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Abstract: The large-scale global use of plastics has led to one of the greatest environmental issues
of the 21st century. The incredible durability of these polymers, whilst beneficial for a wide range
of purposes, makes them hard to break down. True recycling of plastics is difficult and expensive,
leading to accumulation in the environment as waste. Recently, a new field of research has devel-
oped, aiming to use natural biological processes to solve this man-made problem. Incredibly, some
microorganisms are able to produce enzymes with the capacity to chemically break down plastic
polymers into their monomeric building blocks. At an industrial scale, this process could allow
for a circular recycling economy, whereby plastics are broken down, then built back up into novel
consumer plastics. As well as providing a solution for the removal of plastics from the environment,
this would also eliminate the need for the creation of virgin plastics. Analytical techniques, such
as those allowing quantification of depolymerisation activity and enzyme characterization, have
underpinned this field and created a strong foundation for this nascent inter-disciplinary field. Recent
advances in cutting-edge ‘omics approaches such as DNA and RNA sequencing, combined with
machine learning strategies, provide in-depth analysis of genomic systems involved in degradation.
In particular, this can provide understanding of the specific protein sequence of the enzymes involved
in the process, as well as insights into the functional and mechanistic role of the enzymes within
these microorganisms, allowing for potential high-throughput discovery and subsequent exploitation
of novel depolymerases. Together, these cross-disciplinary analytical techniques offer a complete
pipeline for the identification, validation, and upscaling of potential enzymatic solutions for indus-
trial deployment. In this review, we provide a summary of the research within the field to date, the
analytical techniques most commonly applied for enzyme discovery and industrial upscaling, and
provide recommendations for a standardised approach to allow research conducted in this field to
be benchmarked to ensure focus is on the discovery and characterisation of industrially relevant
enzymes.

Keywords: enzymatic plastic depolymerisation; circular recycling; inter-disciplinary research; analytical
chemistry; bacterial genomics; bacterial transcriptomics; next generation sequencing; third generation
sequencing

1. Introduction to the Plastic Problem

Plastic is a multi-functional and ultimately essential material within modern human
society. It has been developed to have properties of durability, plasticity and transparency,
though these have come at a cost, with plastics also being mostly non-biodegradable
and highly resistant to microbial degradation [1–3]. These properties have led to global
environmental crises, resulting in pollution and threat to the ecosystem such as through
the introduction of microplastics into the food chain, being a danger to marine life in
particular [4,5]. Prolonged decomposition times have meant that plastics have slowly

Sustainability 2022, 14, 15898. https://doi.org/10.3390/su142315898 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su142315898
https://doi.org/10.3390/su142315898
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-4948-1004
https://orcid.org/0000-0001-5702-9160
https://doi.org/10.3390/su142315898
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su142315898?type=check_update&version=1


Sustainability 2022, 14, 15898 2 of 25

invaded the natural environment, with 5–13 million metric tonnes (MMt) estimated to enter
the ocean annually with no significant observation of environmental biodegradation [6,7].
Thus, the war on plastic and other non-degradable substances is a significant growing issue
around the globe, and was declared a worldwide crisis by the United Nations in 2017 [8].

This monumental challenge is difficult to overcome due to our heavy reliance on
plastics, which has major benefits for numerous social, technical and economic reasons.
The COVID-19 pandemic in particular highlighted humanities dependence on plastics.
Personal protective equipment (PPE), including surgical masks, disposable gloves and N95
face-piece respirators, allow for significant reduction in the transmission of disease [9].
However, alongside large-scale biomedical research employed to combat the virus (vaccine
development, qRT-PCR testing, viral genome sequencing, etc.), these rely heavily on
single-use plastics. This global demand and widespread public usage has resulted in the
accumulation of further problems and environmental crises regarding global production
and disposal of plastic [10,11]. The amount of plastic generated globally since the start of
the pandemic was estimated at 1.6 million MMt per day, with 3.4 billion single-use surgical
masks and face-shields discarded daily [10].

The use of plastics has risen significantly, with production growing from 1.7 MMt in
1950 to 438 MMt in 2017. Plastic production has quadrupled over the past four decades,
with 26,000 MMt predicted to be produced by 2050 [6]. Another fundamental issue in the
current usage of plastic is its disposal; 76% of all plastic waste disposed has thus far ended
up in landfill or the environment, with only 10% estimated to be recycled [6]. This surge
in plastic production and waste volume highlights the necessity for the development of
effective plastic waste management solutions.

Just eight plastic polymers make up 95% of manufactured plastics, with polypropylene
(PP) and polyethylene (PE) making up 45% of production, and polyethylene terephthalate
(PET), polyurethane (PU) and polystyrene (PS) also making up 10% each [6]. The chemical
structures of these plastic polymers confer a wide range of properties, but also impact
the mechanisms required to break them down. Firstly, there are biodegradable polymers,
which can be derived either from natural or synthetic based sources. Natural biodegradable
polymers include polylactic acid (PLA), polyhydroxyalkanoate (PHA) and polyhydroxy-
butyrate (PHB), and synthetic biodegradable polymers such as polycaprolactone (PCL),
polybutylene succinate (PBS), polybutylene succinate-co-adipate (PBSA), and polybutylene
adipate terephthalate (PBAT) [12–17]. Global production of plastics from natural sources
(bioplastics) was just 2 MMt in 2017 (less than 1% of all plastic production), with less than
half of this being biodegradable plastic [18]. Thus, whilst there is value in finding a solution
to expedite the break-down of biodegradable polymers, and to provide recycling solutions
for mixed waste, the more pressing issue is finding solutions for the high quantity of highly
non-biodegradable plastics (generally homopolymers).

