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Abstract: Electric vehicles (EVs) are predicted to be highly integrated into future smart grids con-
sidering their significant role in achieving a safe environment and sustainable transportation. The
charging/discharging flexibility of EVs, which can be aggregated by an agent, provides the op-
portunity of participating in the demand-side management of energy networks. The individual
participation of consumers at the system level would not be possible for two main reasons: (i) In
general, their individual capacity is below the required minimum to participate in power system
markets, and (ii) the number of market participants would be large, and thus the volume of individual
transactions would be difficult to manage. In order to facilitate the interactions between consumers
and the power grid, an aggregation agent would be required. The EV aggregation area and their
integration challenges and impacts on electricity markets and distribution networks is investigated
in much research studies from different planning and operation points of view. This paper aims to
provide a comprehensive review and outlook on EV aggregation models in electrical energy systems.
The authors aim to study the main objectives and contributions of recent papers and investigate the
proposed models in such areas in detail. In addition, this paper discusses the primary considerations
and challenging issues of EV aggregators reported by various research studies. In addition, the
proposed research outlines the future trends around electric vehicle aggregators and their role in
electrical energy systems.

Keywords: electric vehicles (EVs); electric vehicles aggregator (EVA); electrical energy systems;
demand side management; energy saving

1. Introduction

Modern transportation systems all over the world face considerable and substantial
challenges due to climate change and limited sources of fossil fuels because of environ-
mental and economic issues [1,2]. Electric vehicles (EVs), which have strongly penetrated
in power and transportation sectors, are predicted to significantly emerge as alternative
vehicles for the existing transportation system in upcoming years [3]. Due to rising fossil
fuel prices and associated environmental concerns, EVs are seen as a viable alternative to
conventional automobiles, and it is anticipated that their use will soon skyrocket. However,
there will be several practical and technological challenges associated with the widespread
use of EVs and their extensive integration into the energy system [4]. The integration of
EV batteries into the electric networks provides possibilities of purchasing power from the
grid as a load or transferring power to the grid as an energy source [5]. Accordingly, there
are good motivations for developing EVs, including economic benefits, environmental
advantages, energy security, and costs associated with oil consumption for transporta-
tion [6]. The researches in the area of EVs include optimal control strategies of EVs [7,8],
investigation of the effect of EVs in electric power networks [9–11], frequency control of
power systems in the existence of EVs [12,13], the proposal of various storage systems for
EV batteries [14,15], power market analysis in the presence of EVs [16,17], allocation of EVs
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parking lots [18,19], modeling and forecasting EV demand [20,21], the effect analysis of
EVs from an environmental viewpoint [22,23], and the optimal planning issue of power
systems in the presence of EV charging stations [24,25].

The high penetration of distributed generation and electrical energy storage systems
in power systems have created principal changes in such systems. Power system regulators
and operators tend to prepare a condition for participating in demand-side management
programs in energy markets [26]. The electric vehicle aggregator (EVA), which was intro-
duced due to the large-scale introduction of EVs, can be introduced as an agent between
the EVs and the electrical energy systems and has sufficient flexibility for participating in
demand-side management. Consumers could not participate individually at the system
level for two key reasons: (a) They generally do not have the necessary level of individual
ability to participate in electricity system markets, and (b) there would be many participants,
which would make it challenging to regulate the volume of individual transactions. An
aggregation agent would be necessary to simplify interactions between consumers and the
electricity system. The main responsibility of the EVA is to manage, charge, and purchase
electricity for vehicles. The EVA takes advantage of obtaining additional revenues from
participating in the energy market and charging cost decrements to EV owners. In other
words, the EVA is considered a large source of a power production unit or load from the
system operator’s point of view, which coordinates ancillary services such as spinning and
regulating reserve.

