + u2,k + u3,k + µ4,k + uh,k

12/FA Not suitable for online BMS
applications for EVs.
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In Table 2, the comparison of battery models is discussed with suitability for
EV applications. A more significant number of RC networks can yield all three
characteristics (ohmic resistance, diffusion voltage, and charge transfer). However,
the complexity and computation burden also increase with an increasing number of
parameters. More RC networks can produce the problem of overfitting and raise the
exertions for system standardization.

3.2. Fractional-Order Battery Model

Fractional calculus was introduced for Li-ion applications to address the problem of
identifying ohmic resistance, charge transfer, and diffusion characteristics [57]. An infinite-
dimensional model was established by interchanging the ideal capacitor in the 1RC model
with a constituent element. The Oustaloup recursive approximation in which lower- and
upper-frequency limits impact poles and zeros of the model’s transfer function has been
approved to simplify numerical calculations that affect model accuracy. This type of model
can replicate Li-ion battery characteristics better than the integer model by using data from
the time and frequency domain with fractional order (additional degree of freedom) [58,59].
The fractional-order model (FOM), with a constant phase element (CPE), is the same as
the integrated order model with a 5RC element. Adding the Warburg element in series
with a charge-transfer resistor leads to accomplishing greater accuracy of the FOM [57,59].
In [60], an SOC estimation approach for lithium-ion batteries based on a temperature-based
fractional first-order RC circuit model and dual fractional-order Kalman filter (DFOKF)
was presented in order to investigate the temperature requirement of battery modeling
and SOC estimation. In [61], to improve the accuracy of the battery SOC estimation, a
multiscale fractional-order dual unscented Kalman filter was suggested. It was proposed to
use a fractional-order model (FOM) based on the theory of fractional calculus to represent
the properties of lithium-ion batteries. The adaptive genetic algorithm was used to identify
its parameters, see Figure 3.
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3.3. Issues, Challenges, and Future Directions

1. An excellent battery model should predict battery dynamics in both time and fre-
quency areas in complete operating conditions. The ideal model for BMS should be
performed with modest parameter identification, less computation burden, and good
accuracy in different operating conditions. The existing model needs to be modified
with a better algorithm to make parameter and state identification secure and robust.

2. The main disadvantage of FOM is a computationally expansive procedure for employ-
ment in BMS, and an intelligent management algorithm is technically very challenging.
Future research in this direction needs to be carried out.
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4. Model-Based Online Parameter and State Estimation

Algorithm development for online state and parameter estimation is quite challenging
in terms of cost, complexity, accuracy, noise immunity, tuning effort, and convergence
property due to nonlinear dynamic behavior. The parameters of the battery include OCV,
impedance parameters (ohmic resistance and polarization resistance), capacity parameters,
time constant, and voltage polarization, which are slow-varying. On the other hand,
battery states such as SOC, SOP, SOE, and SOF are fast-varying, SOT is intermediate
varying, SOH is slow-varying, and SOS has adjustable fast-level states [63]. Estimation
of each parameter and state at a similar timescale increases the cost and complexity of
BMS. The frequent update of parameters would make the parameters fluctuate acutely
and impact the estimation of the battery’s state [64]. The key issues in online estimation of
states are discussed in Table 3.

Table 3. Key issues in online state estimation.

States Equations Challenges in Automotive
Applications Methods

State of charge (SOC) [65] SOCK+1 = SOCk −
(

ηi ·Ts
Qn

)
ik

The main challenge of SOC
estimation in automotive

applications is the great amount of
current produced in these types of
applications, leading to stimulating
complex dynamics that are difficult

to capture using EECM.

1. Direct calculation method
2. Coulomb-counting methods

3. OCV–SOC relationship
4. Model-based method
5. Data-driven method

State of health (SOH) [66] ηi =
Qdischarge(Ah)
Qcharge(Ah) × 100%

The major challenge related to the
online estimation of SOH by

measuring current, voltage, and
temperature measurement is the

complexity, which means it is very
hard to predict the

battery aging growth.
Currently, no sensor is available to

directly measure capacity and
internal resistance.

1. Experimental method
2. Model-based estimation

3. Incremental capacity analysis
(ICA) and differential voltage

analysis (DVA) method
4. Empirical models

5. Data-driven method
6. Waveform-based method.

State of power
(SOP) [7]

Pdis,k =
Vmin(VOC,k−Vmin)

R̂eq
,

Pch,k =
Vmax(Vmin−VOC,k)

R̂eq

The SOP prediction depends on
current, voltage, temperature, and

SOC, and these parameters are
still not optimized.

The SOP also depends on battery
aging, which is difficult

to predict online.

1. Characteristic map
(CM)-based method

2. Model-based method
3. Multiple constant
estimation approach

4. Data-driven approach

State of function (SOF) [53]
SOF ={

1, for Pch,k ≥ Pch
req and Pdis,k ≥ Pdis

req
0 for Pch,k < Pch

req and Pdis,k < Pdis
req

The main challenge in SOF
estimation is the deficiency of an

accurate model to relate SOC, SOH,
SOF, and temperature.

1. Model-based method
2. Data-driven approach

State of energy (SOE) [67,68] SOE(t) = SOE(t0) +

∫ t
t0

P(τ)dτ

EN

The power integration is used for
estimating SOE, which enhances the

computational complexity.
In another way, its open-loop nature

results in accumulated errors
leading to measurement flaws,
uncertain noise, and restricted

sensor resolution.