Furthermore, there are two distinct groups of non-biodegradable plastics, those that
have a homochain C-C back bone and those that have a heterochain C-X backbone. As a
result of their increased crystallinity, the homopolymers are much more difficult to break-
down [19,20]. The most utilised homopolymers are PE (including high-density polyethy-
lene (HDPE), linear low-density polyethylene (LLDPE), and low-density polyethylene
(LDPE)), polyvinyl chloride (PVC) and polypropylene, the combined global consumption
of which is 209 MMt per year [19]. The most utilised heteropolymers include PET, PU and
Nylon, the combined global consumption of which is 92.5 MMt per year [11]. Figure 1
below shows the classification of plastics into these subgroups based on their structural
characteristics and demonstrates how these may align with biodegradability.
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thalate; PCL, polycaprolactone; PMCL, polymethyl caprolactone; PES, polyethersulfone; PBSA, 
polybutylene succinate-co-adipate; PBS, polybutylene succinate; PHA, polyhydroxyalkanoate; 
PHB, polyhydroxybutyrate; PLA, polylactic acid. Created using BioRender.com. 
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[21]. Unfortunately, not all plastics are suitable for such recycling solutions, and often 
plastics are merely down-cycled to lower grade items rather than being part of a truly 
circular recycling process. In such cases, virgin plastic production is still required for their 
replacement, meaning that this methodology often only delays disposal [22]. In short, cur-
rent disposal management solutions are unsuitable for keeping pace with modern pro-
duction rates, ultimately resulting in large-scale environmental contamination. 

In recent years, there has been a concerted effort to develop effective enzymatic ap-
proaches to tackle this global challenge, by exploring the environment for microorganisms 

Figure 1. Plastic polymers grouped by the characteristic of either having a homochain (C–C) backbone
or a heterochain (C–X) backbone. Plastic polymers with a heterochain backbone are further sub-
characterised by whether these heteropolymers are bioplastics (i.e., derived partially from biomass),
biodegradable (i.e., capable of degradation by microorganisms in the environment), or both. PP,
polypropylene; PS, polystyrene; PVC, polyvinyl chloride; PE, polyethylene; PET, polyethylene tereph-
thalate; PC, polycarbonate; PU, polyurethane; PEF, polyethylene furanoate; PA, polyamide; PEG,
polyethylene glycol; PHC, polyhalogenated compound; PBAT, polybutylene adipate terephthalate;
PCL, polycaprolactone; PMCL, polymethyl caprolactone; PES, polyethersulfone; PBSA, polybutylene
succinate-co-adipate; PBS, polybutylene succinate; PHA, polyhydroxyalkanoate; PHB, polyhydroxy-
butyrate; PLA, polylactic acid. Created using BioRender.com.

There are several potential methods of addressing this huge accumulation of plastic
waste, including incineration, chemical treatment, and conventional mechanical recy-
cling [21]. Unfortunately, not all plastics are suitable for such recycling solutions, and
often plastics are merely down-cycled to lower grade items rather than being part of a
truly circular recycling process. In such cases, virgin plastic production is still required
for their replacement, meaning that this methodology often only delays disposal [22]. In
short, current disposal management solutions are unsuitable for keeping pace with modern
production rates, ultimately resulting in large-scale environmental contamination.

In recent years, there has been a concerted effort to develop effective enzymatic ap-
proaches to tackle this global challenge, by exploring the environment for microorganisms
with naturally occurring enzyme activity showing promise in the breakdown of plastics.
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The purpose of this review is to outline the critical parameters of enzymatic recycling at
an industrial scale and to showcase how analytical chemistry approaches combined with
bioinformatics and cutting-edge DNA and RNA sequencing technologies can be effectively
utilised for enzyme discovery, engineering and industrial deployment. A variety of method-
ologies for the discovery of novel biocatalysts from environmental microbes are discussed
and the difficulties of such cross disciplinary research are highlighted. A workflow for the
discovery and subsequent characterisation of these enzymes has been constructed to ensure
truly industrially relevant and useful enzymes are the focus of current research efforts.

2. A Microbial Solution

Research has begun to identify potential solutions for combatting the global plastic
recycling problem through the exploitation of enzymes from plastic-degrading microor-
ganisms. Since the widespread introduction of plastics during the 1950s, existing enzymes
within microorganisms have adapted to become capable of degrading these man-made
polymers [7]. These are generally discovered within the natural environment and appear
to have adapted to degrade substances such as plastic as a metabolite for survival, likely
a function evolved from existing enzymes capable of breaking down structurally similar
natural polymers such as cutin [23]. In fact, the vast presence of plastic within the marine
environment has resulted in the development of a characteristic microbial community
referred to as the ‘plastisphere’ [24].

This provides a potential solution, utilising naturally occurring enzymes within the
plastisphere on an industrial scale to break down plastic polymers for re-purposing through
recycling. One of the best understood examples of these naturally occurring bacteria capa-
ble of degrading plastic is Ideonella sakaiensis, discovered outside a bottle-recycling plant
in Sakai City, Japan [25]. The enzyme isolated from I. sakaiensis, a PET hydrolase (PETase),
was capable of degrading PET at a substantially faster rate than the previously discovered
PETases (namely the Leaf and Branch Compost Cutinase [23], the Thermobifida fusca hy-
drolase [26] and the Fusarium solani cutinase [27]). It does this as part of a two-enzyme
system (Figure 2), with PETase converting PET to mono-(2-hydroxyethyl) terephthalic acid
(MHET) monomers, which are further broken down by MHETase into terephthalic acid
(TPA) and ethylene glycol. These breakdown products can then be used to re-create PET of
virgin quality [25,28]. This shows the potential of these microbe-based enzymes for real
circular solutions, eliminating the need to create virgin plastics.
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Figure 2. Diagram showing the enzymatic degradation of polyethylene terephthalate (PET), the
plastic most commonly used for making plastic bottles. PET can be colonised by Ideonella sakaiensis,
which secretes a PETase enzyme, able to convert PET to mono-(2-hydroxyethyl) terephthalic acid
(MHET). The secondary enzyme MHETase can further break MHET down into terephthalic acid
(TPA) and ethylene glycol. In industry, these enzymes can be used to produce the monomeric
building blocks of PET, which can be reconstituted back into PET of virgin quality. Created using
BioRender.com.
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Within nature, bacteria have repeatedly demonstrated their ability to adapt to con-
sume novel carbon sources, with I. sakaiensis being a notable example. In particular, ocean-
based microbes have been shown to rapidly evolve plastic-degrading enzymes, specifically
PETases, suggesting a strong selective pressure [29]. In 2021, Gambarini et al. [30] identified
six thousand species of microbe containing orthologous genes pertaining to plastic degra-
dation (of synthetic or natural class), with these species belonging to 12 phyla (Figure 3).
Additionally, from these microbes, 178 proteins have been noted as capable of plastic
degradation and characterised as of August 2022 [30]. Of course, the plastics with the
largest number of putative enzyme candidates identified are natural polymers (bioplastics)
that are usually biodegradable, such as PHB [30]. More synthetic and crystalline plastics
such as PET or PU have fewer potential candidates for biodegradation, requiring further
exploration of the environment to identify novel potential solutions.
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Figure 3. Phylogenetic tree showing all microorganisms identified as having potential plastic-degrading
capabilities as of November 2021. The phylogenetic relationship among species was downloaded from
the NCBI taxonomy database. Leaves are coloured according to their corresponding phyla. Figure
adapted and updated with permission from Ref. [30]. Copyright 2021, Gambarini, V. et al.