Recently, several review papers have been published on the application of EVs in
electric networks. In [27], the authors intended to give an overview of current EV control
structures in charging stations, EV management goals in power systems, and EV charge
and discharge management optimization approaches. In this study, the goals that can be
achieved with the effective charge and discharge management of EVs are separated into
three groups of network activity, economic, and environmental goals and examined. The
authors in [28] have investigated managed EV charging, giving a broad overview of its cur-
rent implementations and costs in the United States, critically evaluated the methodologies
used in studies that analyze and model data, and quantified the costs and advantages of
managed charging. The market for EV charging infrastructure is examined in [29] with a
focus on the various charging methods already in use, the key market players and their
primary roles, and the upcoming regulatory requirements for wide-scale expansion. The
authors have studied the impact of EVs in distribution networks in [30] based on driving
patterns, charging characteristics, and vehicle penetration. The combination of EVs, re-
newable energy sources, and electrical energy systems have been reviewed in [31], where
EVs’ economic, environmental, and grid aspects have been discussed. The investigations
have shown that wind energy is more effective in integrating EVs, where unwanted wind
energy can be considered an energy source for charging EV batteries. In [32], a compre-
hensive review has been prepared on different smart charging concepts and strategies for
EVs, where practical projects all over the world have been presented. The authors have
reviewed various charging strategies for EVs and studied major requirements, advantages,
and challenges of vehicle-to-grid (V2G) systems in [33]. In [34], the effects of uncertainty
parameters in studying the decision-making of EV aggregators in competitive markets are
investigated to maximize the aggregator profit and minimize the payments of EV owners
and are studied as a bi-level problem. The published research on the current status and ef-
fect analysis of V2G technology on electric distribution systems have been reviewed in [35].
A stochastic bi-level scheme for EV aggregators in a competitive environment is proposed
in [36], where the participation of the aggregator in day-ahead and balancing markets
are studied to maximize its expected profit. In addition, researchers have introduced the
requirements, challenges, benefits, and various strategies for V2G interfaces. Moreover,
different review papers have been published around battery degradation and instantaneous
charge/discharge models of EVs [37], financial analysis of purchase incentives for the EVs
owners [38], various approaches proposed for EVs usage modeling [39], the coordinated
operation of the distribution network and EV aggregators [40], and different frameworks
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introduced for the optimal design of EVs systems [41]. Remarkable efforts have been made
around EVAs in recent years due to the positive effect of such aggregators in demand-side
management.

According to the analysis of the literature that was just completed, most of the publi-
cations explain the broad idea behind EVs charging management and operations in energy
systems. There is a lack of condensed advanced literature, which contains information on
EV aggregation fundamentals, advantages, techniques, and forward-looking recommen-
dations. To the authors’ best knowledge, no review paper has been published on EVAs
and the different challenges of such aggregators in electrical energy systems. This study
aims to overview the current literature around the application of EVA in electric energy
systems. The existing literature and most contributions of the published research have been
proposed with recommendations for future trends. In comparison to the literature that has
been presented, this work makes the following detailed contributions:

• In this work, the most recent findings on the study of EVA in energy systems and
management techniques for EV applications are reviewed.

• The authors have discussed the literature around EVA challenges regarding participa-
tion of EVAs in energy markets and their role, bidding strategies in energy markets, the
effect of EVAs on energy system characteristics, and the planning of power systems,
considering the integration of EVAs.

• This work has discussed the comparative criticism of the recently proposed EVA
models for operation in energy systems and markets.

• This study offers the research gaps and future research guidelines based on compara-
tive critiques.

The remainder of this paper is organized as follows: Section 2 reviews the current
literature with various contributions and main findings of research papers around EVAs.
Future trends are presented in Section 3 to recommend novel ideas and research gaps and
future guidelines around EVAs. Finally, the paper is concluded in Section 4.

2. Literature Review and Detailed Discussion

This section aims to study the main research areas on EVAs, focusing on the main
contributions and a detailed discussion. Different research studies have been investigated
in recent publications around EVA, which are demonstrated in Figure 1.
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2.1. Optimal Bidding Strategies for EVAs

The capability of the participation of EVAs in the day-ahead energy and energy markets
provides the opportunity of obtaining profits by proposing an optimal bidding strategy. A
comprehensive viewpoint of optimal bidding strategies for EVA is demonstrated in Figure 2.
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The main contributions around optimal bidding strategies for EVAs contain uncertainties
of market bids, driving patterns, and forecast errors of driving behavior based on stochastic
and robust schemes and risk analysis of optimal bidding strategies. In addition, energy
and secondary reserve bidding strategies, demand response exchange (DRX) market, and
decentralized balancing opportunities are studied around bidding strategies for EVAs.
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Table 1 gives a summary of recently published papers around optimal bidding strate-
gies for EVAs from different viewpoints, considering their main contributions, considera-
tions, and research gaps.