1. Direct estimate
2. Power integration approach

3. Characteristic
mapping approach

4. Adaptive
algorithm estimation

5. Machine learning method

State of temperature
(SOT) [69]

Cc
dTc
dt =

.
Q + Ts−Tc

Rc

Cs
dTs
dt =

Tamp−Ts
Ru

− Ts−Tc
Rc.

Q = I(U − V) + I(T ∂U
∂T )

Online estimation is quite difficult
due to computational efficiency.

1. Impedance–temperature
detection (ITD)-based method

2. Model-based method
3. Integrated method

State of safety (SOS) [70] Hr = Hs·Hl

Practical online estimation is not
possible for SOS.

The fidelity of SOS
is not guaranteed.

1. Qualitative estimation
2. Quantitative estimation
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4.1. Model-Based Online Parameter and State Estimation of Li-Ion Battery

The model-based online state estimation is classified as experimental techniques
that include direct measurement (AHC and OCV) and an adaptive approach (fil-
ters, observers, etc.). The model-based estimation is the most popular and robust
method for SOC and SOH estimation because of the continuous error-correction tool
via closed-loop feedback. In Figure 4 and Table 4, important adaptive approaches
are presented for model-based state estimation. A popular method for identifying
unknown parameters for linear ECM is the least square method, which lessens the
sum of squared residuals. The least-square filters include recursive least square (RLS)
and weight recursive least square (WRLS), as well as non-recursive least square, which
also supports iterative LS but is cost-effective in terms of memory saving and compu-
tation [71,72]. The Luenberger observer is a simple algorithm to determine a feedback
gain which modifies SOC by comparing the model voltage and measured voltage [73].
In [74], battery state-of-health monitoring and remaining usable life (RUL) prediction
were investigated using an enhanced particle filter (PF) technology. In [75], to achieve
a precise SoC estimate, a terminal sliding mode observer (TSMO) algorithm based
on a hysteresis resistor–capacitor (RC) equivalent circuit model was implemented.
The federal urban driving schedule (FUDS) test and the dynamic street test (DST) are
two dynamic battery tests used to assess the proposed approach. The outcomes of the
simulation demonstrate that the suggested strategy produced excellent estimation
accuracy and fast convergence. Changes in temperature and loading current have a
direct impact on how well SOC is estimated. The adaptive H-infinity filter (AHIF) can
fully accommodate the fractional-order model and operation condition differences
created by various temperatures and loading currents based on reliable parameter
identification [75]. The Kalman filter and its variants have been used frequently and
successfully for the estimation of various states due to their superiority compared to
other algorithms. The next section is focused on the Kalman filter and its variants for
different state estimations.
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Table 4. Algorithms development of model-based online parameters and states estimation.

Methods Strongpoint Drawback or
Error-Source Applications Predicted Error

Direct approach
(open loop)

AHC [76,77]

AHC requires the information
of current battery capacity
It is a simple current-based

estimation method
(charging/discharging) and

integrated over time
Low-power computation

Cheap sensor for
current measurement

Can be combined with
other techniques

Open-loop and
uncertain initial SOC

(cumulative effect)
Sensitive to the
current sensor

AHC collaboration
with adaptive
algorithms is a

satisfactory choice
for HEVs

Enhanced AHC
method for SOC and
SOH estimation and

estimation error
reduced to 1.08%

SOC estimation error
under 6.5% using
online EKF-AH

OCV [73,78]

Secure and capable method for
BEVs and HEVs

Relationship between
OCV-SOH determined by

observing charging curves at
the altered lifespan of Li-ion

battery to predict model
parameters and capacity fade to

evaluate SOH [57]
Simple and easy to implement,

look-up table-based method

Not suitable for
battery chemistry

having flat
OCV–SOC curves

Open loop
Quickly responds to
the voltage-sensor

precision

AHC corrected by
OCV and state
estimation is a

satisfactory choice for
BEVs and PHEVs

Integration of
(AHC + OCV + KF)
precisely estimates

SOC compared with
the OCV estimation

method with an
error of ±1.76%

Adaptive
approach

(nonlinear, -loop)

KF and its
variants
[79–81]

The KF requires models and
measurement noise

These algorithms help reduce
measurement noise effects and

predict the states
(SOC and SOH) that cannot be

estimated straightforwardly
It is closed-loop, accurate,

and error-bounds

The KF is dependent
upon model accuracy
It is a highly complex

and expansive
computation

Several variables
need to be controlled

All types of EVs
DEKF (±5%)

AEKF (MAE (0.02))
DEKF ((±0.01)

Luenberger
observer
[82,83]

Faster than KF and suitable for
all chemistry

Does not depend on model and
measurement noise

Neither noise is Gaussian

These observers have
high computational

complexity
They require a robust

controller.
PF acquires high
computational

complexity
(approximately

thousandfold) in
comparison with

EKF/SPKF

All types of EVs

1.25%

Lyapunov
observer [84]

Better accuracy, convergence
time, robustness, chattering,

and computational complexity
0.59%

H-infinity
[85,86]

Observer

These observers can enhance
the feature of the feedback gain,

leading to accurate
SOC estimation.