With the global distribution of plastics being expansive and invasive, the evolution of
microbes found with putative plastic-degrading capabilities has correspondingly increased,
with studies suggesting that the diversity of microbes found globally may contain members
with the ability to degrade plastic to correlate with plastic pollution directly [29,30]. Of
course, with recent developments in technology, our ability to explore this microbial
diversity is also accelerating. The vast number of species identified so far with plastic
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degradation capabilities and the evident selective pressure pushing for further degradation
capabilities leaves huge scope for further discovery [31,32].

3. The Role of Genomics

DNA sequencing is a popular genomics analysis used to determine the precise nu-
cleotide sequence of a DNA molecule. The development of sequencing technology has
moved at a rapid pace, with costs plummeting and the amount of data production growing
constantly. Sequencing is now an accessible and cost-effective methodology, available
for widespread usage. The first-generation of DNA sequencing, Sanger sequencing, was
invented in 1977 by Frederick Sanger and was based on DNA strand termination us-
ing radio-labelled di-deoxynucleotide triphosphates (ddNTPs) [33]. Following this came
higher throughput second-generation sequencing approaches, producing larger amounts
of data due to parallel sequencing of DNA molecules [34]. Combined with multiplexing
approaches (where molecular barcodes are used to combine multiple samples in a single
library that can be computationally disentangled, these next generation sequencing (NGS)
approaches ushered in a genomic revolution, leading to improved insights into molecular
mechanisms in a range of fields [35]. Commonly used platforms include those from Illu-
mina and Ion Torrent, producing millions of short (50–300 bp) DNA sequence reads. Such
“short read” platforms produce high throughput data sets for downstream interpretation,
although suffer from poor resolution of longer structural variations, repetitive regions or
low-complexity regions [36,37].

Recent third generation sequencing advances, such as those from Pacific Biosciences
(PacBio) and Oxford Nanopore Technologies (ONT), allow sequencing of much longer
strands of DNA, consisting of thousands or even millions of nucleotides, rather than
hundreds [38]. The ONT platform also provides a low barrier of entry and portability to
sequencing technologies, with their flagship MinION sequencer equating to the size of a
stapler, yet able to produce up to 50 Gb of data in a single sequencing run of 72 h [39]. These
platforms allow for the sequencing of unfragmented DNA with minimal library preparation
steps in comparison to second generation techniques [38]. Additionally, the long-read
nature means challenges in resolution for complex regions encountered with previous
techniques can be overcome, enabling deeper and more detailed investigations [40,41].
Advancements in long-read sequencing technologies enable more accurate de-novo genome
assemblies [42,43], especially if a hybrid approach is taken in which short and long-read
technologies are used in parallel, and the data combined [44–46]. These advancements also
translate to RNA sequencing (RNA-seq), for which recent advancements in long-read RNA-
seq as well as methods involving direct RNA-seq, allow for much more comprehensive
analyses to be made [47].

Sequencing has been used to characterise microbes within the plastisphere through
taxonomic analyses, though functional analysis of these communities is still lacking [48]. This
is where ever-improving sequencing methodologies can be employed in research of plastic-
degrading microbial communities, to fill gaps in knowledge within this relatively new field.
These advancements in genomics have prompted the adoption of several sequencing and
bioinformatic techniques in the field (Figure 4) which have exponentially increased discovery
of microorganisms and thus enzymes capable of plastic degradation (Table 1) [30,49,50].
However, at present, only 14% of microorganisms reported to have plastic-degrading abilities
have been sequenced and their mechanisms of plastic-degradation fully investigated [51],
demonstrating a wealth of untapped potential in this field. With reduced costs, increased
accessibility and accuracy, large-scale use of whole-genome, metagenomic and transcriptomic
sequencing could become a standard tool for such enzyme discovery projects.
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Table 1. Examples of characterised plastic-degrading enzymes discovered in recent years (2018–2022)
and the methodologies by which they were discovered that have been discussed within this review.

Enzyme Origin Discovery
Methodology

No. Characterised
Enzymes Target Plastic Year Ref

PET hydrolase,
Cutinase,

Triaylglycerol lipase

Marine and terrestrial
environments

Metagenomics and
HMM search 9 PET 2018 [31]

Polyurethanase Laboratory Culturing and WGS 1 PU 2018 [52]

PHB deploymerase Biofilms on marine
plastics Metagenomics n/a PHB 2019 [53]

PET hydrolase

Crude
oil-contaminated

intertidal sand
samples

Metagenomics 1 PET 2019 [54]

Hydrolase Marine sponge Database search,
screening, and cloning 1 PCL 2019 [55]
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Table 1. Cont.

Enzyme Origin Discovery
Methodology

No. Characterised
Enzymes Target Plastic Year Ref

Esterase Rice seeds Culturing and
screening 1 PCBS, PBSA, PCL 2019 [56]

Alkane
monooxygenase Landfill soil Culturing and

screening 1 LDPE 2019 [57]

Polyurethane esterase Landfill Screening and
metagenomics n/a PU 2020 [58]

Polyester hydrolase Marine and terrestrial
environments

Database search and
screening 1 PET, PU, PCL 2020 [59]

PET hydrolase Compost Metagenomics 7 PET 2021 [60]

Alkane-1
monooxygenase Landfill soil Screening and cloning 1 PS 2021 [61]

Cutinase Culture collection Screening and cloning 1 PES, PCL, PET 2021 [62]

PET hydrolase Geothermal
groundwater

Metagenomics and
database search 1 PET 2021 [63]

Polyester hydrolase Antarctic marine
samples

Culturing, sequencing,
and screening 1

PET, PCL, PU,
PHB, PBS, PLA,

PHA
2021 [64]

Hydrolase Soil Database search 1 PET 2021 [65]