Table 1. A summary of recently published papers around optimal bidding strategies for EVAs from
different viewpoints.

Ref. Main Contributions Considerations Research Gaps/Future
Directions Published Year

[42]
EVA user-comfort
day-ahead and reserve
market bidding

Uncertainties of EV
drivers’ behavior,
comfort of EV drivers
within participation in
electricity market.

Sharing revenues and
prioritizing charging through
bilateral agreements between EV
owners EVAs

2020

[43]

Optimal bidding strategies
of EVAs based on indirect
load control in day-ahead
markets

Bilevel programming,
application of exact
relaxation concept for
handling constraints of
the problem

Computational time analysis for
large case studies 2022

[44]

EVA bidding strategies
based on game theory
presence of wind power
producers

Risks arising from
imbalance wind
power–EV, study of EVAs
in regulation, balancing,
and day-ahead markets

Competition of EVAs with other
entities like DR aggregators 2022
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Table 1. Cont.

Ref. Main Contributions Considerations Research Gaps/Future
Directions Published Year

[45]

Multi-stage stochastic
modeling of EVA bidding
strategies in energy
markets

Continues grouping and
regrouping aggregated
EVs based on their
departure time

Consideration of the
uncertainties associated with the
departure time of EVs

2022

[46]
Competitive bidding
strategies of EVAs and
wind power plants

Bilevel programming and
stochastic optimization

Computational time analysis for
large case studies 2021

[47]

Competitive
bidding/offering strategies
of EVAs and wind power
generators

Risk analysis based on
conditional value at risk
method

New entrants can be taken into
consideration for their higher
potential competitiveness in the
power market, influence of
reserve provision and energy
market arbitrage on wind
turbine failure

2022

[48]
Optimal bidding strategies
of EVAs considering fast
charging stations

Risk analysis of charging
demands and power
market prices based on
conditional value at risk
method

Coordination of EVAs with
optimal pricing of EV charging 2020

[49]

Collaborative Optimal
bidding strategies for
various intermittent
resources including EVAs
and renewables

Risk analysis based on a
novel distributionally
robust optimization
concept

Computational time analysis for
large case studies 2020

[50] Multi-time scale optimal
bidding strategies of EVAs

Estimation of EVs
degradation cost on a
5-min time scale

Consideration of the
uncertainties associated with the
arrival/departure time of EVs