1%

Sliding-mode
observer
[87,88]

Upgrade tracking control for
stability and robustness ≤±3%

Particle filter
(PF) [89,90]

Robust and low
computation time ≤1%

Proportional
integral (PI)

[91]

More robust with
model uncertainty ≤2%

Least square
[92–94]

Takes less execution time and
lower algorithm complexity 0.05

4.2. Issues, Challenges, and Future Directions

(1) For more accurate and reliable model-based state estimation (SOC/SOH/SOP/SOF),
multi-model fusion technology has been newly proposed (Figure 5) to increase model adap-
tion with a different operating condition, environment, and cycle life.
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(2) To decrease the complexity and computational cost, multi-timescale, dual, joint,
and combined state and parameter estimation should be adopted.

5. Kalman Filter Algorithms for Model-Based Online Parameter and State Estimations

The most popular and precise, but expensive parameter estimation method is the
Kalman filter family (KF) of algorithms, which are recursive procedures to calculate appli-
cable feedback gain. KF is only applicable for linear models, leading to the development
of the extended Kalman filter (EKF) for nonlinear models to determine optimal filter gain
and noise, which still lacks robustness and is not the right choice for optimal feedback
gain due to the linearization of nonlinear LiBs [16]. Further improvement in this family
includes the sigma point Kalman filter (SPKF), central difference Kalman filter (CDKF),
and unscented Kalman filter (UKF), which are more robust and have better feedback but
have increased computation complexity due to mandatory matrix inversion that enhances
numerical instability primarily in the case of higher-dimensional model matrices [96–98].
The fractional-order KF also needs to be applied to a special battery model that includes
fractional-order elements [66].

Table 5 compares the Kalman filter and its variants for state estimation on the basis of
an extensive literature review.

Table 5. Comparison according to tradeoff between complexity, execution time, and cost.

A Variant of the
Kalman Filter

Estimation
Accuracy

Estimation Error
MAE (%)

Convergence
Speed Complexity State Estimation Computational

Cost

EKF [99] Strong robustness
against current noise 0.01

UKF convergence
rate is better in the
case of unknown

initial SOC

Medium SOC Medium

UKF [98] Superior to EKF in
terms of robustness 0.63

Less than EKF due
to state vector
sigma point

(2n + 1).

The implementation
is not simpler due

to more tuning
parameters, but
filter robustness

is high.

SOC 4 times higher
than EKF

AEKF [95]
Better accuracy and
higher robustness

than EKF
0.54

Improved due to
outstanding
OCV–SOC

relationship

High OCV and SOC High

AUKF [76] Better than UKF
and AEKF 0.038 Better than UKF

and AEKF High RUL High

CDKF [77]

Better in estimation
accuracy, filter

robustness, and
implementation

0.0096 More than EKF

It is simpler in
implementation
than UKF due to

only one
tuning parameter

SOC High

SR-CDKF [78]

Better accuracy than
EKF, UKF,
and CDKF
Robust to

current noise

2% Less than EKF
and UKF

Non-negative
covariance and

reduced
computational

complexity

SOC High
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Table 5. Cont.

A Variant of the
Kalman Filter

Estimation
Accuracy

Estimation Error
MAE (%)

Convergence
Speed Complexity State Estimation Computational

Cost

SR-UKF [77]

Strongly nonlinear
and more accurate

than EKF,
UKF, and CDKF

0.0022 More than EKF,
UKF, and CDKF High SOC High

Asymmetric
ASR-SPKF [96]

More accurate
than AEKF 2 Faster

convergence speed
Less complex than
AEKF and ASPKF SOC Less than ASPKF

SP-UKF Like true value 1 Moderate
convergence speed

More complex than
SP-UKF

SOC, SOH, SOP,
and SOE

Computationally
intensive

SP-CDKF
Superior

performance to EKF
and SP-UKF

1 Faster
convergence speed

Only one control
parameter rather
than three control

parameters of
SP-UKF

SOC and SOE Computationally
intensive

ACKF [79] Good robustness 4 Good
convergence capacity Better than CKF SOC Better than CKF

CKF [100] More robust than
EKF and UKF 1 Faster than UKF but

slower than EKF

CKF with the
Thevenin model is a

better option for
embedding in

microcontrollers

SOC 4 times higher
than EKF

ST-CKF [80] Robust 1.8 Moderate
convergence speed High SOC High

SR-CKF [81]
Higher accuracy

and robustness than
EKF, UKF, and CKF

0.00015
Higher convergence
rate than EKF, UKF,

and CKF
Less SOC More than EKF,

UKF, and CKF

BS (backward
smoothing)-
SRCKF [82]

Improved accuracy 0.55

Improved
convergence speed,

faster than UKF
and SRCKF

High than SRCKF
but less than UKF

SOC, SOH,
and RUL High

QKF,
Szego quadrature

(SQKF) [83]

High accuracy,
overcome the

impact of large
measurement and

initial error

0.892 Convergence to 4%
in 672 steps High SOC High

Square-root
transformed

cubature
quadrature

Kalman filter
(SR-TCQKF) [84]

More stable and
accurate than CQKF 1

Improved
convergence speed

due to square
root KF

Less, better
numerical stability SOC Less

5.1. Algorithm Comparison of Simulation Results of EKF and SPKF

Ref. [101] demonstrated the implementation of EKF on the ESC model (Figure 6a,b;
simulation data adopted from [101]). The author performed a test where EKF was executed
for dynamic profiles (UDDS drive cycles separated by rest intervals) from 100% SOC to
3.3% SOC. The RMS error calculated for SOC estimation in the second figure was 1.53%,
whereas the time error outside bounds was 35.9%. The test achieved 50 C with nonlinear
hysteresis in cell voltage. A better estimation was possible with an increase in temperature.
The SPKF was implemented using the same model and data, and the estimation RMS error
was 0.84% (Figure 7a,b). The estimation error was within the bound of the SPKF filter 10.5%
of the time. This result of SPKF with compared to EKF is remarkable.
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Figure 7. (a) SOC estimation using SPKF; (b) SOC estimation error using SPKF [101].