Hydrolase Soil Culturing and
screening 1 PBAT, PBSU,

PBSA, PCL, PESU 2021 [66]

Esterase
Antarctic sources,

marine (Japan),
seaweed

Metagenomics and
HMM search 4 PET, PU, PCL 2022 [67]

PET hydrolase Human saliva Metagenomics and
HMM search 1 PET 2022 [68]

Esterase Hydrocarbon-polluted
soil Database search 1 PET 2022 [69]

4. Whole-Genome Sequencing

DNA sequencing approaches have been used extensively in microbiology, in particular
for taxonomic classification of microbial samples. This can be achieved through amplifica-
tion and sequencing of gene targets showing a high degree of variation between closely
related species, such as 16S ribosomal RNA (rRNA), 18S rRNA, and Internal Transcribed
Spacer (ITS) genes [48]. These methodologies have indeed been utilised within plastics
research to characterise communities and ecosystems commonly found associate with
plastics in the environment (the plastisphere) [70,71]. However, these methods lack the
resolution for functional insight, only providing use in taxonomic classification. Improve-
ments in throughput have meant that whole genome sequencing (WGS) of novel organisms
can be easily performed, leading to a rapid increase in the availability of whole-genome
sequences [72]. From the carefully sequenced high-cost single culture pathogens sequenced
in previous years, the advancement of technology has meant vast quantities of genomes
can now be sequenced at once [72].

Whilst simply understanding taxa present in a sample is often of interest, a wealth
of further information becomes available through whole-genome sequencing. As well as
taxonomic classification, gene sequences within the genome (and thus the transcriptional
potential of the present organisms) can be identified, allowing for deep mining of the
genome of plastic-degrading organisms. The mechanisms by which plastic-degradation
occurs may then be explored in depth, identifying the genetic pathways utilised by bacteria
to fully assimilate plastics as a carbon source. This can result in not only the identification
of enzymes capable of breaking down polymer plastic structures into their monomeric
building blocks, but also other genes that may be involved in such functional pathways.

Improved access to sequencing technologies allows novel enzymes to be investigated
through sequencing of environmental organisms, particularly within samples likely to
represent environments where enzyme repurposing towards plastics might be enriched
(e.g., in response to plastic accumulation in landfill sites, marine environments, mangrove
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forests, etc.). Sample selection can be informed by a screening process, such as examining
esterase and lipase activity using clearance zones on agar plates, or solid plastic weight
loss assays, to name the most popular techniques [50,51,73,74]. Microbes which pass
screening can then be further investigated using in-depth approaches to (a) confirm their
ability to degrade the substrate of interest, and (b) identify potential enzymes and gene
pathways that may allow this degradation ability. One such example is the bacterium
Pseudomonas sp. strain WP001, a laboratory isolate discovered to have capabilities of
PU degradation, with the enzyme that conferred this ability identified through the full
sequencing of the strain’s genome [52]. There are of course several examples of WGS,
and through prokaryotic genome annotation tools, their enzymes have been identified
tentatively and further investigated for confirmation using methods such as functional
domain analysis or cloning [75,76].

5. Metagenomics

Targeted WGS of a single bacterial species first requires the use of culturing approaches
to isolate the bacterium of interest. However, current sequencing platforms also allow
a more generalised approach to analysis of mixed samples of microorganisms, which
may contain tens, hundreds, or even thousands of unique species. Metagenomics utilises
advances in sequencing and bioinformatics to study the DNA of all the organisms in a
mixed community sample in parallel. Given the fact that only 0.1–1% of prokaryotes
are estimated to be culturable using traditional methods, metagenomics vastly widens
the possibilities for discovery of biocatalysts and provides a significantly lower-biased
solution [77]. Indeed, the highly active polyester hydrolase PHL7 was discovered from a
metagenomic sample isolated from compost, which may otherwise have been missed using
culture-based approaches [60]. Other studies have similarly found industrially relevant
enzymes may be identified from culture-independent metagenomic methods, with one
summarising 322 enzymes found from 2014–2017 from prokaryotic environmental DNA
(eDNA) [78]. Sequence-based screening of metagenomics has been successful for the
identification of PHB depolymerases, PETases and PU esterases [31,53,58,79].

Metagenomics may also be used to gain a system wide view of functionality, which
may in turn be used to screen environmental samples for plastic degradation abilities, or
to study how metagenomic communities may work together to break down plastic. An
example of this use can be seen in a study of a metagenomic community enriched on
bioplastics, which found a 20-fold increase in abundance of depolymerase genes, with con-
siderable diversification of PHB depolymerase [53]. This methodology provides screening
approaches for biocatalysts in the environment, and development of platforms designed
with portability and ease of use in mind (such as the MinION and Voltrax platforms from
ONT) allows for the sequencing of microbes en mass and in real time in situ [80]. This in
turn can allow for the investigation of eDNA on a large scale; mining thousands, if not
millions of sequences per day. Current limitations of this methodology lie in the tools
capable of assembling and binning reads into distinct community member genomes from
metagenomic runs, usually relying on k-mer frequency and coverage which are generally
poor when dealing with similar genomes in a single sample [81]. However, there are now
multiple tools that have made significant improvements in accuracy of assemblies, and
reviews have shown assemblies of up to 99.9% completion when using a mock metage-
nomic community and long-read sequencing technology [82]. In addition, the introduction
and improvement of long-read sequencing technologies can allow for far more accurate
genome assemblies from metagenomic samples [83]. These ever-improving technologies
are allowing for accurate classification of long reads, metagenomic assembly and assembly
binning, making metagenomic analysis a much more robust and reliable technique for use
in this field of enzyme exploration [84,85].
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6. Databases

In the search for plastic-degrading enzymes, our current understanding of features
in common with previously identified enzymes can help inform discovery of novel candi-
dates. This can be done, for example, by investigating structural differences and sim-
ilarities of known plastic depolymerase homologs. The genomic revolution brought
about by development of sequencing technologies has provided a wealth of data on
genome architecture across all modes of life, particularly for bacteria given their com-
paratively small genome size and prevalence. These data are often published to freely
available public databases such as the National Centre for Bioinformatic Information (NCBI;
https://www.ncbi.nlm.nih.gov; accessed on 28 September 2022), providing researchers
and healthcare professionals with a wealth of access to biomedical and genome informa-
tion. More recently, databases containing known sequences that pertain to enzymatic
degradation of similar structures have been developed and curated, such as the Carbohy-
drate Active enZymes (CAZy) database (http://www.cazy.org; accessed on 28 September
2022) [86]. This database contains the sequences and information of enzymes capable of
breaking down complex carbohydrates, which can be structurally similar to plastics and
thus may exhibit similar degradation effects [23].