2020

The optimal bidding strategy of EVAs in the day-ahead power market has been
studied in [51] to obtain the minimum charging cost of EVs, meeting their flexible demand.
Accordingly, bi-level programming has been proposed for the bidding strategy, where
the charging cost of EVAs has been minimized at the upper level, considering the power
constraints of EVs. In addition, the lower level handles the market clearing process, where
the bidding of other participants of the market is not based on the aggregator’s bidding
behavior. Similar research has been accomplished in [52], where the optimal day-ahead
bidding framework has been proposed for EVA to minimize the charging cost of EVs
without considering the capability of V2G. The bi-level programming is introduced for
studying the charging cost at the upper level and market clearing at the lower level. In this
study, the uncertainties of market bids and driving patterns have been considered in the
proposed model, which aimed to provide optimal bid volumes and prices. A stochastic,
robust optimization framework is proposed in [53] for an optimal bidding strategy of EVA,
considering uncertain parameters of the problem which include power prices and driving
patterns of the EV drivers. Optimal bidding of EVA in the day-ahead electrical energy
market has been studied in [54,55], using two alternative optimization concepts, which
include global and divided concepts. The global and divided methods utilize aggregated
values and individual information from each EV in solving the problem, respectively. After
determining the optimal bidding, the operation management is accomplished to define
the deviation between the accepted bids and consumed electrical energy by EVs. In [56],
the authors have proposed optimal manual reserve bidding of EVA, where day-ahead and
hour-ahead operational management concepts are introduced. In this research, forecast
errors associated with driving behavior and characterization of information by individual
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EVs are studied. The proposed operational management concepts are effective in reducing
deviation costs and ensuring a reliable transfer of manual reserve. A novel day-ahead
optimization framework between energy and secondary reserve bidding strategies has
been proposed in [57], where a new operational management method is introduced based
on characteristics of the secondary reserve for minimizing differences between contracted
and realized values. The proposed method in this study considers the possibility of offering
a reserve band in both upward and downward directions. The authors have studied the
optimal bidding strategy of EVAs in the energy market and various regulation reserve
markets [58]. In addition, the degradation cost of EV owners has been considered in the
proposed model. The voluntary reserve markets with price-quantity offers are studied
by proposing a realistic concept. The proposed strategy has a risk-averse characteristic,
where the probability of acceptance and up- and down-regulation are considered. The
participation of EVA in day-ahead and intraday power markets has been investigated
for the demand response exchange (DRX) market in [59]. So, the authors have presented
a multi-stage stochastic approach to attain optimal performance of the aggregator by
studying the EV minimum connection duration (MCD) and uncertainties of market price,
driving patterns of EV drivers and activated quantity of reserve. A new market agent
taking part in the power market on behalf of a wind plant owner and an EVA is introduced
in [60], playing the role of the prosumer. The prosumer co-optimizes the energy supply
offers and demand bids for increasing the profit of the wind energy producer and EVA by
obtaining optimal management. A decentralized balancing opportunity is provided by the
proposed model, which balances the extra energy generated by wind units and real-time
increase in the EV consumption rate. In [61], the authors have proposed a stochastic model
for the optimal bidding strategy of EVAs in day-ahead energy and regulation markets,
considering market conditions and characteristics of an EV fleet. Accordingly, stochastic
linear programming is proposed to study and investigate the systematic treatment of the
instructed and uninstructed energy deviations, considering the system operator or EVAs
as responsible, which plays a significant role in the bidding strategy of the aggregators.
A risk-based optimal bidding framework is proposed for the participation of day-ahead
energy and ancillary services in [62] using Monte Carlo Simulation (MCS). The uncertainties
associated with EVs forecast errors, load, power supply of wind turbines, and production
units, and the risks that appeared as a reason for uncertainties are handled utilizing
conditional value at risk (CVaR). In [42], an optimal bidding strategy for EV aggregators
is proposed based on a paradigm in which it offers/bids for the day-ahead (DA) and
secondary reserve markets to reduce total cost. Furthermore, concerns linked to EV owners’
behavior and market prices are addressed by using stochastic scenarios with real data. An
optimal bidding technique for an EV aggregator engaging in day-ahead marketplaces is
investigated in [63], where based on the real need of the EV user, two typical agent modes
between the EV aggregator and the EV user are introduced, namely the centralized protocol
management mode (CPMM) and the decentralized demand response mode (DDRM).
In [64], for charging electric vehicles, a power price management technique is proposed
based on the bidding strategies of EV aggregators in the real-time energy market. In this
study, the batteries of EVs are managed centrally by aggregation managers who take into
consideration the grid’s limited power supply during peak electricity usage and adjust
the demand for charging through electricity pricing regulation. Under market uncertainty,
the authors in [65] provided an optimization model for determining day-ahead inflexible
bidding and real-time flexible bidding. The suggested EVA optimum bidding model, which
is based on the link between market price and bid price, tries to minimize the conditional
expectation of electricity purchase cost in two markets while taking price volatility into
account. The authors in [66] provided a strategic bidding model for a group of price-taker
plug-in EV aggregators that share a distribution network and compete in both day-ahead
energy and ancillary service (i.e., up/down-regulation reserve) markets. In [67], a new EVA
coordination strategy is proposed for handling various self-interested EVAs, applying the
price-maker bidding method. The proposed model coordinates bids offered by aggregators
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in the day-ahead electricity market for achieving reduced costs. The proposed coordination
method scales linearly with fleet size and the number of EVAs participating in the electricity
market, which makes it capable of dealing with arbitrary, large systems.

2.2. Optimal Operation and Control of EVAs

The capability of supporting EVA operation by the existing grid infrastructure and
technology can be introduced as an advantage of grid-to-vehicle power. Figure 3 shows a
general viewpoint of research studies around the optimal operation and control of EVA. The
main contributions of research around the optimal operation and control of EVAs contain
uncertainties associated with market prices and EVs behavior, risk-averse scheduling, and
studying the subject considering the penetration of renewable energy sources. Additionally,
the adoption of model predictive control based, interruptible load (IL), and the analysis of
power losses are examined in recent studies.
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A summary of recently published studies on the optimal operation and control of
EVAs is provided in Table 2, along with a discussion of the papers’ primary contributions,
limitations, and research gaps.