5.2. Performance Analysis of Kalman Filters

The comparison of various types of Kalman filters depends on different types of
validation methods and load profiles. The estimation behavior and accuracy of algorithms
are determined as a function of filter tuning parameters. The accuracy of the estimation
of SOC and other states mainly depends on the number of RC networks and temperature.
The correct parameter value of ECM is more critical than filter tuning parameters for
the accuracy of KF. In a comparison of EKF, SPKF, and CKF, it was concluded that EKF
had reduced accuracy but enhanced computational competence. Both CKF and SPKF
are accurate (within 0.1% SOC error), but SPKF is not accurate in terms of lesser speed.
Hence, CKF is most stable algorithm allowing a tradeoff between time consumption and
accuracy [100]. EKF was compared and validated using the zero-hysteresis and hysteresis
models. The EKF algorithm could not estimate the parameters of the hysteresis model due
to it being dynamic over time. The DEKF algorithm was used for the hysteresis model
rather than EKF to identify parameters and states of the system [102,103].

5.3. Issues, Challenges, and Future Directions

(1) The implementation of EC + KF in BMS for EVs has always been a challenging
subject. KF provides a promising outlook for the high dynamic usage in HEVs and EVs.
The crucial component of filter tuning is estimating the noise covariance matrix and the
initialization of covariance matrices. The choice of these matrix parameters is crucial to
making the perfect system.
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(2) The most concerning issue is KF stability, which is achieved by reducing the special
effects of the computational roundoff errors that lead to matrix asymmetry and a negative
eigenvalue. This problem directly influences the Kalman gain that leads to the reduced
speed of the convergence of the estimator at the time of computing the covariance matrix.

(3) KF requires a proper and accurate battery model to reduce the difficulties of
estimating parameters. The modification of the algorithm is compulsory according to the
application. A perfect controller is needed for all types of matrix multiplications.

6. BMS Algorithms for Non-Model-Based (Data-Driven Approach) State Estimation

It is challenging to directly observe the intricate chemical processes inside the battery.
To ensure the safe and reliable operation of the battery management system, it is crucial
to build an accurate mathematical model for the battery. A machine learning-based data
cleaning technique is suitable for huge data in electric vehicle batteries. Machine learning-
and deep learning-based models are becoming popular to achieve higher efficiency for
state estimation of batteries in EV applications.

6.1. Lithium-Ion Battery Modeling Based on Big Data

Artificial intelligence techniques such as artificial neural networks and deep neural
networks are progressive methods for estimating Li-ion battery states. Deep neural network
methods have been used for SOC estimation. In Figure 8, the architecture of a deep neural
network is displayed. The fuzzy neural network, recurrent neural network (RNN), feedfor-
ward neural network (FNN), backpropagation neural network (BPNN), long short-term
memory (LSTM), LSTM-RNN, convolutional neural network (CNN), radial basis function
neural network (RBF-NN), Gaussian process regression (GPR), and extreme learning ma-
chine (ELM) methods have been successfully implemented for the state estimation of Li-ion
batteries in various studies [85–88]. In [89], an optimized deep fully convolutional network
(FCN) with learning rate optimization was proposed, which showed superiority compared
with RNN, LSTM, and GRU. Since machine learning techniques perform data mapping
without considering the physical mechanism, abrupt errors can occasionally result. In [90],
the proposed physics-constrained neural network (NN) simultaneously reduced both the
physical constraint loss and the data mapping loss. The multioutput convolved Gaussian
process (MCGP) was proposed for multitasking and transfer learning to use the latent
function decomposition method for forecasting the capacity of battery cells [91].
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6.2. A simulation Comparison of Machine Learning Algorithms

The most conventional machine learning algorithms are regression, instance-based,
regularization, decision tree, Bayesian, clustering, and association rule learning algo-
rithms. On the basis of above classification, PyCaret was applied for model selection
and fine-tuning to decide the best machine learning algorithms according to DST drive
cycle data of NCR 18650B. A laboratory test was conducted to retrieve DST drive cycle
data. Time, current, voltage, capacity, and SOC were measured with different tempera-
tures. The PyCaret automation tool performed the simulation on DST drive cycle data
(time, current, voltage, capacity, and SOC) to choose suitable ML algorithms for SOC
estimation. The PyCaret automation tool came up with 21 algorithms (Table 6 gives the
best SOC estimation solution for different drive cycle data on different Li-ion batteries.
In Figure 9, the best algorithms among the 21 ML algorithms (random forest (RF), linear
regression (LR), decision tree (DT), extra trees regressor (ETR), support vector regression
(SVR), k neighbor regressor (KNN), extreme gradient boosting (EGB), and adaBoost
(AB)) were chosen for SOC estimation according to accuracy, computation time, error
rate, and performance. Non-model-based state estimation is reviewed in Table 7.