More specifically for plastics research, databases have been curated that exclusively
contain enzymes known to degrade plastic polymers, such as the Plastics-Active enZymes
Database (PAZy; https://pazy.eu; accessed on 28 September 2022), which contains known
characterised enzymes (and their homologs) capable of breaking down petroleum-based
plastics [87]. In addition, the PlasticDB (https://plasticdb.org; accessed on 28 September
2022) database not only aims to contain all known characterised proteins shown to degrade
plastic, but also all microbes that have been reported to have plastic-degrading capabil-
ities [88]. An earlier example is that of the Plastics Microbial Biodegradation Database
(PMBD; http://pmbd.genome-mining.cn/home; accessed on 28 September 2022), consist-
ing of predicted microbes capable of biodegradation of plastics, as well as predicted gene
sequences of relevant enzymes [89]. However, this database is not regularly updated and
does not have some of the additional functionality of the likes of PAZy and PlasticDB.

The in-depth curation of comprehensive databases such as NCBI means organisms can
now be identified on a large-scale and, with the presence of a vast number of high-quality
reference genomes, organisms may be investigated for novelty. The specific databases
curated for plastic-degrading microorganisms can be used to screen metagenomic samples
for plastic-degrading species. Similarly, proteins identified from metagenomic samples
can be compared with protein databases such as NCBI and the Protein Data Bank (PDB;
https://www.rcsb.org; accessed on 28 September 2022) [90] to screen for potential targets.
A common approach for searching such databases is the Basic Local Alignment Search
Tool (BLAST; https://blast.ncbi.nlm.nih.gov/Blast.cgi; accessed on 28 September 2022), a
commonly used method that can be used to identify sequences (nucleotide or amino acid)
that most closely match your query sequence from a database of possible targets (e.g., the
NCBI Reference Sequence database).

7. Machine Learning

With the curation of large-scale databases and the availability of vast amounts of data
through the sequencing of eDNA, rapid, accurate and efficient search strategies must be
employed to enable researchers to mine these resources for novel discoveries. Nucleotide
matching strategies such as the use of BLAST may allow for the identification of known
enzymes, but for the discovery of further novel enzymes, more elegant computational
methodologies are required. Development of deep machine learning (ML) approaches
within computer science have allowed for the creation of tools able to mine large-scale data
resources to identify features beyond sequence similarity for classifying novel targets [91].
ML methods include a wide range of computational algorithms used to train models using
existing data, that are then able to predict some outcome based on newly collected data [91].

https://www.ncbi.nlm.nih.gov
http://www.cazy.org
https://pazy.eu
https://plasticdb.org
http://pmbd.genome-mining.cn/home
https://www.rcsb.org
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Hidden Markov Models (HMMs) are a popular tool, used commonly to identify the
presence of structurally similar putative enzymes within large datasets through searching
for sequence homology using probabilistic models [91]. For example, Danso et al. [31]
employed an HMM to search publicly available genome and metagenome databases for
novel PETase-like enzymes using a reference list of nine PETases with known degradation
activity. They identified 504 possible PETase candidate genes and 13 potential PETase
homologs. Similarly, there are multiple examples of HMMs being used to conduct homolog
searches for the discovery of not only novel PETases [79], but also enzymes with the ability
to degrade other plastics [49,92]. HMMs are also regularly used in the curation of databases,
as can be seen with the PAZy database which used HMMs to identify nearly 3000 homologs
of PET active enzymes [87]. HMMs remain a useful tool for the identification of homologs
of plastic-degrading enzymes and associated genes that can then be further investigated
in vitro.

With the increasing expansion of available datasets, this is becoming a popular method
of enzyme discovery due to its speed, and the fact that it does not require sample collection
nor lengthy screening processes. However, this approach is limited by the availability of
suitable data for model training, and may be restricted when searching for novelty, a point
discussed further below.

8. Transcriptomics

Whilst WGS allows the identification of potential gene systems in the genome that
may be involved in enzymatic processes, it fails to provide a systematic view of those that
are actively transcribed with an impact on functionality. For example, in some instances,
certain microorganisms found to possess plastic-degradation genes do not necessarily express
these genes in situ and/or derive energy from polymer carbon sources [51]. Transcriptomics
provides genome-wide quantification of gene expression through sequencing of messenger
RNA (RNA-seq), allowing an estimation of proteins actively involved in the process of
microbial plastic degradation. In particular, differential expression of genes in microorganisms
metabolising substrates of interest compared to non-plastics can provide a system-wide view
of the degradation process, as well as discovery of potential novel proteins capable of plastic
break-down that would otherwise be missed using homology-based approaches. This field is
relatively untouched in the plastic-world, with only a few published works so far using the
data to create protein–protein interaction networks to assess functional networks expressed
during plastic breakdown [93,94]. Such studies provide a more complete characterisation
of genes involved in the degradation of different plastics, allowing further elucidation of
breakdown pathways and novel targets for future exploitation.

Metatranscriptomics on community samples can also be performed for identification
of enzymatic pathways in non-culturable samples, a method that has been previously
used successfully for industrially relevant biocatalysts [95,96]. To date, it has yet to be
used for the identification of plastic-degrading enzymes, although there is a large amount
of potential for this technique. Within the field of plastic degradation, it has been used
as a multi-omics technique for the characterisation of a marine microbial community, in
which they were able to elucidate a mechanism for PBAT film degradation, demonstrating
potential for this technique that has perhaps not yet been fully exploited [97].