Table 2. A summary of recently published papers around optimal operation and control of EVAs.

Ref. Main Contributions Considerations Research Gaps/Future
Directions Published Year

[68]
Decentralized optimal
operation model of energy
hubs and EVAs

Uncertainties of power
market prices and EV
drivers’ patterns

Networked constrained optimal
operation of energy hubs and
EVAs as well as V2G mode

2021

[69]
Multi-agents based optimal
operation of EVAs in
microgrids

Power price
uncertainties, prediction
of domestic loads

Precise forecasting and
evaluation of enough amount of
data considering uncertain
parameters

2022

[70]

Hierarchical-robust load
management model for
efficient
charging/discharging of
EVs

V2G and real time and
day-ahead energy
markets

Consideration of the
uncertainties associated with the
SOC of the EVs in arrival time

2022
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Table 2. Cont.

Ref. Main Contributions Considerations Research Gaps/Future
Directions Published Year

[71]
Optimal robust operation
of distribution networks
with EVAs

Considering load
curtailments and
uncertainty of
uncertainties in charging
demands of EVA

Real-time operation model and
uncertainties of other parameters
like electricity price

2022

[72]
Hybrid robust-stochastic
operation of EVs
considering renewables

Uncertainties associated
with power price, EV
load and renewable
power, the effect of
battery storage for EV
parking lots

Real-time operation model of EV
parking lots 2021

[73]

Decentralized coordinated
optimal operation of EVAs
with V2G services
considering objectives of
both EVA and distributed
generators

Consideration of
distribution system
operator constraints like
power losses and bus
voltages

Research on combined effect of
network reconfiguration in line
with EVAs for analyzing system
characteristics

2022

[74]
Energy management
concept of EV battery
swapping station (BSS)

Participation of BSS in
day ahead, real-time, and
ancillary markets, a game
theory model for
incentive-based
vehicle-to-vehicle
operation

Deployment of the proposed
model to large-scale residential
communities and industries

2019

[75]

Optimal operation of EVAs
based on sac deep
reinforcement learning
concept

Real-time model of
grid-connected EV
charging stations

Computational time analysis
and consideration of constraints
of the energy network

2020

The authors have studied the short-term distribution network scheduling under
uncertain conditions in [76], where an ideal robust model is put forth in order to reduce
network operation costs. This study used the robust optimization method to handle the
pricing uncertainty of the power market.