Table 6. A simulation comparison of ML algorithms with Pycaret automation tool on DST
drive cycle dataset.

Sl No. Model MAE MSE RMSE R2 RMSLE MAPE TT (s)

1 Extra trees regressor 0.0026 0.0000 0.0052 0.9997 0.0037 −0.0260 0.1545

2 Extreme gradient
boosting 0.0040 0.0000 0.0063 0.9996 0.0045 −0.0330 0.2134

3 Random forest 0.0034 0.0000 0.0066 0.9995 0.0047 −0.0312 0.2003

4 Light gradient
boosting machine 0.0050 0.0001 0.0076 0.9994 0.0055 −0.0419 0.1213

5 Decision tree 0.0034 0.0001 0.0080 0.9993 0.0057 −0.0196 0.0104

6 Gradient boosting
regressor 0.0034 0.0001 0.0080 0.9993 0.0057 −0.0196 0.0104

7 Adaboost regressor 0.0327 0.0016 0.0398 0.9835 0.0261 −0.4166 0.1861

8 Ridge regression 0.0272 0.0016 0.0400 0.9831 0.0325 −0.8945 0.0073

9 Least angle
regression 0.0267 0.0016 0.0400 0.9831 0.0326 −0.9191 0.0059

10 Bayesian ridge 0.0267 0.0016 0.0400 0.9831 0.0326 −0.9190 0.0087

11 Linear regression 0.0267 0.0016 0.0400 0.9831 0.0326 −0.9191 0.0043

12 Random sample
consensus 0.0257 0.0016 0.0401 0.9830 0.0329 −0.9936 0.1339

13 K neighbors
regressor 0.0133 0.0017 0.0402 0.9819 0.0285 −0.0779 0.0072

14 Huber regressor 0.0251 0.0017 0.0414 0.9819 0.0341 −1.1640 0.0387

15 Theilsen regressor 0.0255 0.0018 0.0417 0.9816 0.0341 −1.1423 1.1475

16 Orthogonal matching
pursuit 0.0472 0.0051 0.0708 0.9476 0.0512 −0.7833 0.0077

17 Passive aggressive
regressor 0.0645 0.0053 0.0729 0.9448 0.0512 −0.4119 0.0076

18 Support vector
machine 0.2675 0.0945 0.3074 0.0177 0.2126 −3.4891 0.2531

19 Lasso regression 0.2699 0.0959 0.3097 0.0032 0.2151 −3.7653 0.0094

20 Elastic net 0.2699 0.0959 0.3097 0.0032 0.2151 −3.7638 0.0068

21 Lasso least angle
regression 0.2704 0.0964 0.3103 −0.001 0.2156 −3.7954 0.0062

MAE = mean average error, MSE = mean square error, RMSE = root-mean-square error;
R2 = Weber, RMSLE = volts, MAPE = seconds.
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Table 7. Non-model-based online parameter and state estimation in he literature.

Ref. Data-Driven Method Battery Testing RMSE/Error Rate
(%) Comparison Online

Parameters Technical Comment

[94]

Deep transfer neural
network + MDA

(multiscale distribution
adaptation)

BJDST, USO6,
and FUDS 1.04 RNN, GRU,

and LSTM SOC More robust than other
methods

[104] Deep neural network DST, FUDS, BJDST,
and US06 0.08 LSTM and

CNN-GRU SOC
Reduced error rate,

Enhanced performance
of SOC estimation

[105]
Recurrent Gaussian

process
regression (RGPR)

FUDS and US06 0.14 SVM, RVM,
and NN SOC

High accuracy,
identification important

input features

[106]
RNN (recurrent neural

network) with gated
recurrent unit

HWFET, LA92,
UDDS, and US06 0.029 RNN SOE Energy prediction,

range estimation

[107] LSTM + GPR Cycle test dataset 0.0032

GPR, LSTM,
GPR + EMD,

and LSTM + EMD
(empirical mode
decomposition)

RUL
Good adaptability,

reliable,
high certainty

[108] Autoencoder + LSTM DST and FUDS
0.72%,
0.90%,
1.30%

LSTM and RBFNN SOC
Autoencoder is useful

for optimum
feature selection

[88] Fuzzy neural network +
form genetic algorithm Charging/discharging BPNN SOC High convergence rate

[87]
Extreme learning machine
(ELM)–GSA (gravitational

search algorithm)

DST, FUDS,
and USO6 1.1%, 1.4%, 1.8%

Back propagation
neural network

(BPNN) and radial
basis function

neural network

SOC Greater accuracy,
low error

[109] Feature selection + ML Calce + NASA
dataset ELM and SVR SOH Accuracy, computational

efficiency

[110]

Model + DNN
metabolic gray model,
multioutput Gaussian

process regression

NEDS + UDDS +
JP1015 ±2 GPR and SVR SOH + RUL

Great accuracy and
robustness, closed-loop
control, dynamic model

[111] NN + EKF Battery charging 3% NN SOC

Good prediction of SOC
and fast convergence

due to EKF
RBF type NN taken to

decide a suitable model
for EKF

[112] Fuzzy C-means FUDS 1.68 SOC The better initial value
for optimization

[98] LSTM + UKF DST, US06, and
FUDS 0.93 LSTM SOC Model-free, no need for

OCV-SOC look-up table



Sustainability 2022, 14, 15912 19 of 31

Table 7. Cont.