This method has also been used as a confirmatory test, to ensure that proteins thought
to be involved in plastic degradation are indeed functional throughout the metabolic
process. This confirmatory testing was done with I. sakaiensis, to prove certain catabolism
genes involved with PET degradation were indeed expressed on disodium terephthalate
(TPA-Na), bis(2-hydroxyethyl) terephthalate (BHET) and PET, but not on non-polymer
substrates such as maltose [25]. Transcriptomic analysis will aid the discovery of enzymes
that may break down the metabolites of plastic degradation, along with providing a more
complete picture of the pathways involved, as well as confirming suspected polymer
degradation genes and providing screening targets for novel microorganisms.
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9. Processing of Putative Enzymes

Whilst genomics methods and computational approaches such as those above can
identify putative genes that may encode for enzymes of interest, it is important to under-
stand how such candidates fare in an industrial setting to ensure that they can provide a
relevant option for industrial scale processing of plastics. This can involve a number of
steps to analytically confirm depolymerisation, to functionally characterise the enzyme,
and to understand enzyme kinetics. These steps and methodologies are summarised in
Figure 5, and discussed in more detail below.
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10. Protein Functional Domain Analysis

Once genes of interest have been identified using the sequencing methodologies
detailed above, the putative proteins of interest may be identified based on amino acid
sequence similarity with protein sequences from known databases using tools such as
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BLAST. However, overall sequence identity may not necessarily be a reliable parameter
for identifying functionally similar proteins. Whilst two proteins may show significant
overlap in their amino acid sequence, one may lack short but nevertheless critical regions
such as functional domains. On the other hand, when there is dissimilarity between the
protein of interest and the proteins within the databases, it must be discerned whether this
dissimilarity is the result of finding something novel or finding something non-functional.
A more reliable approach is to define orthologs with the help of dedicated tools such as
eggNOG-mapper2, which take into account not only similarity but also other functionally
relevant features [98]. However, these tools are imperfect, as demonstrated by a study in
which only 41% of enzyme hits from a plastic degrading database search, were able to
be successfully annotated with enzyme classifications using eggNOG-mapper [92]. Thus,
whilst looking at sequence similarity and orthology is useful, it is not sufficient for the
identification of novel proteins. It is important to map the functional domains within the
protein in order to fully understand potential protein functionality, as well as similarities
and differences with those already known.

For this, tools such as Interproscan [99], in which HMMs are used to predict functional
domains in proteins of interest, can be used [92]. An advantage of using this over sequence
similarity alone, is that it can detect when proteins are non-functional such as when a
gene is present but damaged, or when a gene has modifications to the functional domains
required for substrate degradation [100,101]. However, investigating the functionality
of protein domains for every individual putative protein can be time consuming and
laborious, especially initially when the domains of interest are unknown. For investigation
of depolymerase protein functionality, databases such as PlasticDB [88] expedite the process
as it collates all the proteins associated with plastic degradation, thus narrowing down the
search. However, as yet, there is no depolymerase reference database containing both the
proteins and the functions of the domains relevant for depolymerisation associated with
them. The existence of such a database would greatly expedite investigation of domain
functionality and make it a more feasible option for routine use.

Ultimately, tools such as Interproscan are only capable of making predictions. To
understand fully the role and potential applications for a protein of interest, its function-
ality must be confirmed using other methods, including laboratory validation and using
computational docking models. Whilst investigating every single functional protein of
interest would be extremely time consuming and impractical, it is feasible to select the most
promising candidates for further characterisation.

11. Proving Depolymerisation

In addition to predicted function of identified enzymes based on homology, recombi-
nant or wild-type organisms can be characterised by their ability to depolymerise plastic.
Inexpensive methods, such as identification of clearance zones on agar-polymer plates,
can be a good initial method to confirm the depolymerisation activity of organisms of
interest [54]. However, it is important to note that this method, although a good prelimi-
nary method, may lack accuracy, as break down of a polymer on agar does not necessarily
confer the ability to break down the polymer in other forms, such as polymer-film [102].
Similarly, it may be that the microorganism is thriving on the plastic because it is utilising
additives mixed into the plastic as a carbon source, instead of the polymer itself [103]. It is
also worth noting that, whilst agar screening with PEG (a biodegradable plastic) [104,105]
can provide insight on potential plastic-degraders, it will have limited applicability to
non-biodegradable plastic. Thus, although agar clearance paired with sequencing may be
a useful way to identify candidates, organisms which have passed the screening method
should have results confirmed with an orthogonal and sensitive method to clarify depoly-
merisation activity.

Sensitive analytical chemistry methods for examination of depolymerisation activ-
ity are reviewed in depth by Carniel et al. [106]. In short, two approaches can be made
for measuring depolymerisation: monitoring of break-down products or monitoring of
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substrate modifications. Released monomers can be monitored using methods such as high-
performance liquid chromatography (HPLC) and measuring absorbance [107]. Changes
in the plastic polymer can be identified by measuring weight loss and using techniques
such as Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy
(FTIR) [58,107]. Such approaches should have sufficient sensitivity to be able to record a
discernible change over time. Discoloration of the polymer alone is not sufficient, as the
changes are too subtle to be noticeable and are not measurable [108], and suitable negative
control groups should be included so that abiotic degradation can be accounted for [109].
There are also enzymes which are only capable of modifying the polymer surface and
not the plastic as a whole, with the activity level such that the effects cannot be observed
under SEM [110], showing the importance of demonstrating significant degradation from
newly discovered enzymes. Furthermore, target polymers may or may not be biodegrad-
able [12–14], and whilst there is value in finding a solution to expedite the break-down
of biopolymers, it would be more beneficial for research to focus on the pressing issue of
non-biodegradable plastics [10]. All of these points should be considered when conducting
investigations of depolymerisation to ensure accurate measurements are taken relative to
the enzyme and target polymer of interest, which is essential to allow benchmarking of
measurements between studies.

12. Enzyme Isolation

The advantage of utilising WGS, metagenomics and data mining concurrently, is
that once a depolymerase gene sequence is identified, it can be manipulated into expres-
sion vectors for recombinant protein production [63,79,111]. Similarly, functional proteins
of interest which have been identified after functional domain analysis can also be re-
combinantly expressed. Although protein secretion can be predicted using tools such
as SignalP [112], which identify the presence of signal peptides (found in secreted and
transmembrane proteins) from amino acid sequences, the cross-disciplinary nature of the
work makes laboratory-based enzyme expression extremely challenging. Such difficulties
may explain why many bioinformatic and metagenomic discovery papers show no such
follow up laboratory tests [29,53,74,113]. In such instances, the use of molecular dynamics
simulations to further characterise enzyme-substrate interactions [113–115] can be very
beneficial for demonstrating enzyme-substrate compatibility. Although simulation studies
can provide significant insight to enzyme kinetics, a greater understanding can be achieved
when structural and laboratory-based functional tests are performed in parallel to one
another [59]. Thus, whilst it is important to note that recombinant enzyme expression has
limitations, since many proteins are difficult to produce due to toxicity to the cell, instability
or lack of solubility in the host system [116], those which are successful, would benefit from
further laboratory characterisation. Furthermore, for industrialisation, cellulytic lysis to
release the enzyme can be costly [117], thus it is advantageous to produce extracellular,
secreted proteins instead of intracellular proteins.