The authors in [77] presented a novel method for resolving the problem of uncertainty
in EV aggregators, in which the uncertainty-based profit function is transformed into a
deterministic multi-objective problem with deviation and average profits as conflicting
objective functions, with the average profit aiming for the maximum, while deviation
profit aims for the minimum. In [78], a robust optimization technique is used to study the
robust scheduling of EV aggregators in the face of price uncertainty. The suggested EV
aggregator in this study engages in the power market to maximize profit, where the upper
and lower amounts of upstream grid prices are employed instead of the forecasted prices
to model market price uncertainty with the given technique. The coordination between
EV charging stations and EVs is investigated in [79], assuming that they are operated by
non-cooperative parties. A mixed integer linear optimization model is used to optimize the
operation strategies of EV charging stations, while an integer optimization model provided
the best operation strategy for EVs. In [80], a novel mechanism for supplying the system’s
energy during the operational day is proposed, based on contractual agreements between
owners of EVs and the smart microgrid. The suggested approach allows for the integration
of EVs parked in official parking lots into the operation of a smart microgrid and the
generation of revenue. The major concerns explored in [81] are optimal self-scheduling
of EV aggregators, network operation indices, and distribution system operator policies
on the aggregator’s performance. In an incentive and regulatory structure, the suggested
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strategy maximizes the aggregator’s daily profit by participating in day-ahead and real-
time markets and supplying power quality services to the distribution system operator.
In [82], the stochastic scheduling of EVAs is presented, considering the uncertainties of
power price and EV drivers’ collective behavior. The Latin hypercube sampling (LHS)
approach and a scenario-reduction methodology are used to create the suggested model.
The EVA is expected to be able to engage in both the energy and regulation markets,
resulting in profits for both the aggregator and the EVs. The coordinated charging control
of an EVA is studied in [83], aiming to minimize the charging cost and reduce power
losses that appeared due to fluctuating loads. An approximate dynamic programming
model has been proposed in this study for reducing the dimensionality of both state
space and control space. The capability of bidirectional power flow between the EVs
and the power grid has been considered, which is effective in reducing power loss. The
optimal charging control and frequency regulation of EVA have been studied in [84] for
minimizing the total cost of several EVs. Accordingly, a model predictive control-based
(MPC-based) method is adopted for scheduling the charging and regulation procedure.
Such a strategy is effective in obtaining profits for both the individual vehicle and the
whole EV fleet. The authors have applied an interruptible load (IL) pricing scheme for
studying the charging scheduling of EVA in [85], where the aggregator is responsible to
respond the grid load control command. The authors have introduced power-altering
charging (PAC) control, which does not require computational efforts and classical iterative
concepts for attaining the fair charging of EVs and preferences such as state-of-charge
and departure time. In [86], a multi-objective framework is introduced for providing the
optimal coordinated operation of microgrids (MGs) with the penetration of renewable
energy sources and EVA. Exponentially weighted criterion and compromise programming
methods are implemented in this research for solving the problem, where demand response
sources are considered for possible cooperation in providing active and reactive power.
In [87], the authors have proposed a double-layer charging control model for EVA for the
optimal management and scheduling of EVs. The proposed double-layer model minimizes
total cost in the first layer, taking demand forecast and wholesale prices into account
and allocating the purchasing power to EVs, considering the network constraints. Such
a controlling model is effective in the elimination of line overloads, energy losses, and
voltage drops. In [88], a new model is proposed for the self-scheduling of an EVA that
purchases power in the day-ahead market and presents balancing services for wind power
owners. To investigate the uncertainties associated with driving patterns and balancing
requirements, a probabilistic virtual battery model for EVs is introduced in this paper. As a
result, to deal with uncertain parameters, a scenario-based, robust strategy is used, which
is useful in optimum scheduling due to its conservative qualities. In [89], a decentralized
framework is proposed for scheduling loads in a commercial building and the charging
behavior of an EV in joint conditions. Mixed-integer programming of the Dantzig–Wolfe
decomposition method is applied for solving the scheduling problem, where the main goal
of building and EVA is to minimize operation costs. The authors have studied three cases
in this reference, including (a) demand limitations, (b) a peak demand charge, and (c) an
itemized billing strategy with different prices for power selling and purchasing, which
provided the effectiveness of the coordination scheme. A mathematical programming
method is implemented in [90] with equilibrium constraints for accomplishing the decision-
making process of the EVA in several electricity markets. In this study, indirect load
control is applied by defining optimal retail prices for EV. The authors have proposed a
bi-level model, where retail tariffs and optimal bidding strategies are proposed in electricity
markets in the first level, and optimal charging schedules are provided in the second
level. The authors have proposed a similar decision-making model in [91], where the
main objective is scheduling EVs charging based on profit-optimal prices of the aggregator
considering indirect load control. The proposed bi-level model studies retail prices and
optimal bidding in the power market at the upper level and obtains the charging scheduling
of EVs based on retail prices at the lower level. The aggregator allocates prices for EVs
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individually in the proposed model based on local preferences and physical characteristics.
The authors in [92] proposed a two-stage linear stochastic approach for the scheduling of
EVA in day-ahead and balancing markets while accounting for market pricing and fleet
mobility concerns. The CVaR is modeled using a risk-averse characteristic in the suggested
framework. In this work, two indexes are proposed: the expected value of flexibility and
the expected value of aggregation. In [93], the tending of EVs to participate in the reserve
market and contract terms are studied, considering requirements such as required plug-in
time and guaranteed minimum driving range. Two novel contract strategies are proposed
in this study, including (1) complete elimination of contract requirements and allowance
to participate in system services based on the pay-as-you-go concept, and (2) power
aggregators to provide V2G-EV contracts, considering consumers with cash payments.
The authors have proposed a bi-level participation problem of EVA in the day-ahead
market in [94], where the aggregator purchases power in the day-ahead market and offers
regulation services. The bi-level model studies the minimization of EV’s cost at the upper
level and accomplishes the market clearing process at the lower level. Different constraints
of participation of EVA have been investigated, including the effect of application of
V2G in the regulation market, capacity limitation offers of EVA in the regulation market,
and symmetric bids for up- and down-regulation. A model for the real-time charging
controllers’ design of EVs fleet for cooperation in ancillary services is introduced in [95],
considering the capability of bidirectional charging resources. Model predictive control
(MPC) is implemented in the proposed model for dealing with future information to
achieve accuracy in regulation signals and cycling on the batteries. An MPC controller
is utilized to consider efficiency effects and estimation of the state-of-charge of the EV
battery in the time steps during the forecast horizon. A stochastic programming strategy
for the efficient scheduling of EVAs in electricity and auxiliary service markets is proposed
in [96]. The suggested solution addresses the uncertainties connected with power market
prices, vehicle availability, and ISO to aggregate calling signals in the reserve market. The
optimal operation of micro-grids in the presence of EVA is studied in [97] for optimizing
the scheduling of plants, considering several operational and dynamic constraints. The
optimal operation of a microgrid, which incorporates energy storage devices and combined
heat and power units to supply both heat and power demands, is examined using different
interactions between EVA and the MG operator. In [98], dynamic programming is used
to optimize the operation of EVA while considering the ability to charge the battery from
the grid and renewable energy sources. The suggested model is investigated using two
scenarios of renewable energy generation, one with excess power generation and the other
without, as well as various electricity price models. The authors in [99] proposed an active
distribution network management technique based on a multi-period optimal power flow
model, which includes generating curtailment and intelligent EV aggregation. This study
uses coordinated economic optimization for the generation management of renewable
energy sources and EV management. EV behavior data is generated using Monte-Carlo
simulations, and the aggregated EVs are charged and discharged using an intelligent,
orderly controlling model.