Ref. Data-Driven Method Battery Testing RMSE/Error Rate
(%) Comparison Online

Parameters Technical Comment

[113] NN Charge/discharge 2.36% EKF SOC Fast convergence speed,
higher precision

[114] Deep LSTM Charge/discharge
test 0.76% LSTM-RNN Capacity

DLSTM worked well
with timeseries data
Computationally fast

[115] Bidirectional LSTM
encoder–decoder

UDDS, LA92, US06,
and HWFET 1.07% LSTM-RNN

and BSLTSM SOC

Encoder and
decoder architecture

BSLSDM-ED can exhibit
long-term dependencies

from both past and
future directions that

estimate the
accuracy of SOC

[116] LSTM HWFET, UDDS,
LA92, and US06 1.606% ECM SOC No need for modeling

and an expansive filter

[89] Deep convolution
neural network US06 0.85 LSTM, GRU, and

CNN SOC

Lowest RMSE compared
to LSTM, GRU, and

CNN, computationally
competent, high speed,

less cost

[117] Stacked bidirectional
LSTM

FUDS, US06,
and BJDST 0.46 LSTM SOC

Bidirectional LSTM
works on both forward

and backward
sequential data to

estimate SOC accurately

[79] LSTM + ACKF DST, US06,
and FUDS 2.2, 4% LSTM SOC

Improved accuracy due
to a combination of
LSTM and ACKF

[118] LSTM + SRCKF DST and FUDS 0.4, 2% LSTM SOC Better accuracy in the
lower range of SOC

[119] Radial basis function
NN (RBFNN) EV data 4% ANN Battery aging Good choice for

online BMS

[120] SVR DST 0.71, 6%, 0.4, 4% SOC,
Cell voltage

Quick SOC, worked well
with low-cost BMS

As shown in Table 6, among all 21 algorithms, random forest, extreme gradient
boosting, and extra trees regressor showed the best prediction results for the DST drive
cycle in terms of MSE, MAE, and RMSE for state estimation of Li-ion batteries. In [92],
random forest was used with differential search algorithm (DSA) optimization for SOC
estimation for DST and FUDS cycles with an MAE of 0.193% and 0.346%, respectively.
The above table provided a standard for comparing algorithms in terms of prediction
error to choose an appropriate algorithm for EV applications. In [93], the SVM parameter
was optimized using particle swarm optimization, and the prediction model error of
the algorithm ranged from 1.65% to 2.5% according to cross-validation. The above table
shows a 0.95% prediction error for the SVM algorithm using cross-validation.

6.3. Issues, Challenges, and Future Directions

• Issues and Challenges

(1) The key issue is to develop a hierarchical model with a powerful feature extraction
method for the estimation of SOH.

(2) The difficulties in training and optimizing parameters in DL are due to gradient
descent in the nonconvex problem space.

(3) The transfer learning should be more robust to changes in data features and
heterogeneous data.

(4) The most important challenge of probabilistic methods is computation time.
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• Future trends

(1) The deep learning network faces challenges due to the limitation of backpropagation-
based training. The metaheuristic algorithm can be applied to train DL networks to over-
come this limitation.

(2) The training time plays a significant role in the success of DL algorithms. Monte
Carlo sampling can be used to select smaller but critical data to decrease the training
time of networks.

(3) Effective feature extraction from battery data is the future trend in non-model-based
estimation. Multiple deep learning networks instead of single algorithms should be used
for feature extraction.

(4) Probability forecasting models based on DL have a prominent future in timeseries
data due to their ability to measure uncertainties.

7. Fault Diagnosis and the State of Balance
7.1. Research Challenges and Advances in Series and Parallel Connection (Battery Pack)

EV applications require high power (P = VI) to provide high current and volt-
age. The topology of the pack must be decided before implementation with the
voltage range and peak current estimation. Series-connected cells are required for
low-energy high-power applications, whereas parallel-connected cells are chosen for
the high-energy applications. Active and passive balancing is used for balancing
series-connected battery packs to control the overcharge and over-discharge of the
battery pack. Cells with the same initial state and parameters experience the same cur-
rent in series connection. Some simulation results explained the research challenges
for series- and parallel-connected battery packs [43].

Various studies focused on series-connected cell balancing techniques and appli-
cations [10,36]. Simulation results are shown in Figure 10a,b, where eight cells were
connected in series and three series-connected modules in a pack were connected in
parallel. The simulation showed that all cells experienced the same current because of
series connection in the same series-connected modules, but different modules expe-
rienced different currents. Here, we can also observe that cells were not balanced in
series-connected modules. Cell voltages were not the same, but the overall voltage of
the three series-connected modules was identical. Therefore, cell balancing is needed
for battery pack modules connected in series.
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Figure 10. (a) Simulation results of SOC of SCM. (b) Simulation results of the current SCM.
Adopted from [101].