13. Structural Characterisation and Enzyme Kinetics

Once an enzyme of interest has been identified, and depolymerisation has been ex-
perimentally observed, a deeper understanding of the protein form and function can be
obtained by performing in-depth characterisation studies to understand the enzyme’s
ability in the context of the field. A critical, but difficult to deploy technique is X-ray crys-
tallography [118,119]. Often X-ray crystallography is performed in parallel to enzymatic
activity analysis, helping to capture the “big picture” of how the structure of the protein
relates to the observed activity of the enzyme [120]. However, this analytical method can
be painstaking, time consuming, and is not feasible for high-throughput work. Some of
this difficulty can be overcome by modern developments in technology, for example with
the release of the tool AlphaFold2 (https://alphafold.ebi.ac.uk; accessed on 28 September
2022) from the DeepMind team [68]. AlphaFold2 can predict the tertiary structures of
proteins using only the protein sequence, with a high level of accuracy [121]. It requires

https://alphafold.ebi.ac.uk
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less specialist skill and equipment than X-ray crystallography and represents a significant
leap in technology. Combined with increases in sequencing data accumulation, it can be
further trained for even more accurate predictions in the future [122], thus holding great
potential for advancing this field and making such techniques accessible to scientists who
may not be experts of enzyme characterisation.

Enzymes can be further characterised in the laboratory by calculating how much
polymer is degraded under controlled conditions within a pre-defined time frame, using
an end-point activity assay. In this assay, the reaction is stopped after a set time and the
presence of oligomers and monomers is tested [123]. The benefit of enzymatic activity
assays is that they are simple to execute, measurable, and reproducible, although there is
no standardised method for such assays and so, understandably, methods are often not
consistent between research groups. It is worth keeping in mind, that variables such as the
duration of enzyme exposure, the particle size, polymer crystallinity, or the pH used can all
vary [123,124], which can give the illusion that one enzyme is more effective than the other,
when in reality the conditions may be vastly different.

Usually, the gold standard approach for characterising enzymes is to perform Michaelis-
Menten kinetics, producing a standardised measure of substrate binding affinity and
substrate turnover comparable between studies. This can be more easily calculated for
water-soluble polymers [125], but traditional Michaelis-Menten kinetics behave differently
for insoluble substrates and have limited applicability in such cases [126]. One solution
is to reverse the reaction so that instead of steadily increasing the substrate until the en-
zyme becomes saturated, the enzyme is steadily increased until the substrate becomes
saturated [126]. This inversed method creates an opportunity for characterising enzymes
on solid substrates in a way that is more readily comparable between research groups.
However, once again, this method requires a large amount of time and skill and so is not
commonly standard practice. Regardless, if this technique could be utilised on a small
number of the most-promising enzymes, it would be hugely beneficial to creating a bench-
marked enzyme. Once a benchmark for enzyme comparison has been set using robust and
reproducible methodologies, the applicability of each putative depolymerase for use in
industrial bio-recycling can be considered.

14. Industrial Relevance

Criteria for industrial relevance (Figure 6) should be evidence driven, relying on life
cycle and techno-economic analysis (TEA). For example, PETase is the most thoroughly
characterised enzyme to date, and extensive work has been done to analyse the industrial
feasibility of PET enzymatic recycling. A TEA by Singh et al. [127] for PET found that
current chemical and mechanical recycling methods have a low tolerance of contaminants
in the plastic waste (feedstock) for recycling. Being able to recycle mixed PET recycling (i.e.,
textiles, fabrics, and carpets as well as bottles), and contaminated waste (i.e., dyed fabrics)
could change the landscape of enzymatic recycling. If this could be further expanded to
waste of mixed-polymer types, then the associated costs and energy consumption of waste
collection and pre-treatment could be greatly reduced.

Other key cost and energy drivers include the quantity of polymer solids loading.
Laboratory enzyme characterisation tests use very low quantities of substrate (<5%) and
are performed typically in small volume which do not replicate industry conditions [128].
However, for an enzyme to be economically viable and environmentally friendly it must be
able to cope with higher substrate loading (>15% weight) [128,129]. Thus, enzymes should
be characterised in small-scale stirred vessel reactors with pH control which more closely
mimic the industrial conditions that they will have to deal with, including testing with
high substrate loads [128].
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For an enzyme to be industrially relevant it must ultimately provide a solution which
is more cost-effective and environmentally friendly than the synthesis of virgin polymer.
This is done by making recycled polymer economically favourable compared to the virgin
material. As yet, the models looking at energy consumption of enzymatic PET recycling
found that it requires more energy than the synthesis of virgin PET [127,129]. A life cycle
analysis of PET recycling found that currently PET enzymatic recycling performs 1.2–17 times
worse than virgin polymer production, with the exception being that it reduces fossil fuel
consumption [129]. This is mostly due to electricity consumption as well as the collection and
pre-treatment of waste that is needed before enzymatic recycling can be performed, however
these are processes that are associated with other approaches to recycling. Cryogrinding PET
into micronized powder has been shown to enhance enzymatic depolymerisation, and other
pre-treatments to amorphize PET has also been effective in enhancing breakdown [130,131].
Though, enzymes which are capable of breaking down PET in its crystalline form would
remove this step and thus reduce the energy consumption and costs of recycling [117,129].
Similar analyses are required for other polymer types, but the core principles will largely
remain the same.

In order for enzymes to function in stirred bioreactors and to be economically and sus-
tainably viable, depolymerases should have a high substrate turnover (>90% conversion [127])
and be sufficiently thermotolerant to function at either the melting temperature (for crystalline
polymers), or the glass transition temperature (for amorphous polymers) for the required
length of the recycling process [110]. Although the glass transition temperature can be reduced
when the enzymatic reaction is performed in aqueous solutions [132,133], this temperature is
still typically higher (80 ◦C reduced to 60 ◦C for PET [133]) than the ambient, environmental
conditions from which the microbes which produce these enzymes are usually isolated. Thus,
in the absence of the discovery of an enzyme which can break down highly crystalline plastic
polymers, enhanced thermostability is required for industrial usage.

Increased thermotolerance of candidate enzymes has been demonstrated using protein
engineering approaches [106,134,135]. However, reducing the temperature at which the
enzyme is most effective also has benefits [136], as slow recycling of plastic at lower
temperatures may offer a more economically viable and environmentally friendly solution.
Targeting extremophilic bacteria for the discovery of more thermotolerant enzymes could
therefore offer alternative solutions to protein engineering [137], alongside previously
demonstrated enzyme modifications for increasing PET substrate turnover. Previously
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explored approaches include narrowing the binding cleft of the IsPETase active site [138],
or the design of robust and highly active PETase using a deep learning algorithm [139].

It is also worth noting that for industrial deployment, there must be approval and input
from stakeholders, academics, and policy makers alike (Figure 7). Bringing enzymes from
research laboratories to wide-scale implementation needs governmental oversight and policies.
This can be achieved through programmes such as the UKRI-funded National Interdisciplinary
Centre for the Circular Economy (https://www.ukri.org/what-we-offer/browse-our-areas-
of-investment-and-support/national-interdisciplinary-circular-economy-research-nicer/; ac-
cessed on 28 September 2022), or similar such programmes in other countries. For the
purposes of understanding the social, economic and political context impacting the adop-
tion & scaling of bio-recycling technologies, it is likely that these would be similar between
other depolymerising chemical recycling technologies. These enablers to future adoption of
enzyme-enabled recycling are integral. Such enablers include clarification of its role in the
waste hierarchy, wider stakeholder understanding, and approval of chemical recycling and
movement towards cross-chain collaboration and investment [140].
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15. Discovery by Sequencing Workflow

A newly discovered enzyme candidate should ideally be as (if not more) effective
than the leading enzymes currently available, or else offer a compelling alternative to
justify continued exploration. When observing depolymerisation of plastic cultured with
a microorganism, Lear et al. [103] suggest that potential candidates should produce at
the least a 20% mass loss of polymer during depolymerisation weight loss studies to
be considered. If research progresses to enzymatic characterisation using cloning and
inverse Michaelis-Menten kinetics then the enzyme kinetics should be equivalent or better
than those of known depolymerases. Indeed, Lear et al. [51] proposed a best practice
workflow for enzyme discovery, which we adapt below with an emphasis on discovery by
sequencing (Figure 8). Given the cross-disciplinary nature of these techniques, and the level
of highly specific expertise required, some steps may be unfeasible for researchers without
access to the relevant facilities. Similarly, each step requires complex biological techniques
requiring significant optimisation and development. Despite this, the suggested steps
below represent an optimum approach to a robust pipeline for discovery and deployment
of industrially relevant enzymes for plastic recycling:

https://www.ukri.org/what-we-offer/browse-our-areas-of-investment-and-support/national-interdisciplinary-circular-economy-research-nicer/
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1. Samples collected from the environment should undergo culturing and screening for
plastic-degrading activity followed by WGS, or metagenomic analysis.

2. Enzymes of interest may also be discovered through database scanning approaches or
ML techniques.

3. Species of interest should be identified and submitted to culture databases, provided
that the organism has been isolated and is culturable.

4. Any identified depolymerase genes should also undergo functional domain analysis to
identify likely active site motifs, and transcriptomics used to confirm gene expression.

5. Depolymerisation should be measurable and significant. If rapid screening has been
performed using methods such as agar clearance zones, especially if screening has
been performed using biopolymers, then depolymerisation should be measured using
the target plastic. Additionally, the plastic composition and molecular weight should
be detailed.

6. If depolymerisation has been proven to be significant, then candidates should be
taken forward for in-depth enzyme characterisation and kinetic analysis.

7. The most promising candidates may then be engineered in vitro with the view to
creating an industrially relevant enzyme.

8. The most promising putative enzymes should be taken forward for upscaling to
industry. This should include exposure to a high substrate load, as would be required
in large scale recycling.
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16. Conclusions

Recent developments in the field of biological sciences have used analytical techniques
to identify mechanisms within the environment that can provide the potential for address-
ing the man-made problem of plastic waste in our environment. Evidence suggests that
there is likely a rich abundance of depolymerase homologs present in the environment
across the globe which may be exploited for use in plastic degradation [92,113]. This has led
to the development of an exciting and fast-evolving field, in which advances in sequencing
and ML have offered opportunities to find and define not only organisms of interest, but
the specific enzymes and genes involved in the mechanisms of degradation. This has built
upon the analytical methodologies that have allowed for the in-depth characterisation and
analysis of these discovered enzyme candidates, forming the foundation of the field.

Although a significant amount of work has been conducted over the past decade to
optimise and exploit these systems, there remains a gap between discovering these enzymes
and ensuring that they are suitable for purpose and can be upscaled for industrial use. One
difficulty is that the analytical methods for identifying, characterising, and engineering
these enzymes span many distinct fields of research, with teams of microbiologists, molecu-
lar biologists, analytical chemists, structural biologists, and bioinformaticians required for
characterising novel enzymes. Whilst cross-disciplinary research is now becoming more
standardised, such complementary skill sets are not always available to researchers. In ad-
dition, the limitations in benchmarking due to difficulties when deploying these analytical
methods proves an issue when characterising candidate enzymes. While these techniques
have allowed for breakthroughs within this research area, alongside cutting-edge ‘omics ap-
proaches and computational analysis, certain steps within the process should be considered
‘best practice’ to push the field further and allow for further breakthroughs. As proposed
within this review, studies should aim to provide evidence of depolymerisation on non-
biodegradable plastics and use standardised quantitative depolymerisation or enzyme
characterisation techniques so that candidates can be benchmarked against one another.
Additionally, it is important to focus on novel candidates that represent opportunities for a
step change in function compared to previously existing enzymes. Research time can then
be efficiently spent on engineering and upscaling candidates with true potential for having
a major impact at an industrial scale and can be considered by the relevant policy and
stakeholders for use. Ultimately, it is the combination of the cross-disciplinary approaches,
in particular developing novel discovery methodologies alongside foundational analytical
techniques, which will advance this area of research as a whole, increasing throughput for
the identification of enzymes that will offer solution to the global plastic problem.
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