The cells had dissimilar SOCs due to varying resistances and capacities during
cycling in a parallel-connected cell. In Figure 11a, the simulation results show
different SOC values for different cells (shown by a different color) while cycling,
but they reached the same value at the time of rest. Here, we can observe that, in
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parallel-connected modules, the cell balanced itself. Due to varying resistance, the
current experienced by individual cells, as shown in Figure 11b in a PCM, can be
completely different from each other. When the applied battery-pack current is
zero, it does not mean that the cell current is also zero because the cells may have an
unequal state of charge, causing circulating balancing currents because of the parallel
electrical connections of cells within a PCM. Different types of cell equalization
techniques have been discussed in various studies [10,121]. The advancement of
hardware systems with a control strategy/algorithm is compulsory for cell equalizer
circuits [122]. The development of an algorithm to control hardware system cell
equalization is a crucial task [123]. Centralized, modular, and distributed controllers
are mainly used to control the balancer circuit. In [124], fuzzy logic control was used
to manage parallel-connected cells. Model predictive control is also a very accurate
advanced technology where the accuracy of the cell mathematical model correlates
with the cell equalizer [125].
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7.2. Mode-l and Non-Model-Based Fault Diagnosis and State of Safety of Li-Ion Battery

Li-ion battery fault diagnosis is a vital issue in the BMS of electric vehicles for state
of safety (SOS) estimation. Overvoltage, under-voltage, overheating, loose connection,
insulation, external short-circuit, internal short-circuit, open circuit, and sensor failure
occur under Li-ion battery fault conditions, which accelerate aging, degradation, and
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thermal runway [126]. Fault diagnosis is challenging due to complex nonlinear time-
varying internal states of Li-ion batteries or packs with inconsistency [4]. The voltage
differences in series-connected cells and current inconsistencies in parallel-connected cells
cause many types of faults within the battery pack. The preprocessing step for FD is
based on the accuracy of feature selection. Model-based filters and observers, signal
processing-based methods, and machine learning-based methods are the most popular
feature extraction methods [127] (Figure 12). Signal processing methods use the entropy
or correlation coefficient as a fault parameter to measure signals and any irregularities in
these parameters. In [128], model-based battery fault diagnosis was proposed to enable
joint soft SC fault estimate and detection. An H-infinity nonlinear observer was built to
track changes in model parameters on the basis of an enhanced estimate of the state of
charge (SOC) and soft SC current in the presence of a space battery model. For accelerated
aging diagnosis of lithium-ion batteries, an integrated framework of aging mechanisms and
data-driven techniques (IFAMDM) was introduced [128]. Some studies suggested a wavelet-
based method for defect discovery in lithium-ion batteries to ensure the dependability and
safety of electric vehicles [129]. Modified sample entropy was used for real-time multi-
fault diagnosis of early battery failure [130]. In [131], feature engineering techniques and
artificial intelligence (AI) algorithms (including machine learning, neural networks, and
deep learning) in condition monitoring and problem detection approaches were extensively
summarized. Fault diagnosis algorithms are reviewed in Table 8.
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Figure 12. Classification of algorithms for LiB fault diagnosis [14,63].

Table 8. Algorithm comparisons of battery fault diagnosis.

Diagnostic
Techniques

Battery
Faults Benefit Drawback Limitations References

RLS Filter ISC (Internal short circuit)
MSC (micro-short circuit)

Simple, low cost,
and complexity

Model-based
ambiguity and

minimal estimation
accuracy of states

Need information
about other series

and parallel
connected cell leads

to inconsistency
and balancing

[132]

SVM Connection
fault

Identify the severity
of voltage fault with

the time

Cannot identify
current working state

for big and high
dimension data

Suitable only for
small, simple data [133]

RLS-UKF Sensor fault
detection

More accurate and
less prediction time
for a current sensor

Longer time for
prediction of fault

due to voltage sensor

Limitation of
Gaussian white noise [134]
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Table 8. Cont.

Diagnostic
Techniques

Battery
Faults Benefit Drawback Limitations References

AEKF overcharge and
over-discharge faults

Adaptive
model-based

technique

Model-based
limitation for

parameters and
states estimation

Required to generate
a residual signal [135]

Neural Network Fault due to
the voltage sensor

Identify abnormal
voltage data

required big
historical data Overfitting [136]

Statistical method Diagnosis of the real-time
fault with the time

Identify the
future fault

Need large
history data Overfitting [126]

Entropy
Theory Short circuit Fast diagnosis of the

short circuit
Vulnerable to

measurement noise

Failed in
considerable

inconsistency and
with varied

temperature and the
current rate

[130]

DEKF Sensor fault
Estimate accurately

continuous state
and parameter

complexity computational cost [137]

LSTM Thermal runaway
Increase accuracy,

decrease
computational time

Increase complexity
by coupling model

and data-driven
method

Failed when voltage
within is within the

set threshold
[138]

WAVELET Diagnosis real
voltage value

Noise removal from
the real voltage

Affected by the set
value of interval

parameters
Cross-voltage test [129]

Correlation method Short circuit Robust for real-time
application

Irregular voltage
drops

Vulnerable to
measurement noise [139]

Neural network Thermal Fault

Stretch forward
technique and

residual monitor
used for

identifying fault

Slow fault and
long-term

degradation require
to be enhanced

Only work on big
historical data [140]

7.3. Issues, Challenges, and the Future Trend of Online Fault Diagnosis

• Issues and Challenges

(1) A realistic mathematical model for fault diagnosis to characterize the fault of
LiBs should be established. It is still difficult to monitor the internal state of the battery
and the coupling of faults.

(2) The verification of the fault threshold is not robust in model-based fault diagnosis.
The capacity degradation of LiBs also influences the accuracy of the threshold; therefore,
its needs to be adjusted with the battery’s cycle life, rather than being fixed. The adaptive
threshold can resolve this issue, but further research in this area needs to be done.

(3) Fault-tolerant control for BMS needs to be researched to detect the ISC and
ESC faults.

(4) The battery sensors and actuators are supposed to be fault-free in the FD system;
therefore, multi-fault detection is a very difficult issue in this area.

(5) Very few studies investigated current distribution within parallel-connected cells
and its effect on the safety, lifetime, and power of the cell for EV applications; furthermore,
their experimental setup has not been explained.

• Future trends

(1) Data-driven methods show good prospects to develop the fault diagnosis of LiB bat-
tery systems; however, due to the limitation of a single method to meet the desired demand,
the overall efficiency can be achieved through the fusion of multiple FD algorithms.

(2) The model-based FD method can be improved by detecting early faults, model
uncertainties, and noises.
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(3) Fault-tolerant control (FTC) should be designed as a robust controller to recognize
faults and adjust control accordingly.

8. Conclusions

In this paper, the development of algorithms for online BMS was reviewed with a
focus on key issues, limitations, challenges, and future directions. The development
of model-based algorithms is more accurate and robust but suffers from a higher com-
putational time and complexity. Filters and observers require battery modeling and
parameter fitting in the battery model. Nonlinear observers and filters need to be more
robust to intermittent and time-delayed observations. Data-driven-based algorithm
development does not require extensive domain knowledge and computation time,
unlike model-based algorithm development. However, data-driven methods require
a large amount of data, which is a big drawback. The development of algorithms for
combined estimation on different timescales of various states of LiBs is needed to make
BMSs more robust and efficient. The performance of algorithms depends on hyper-
parameters in deep learning networks, which can be optimized using meta-heuristics
methods. The fusion of model- and non-model-based techniques is currently a research
hotspot as it combines the advantages of different types of algorithms and models
to solve complex problems. The data-driven approach for multisource battery safety
condition monitoring and unknown multi-fault diagnosis is an active area of research in
EV applications. Deep learning can also be utilized for closed-loop optimization of fast
charging for EVs. Hardware in loop (HIL) and rapid prototyping (RP) simulations sup-
port the control algorithms under different operating and fault conditions for automatic
code generation. Automatic code generation can make required changes in proposed
algorithms to obtain an optimal solution of BMSs. Code generation can be incorporated
into the workflow standard of xEV. In general, model- and non-model-based algorithms
focus on the challenges caused by software complexity in BMS. Interactions with control
hardware to change algorithm parameters and test data can provide an optimal solution
for online BMSs. The present article can certainly help to develop methods for the future
generation of online BMSs for EV applications.
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Nomenclature

AB Adaboost
AEKF Adaptive extended Kalman filter
AHC Ampere-hour counting
AM Analytical models
ANN Artificial neural network
AR Auto-regression
ARIMA Autoregressive integrated moving average
BLSTM Deep long short-term memory
BMS Battery management system
CC-CV Constant current–constant voltage
CDKF Central difference Kalman filter
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CNN Convolution neural network
CP-CV Constant power–constant voltage
CPE Constant phase element
CVA Canonical variate analysis
DBN Deep belief network
DBNN Deep belief neural network
DCNN Deep convolution neural network
DD Data-driven
DEKF Dual extended Kalman filter
DL Deep learning
DNN Deep neural netowrk
DST Dynamic stress test
DT Decision tree
ECM Equivalent circuit model
EECM Electrical equivalent circuit models
EGB Extreme gradient boosting
EIS Electrochemical impedance spectroscopy
EKF Extended Kalman filter
EMD Empirical mode decomposition
ESC Enhanced self-correcting
ETM Electro-thermal modeling
ETR Extra trees regressor
EV Electric vehicle
FA Firefly algorithm
FCN Fully convolutional network
FOM Fractional-order model
FUDS Federal urban driving schedule
GA Genetic algorithm
GPR Gaussian process regression
HPPC Hybrid pulse power characterization
HEVs Hybrid electric vehicles
IIR Infinite impulse response
KNN K neighbor regressor
LCO Lithium cobalt oxide
LFP Lithium iron phosphate
LiBs Lithium-ion batteries
LMO Lithium manganese oxide
LR Linear regression
LSTM Long short-term memory
LTO Lithium titanate oxide
MAE Mean absolute error
ML Machine learning
MSE Mean square error
NCA Lithium nickel cobalt aluminum oxide
NMC Lithium nickel manganese cobalt oxide
OCV Open-circuit voltage
ODEs Ordinary differential equations
PDEs Partial differential equations
PHEVs Plug-in hybrid electric vehicle
PNGV Partnership new generation of vehicle
PSO Partical swam optimization
RF Random forest
RMSE Root-mean-square error
RNN Recurrent neural network
RUL Remaining userful life
SAA Simulated annealing algorithm
SAE Stacked auto encoder
LS Lebesgue sampling
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RS Riemann sampling
SMO Sliding mode observer
SOC State of charge
SOE State of energy
SOF State of function
SOH State of health
SOP State of power
SOS State of safety
SOT State of temperature
SPKF Sigma point Kalman filter
SVR Support vector regression
TM Thermal model
UDDS Urban dynamometer driving schedule
UKF Unscented Kalman filter
WD Wavelet decomposition
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