2.3. Participation of EVAs in the Energy Markets

Currently, most of the energy market services are carried out by generators bidding
into the market. Considering that an EVA includes hundreds or thousands of vehicles with
small-scale power, the energy service of large-scale power can be accomplished by such
agents. A general overview of the participation of EVAs in the energy market is provided
in Figure 4. The main objectives in the area of participation of EVAs in the energy market
include stochastic optimal coordinating of charging and regulation, economic and technical
analysis of participation of EVAs in the energy market and providing optimal contract size
in regulation through application of EVAs.
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Table 3. Cont.

Ref. Main Contributions Considerations Research Gaps/Future
Directions Published Year

[106]

Analysis of EVs role in
peak shaving, frequency
regulation, and spot
market trading

Proposal of model
predictive control
concept and degradation
cost analysis

Management grid congestion or
supplying reactive power
through V2G services

2019

[107]
Optimization of EVA
participation in energy and
flexible ramping markets

System uncertainties
including the power
market price and EV
drivers’ patterns

Real-time analysis and analysis
of the role of battery degradation
cost

2020

The authors have studied the optimal design of the V2G aggregator in [108], concentrat-
ing on frequency regulation by the optimal control strategy of EVs. Dynamic programming
is employed for obtaining the optimal charging control, and the relationship between the fi-
nal state of charge (SOC) control and total revenue has been investigated. The authors have
concentrated on the requirement of small-scale EVAs for frequency regulation of electrical
energy systems [109]. Accordingly, an analytic estimation of the probability distribution is
accomplished in this study for modeling the procured power capacity (PPC). The optimal
contract size is provided considering the previously obtained probability distribution of
PPC by the proposed approximation method. The authors in [110] proposed stochastic
optimal coordinating of charging and frequency control methods for EVAs, which achieves
simultaneous optimization of EV charging and regulatory services. In this reference, the
price uncertainty was modeled using Least Square Monte-Carlo (LSMC) and real-time
market data. The authors have studied the implementation of EVAs as effective entities in
frequency regulation in [111], where the appropriate charging-discharging of EV is used to
provide the regulation service of the power system. In this study, a bidirectional frequency
regulation scheme is considered instead of a unidirectional regulation framework, where
the objectives are frequency regulation and maximizing the benefit of EVA. The variance
minimization method is proposed in this research, which minimized SOC variance con-
cerning the mean SOC average of the participating EVs. Similar research on the application
of EVA in frequency regulation has been accomplished in [112], where stochastic analy-
sis is accomplished for the relative value of energy capacity along with the battery size.
This research investigated the effect of regulation in terms of SOC movement considering
the symmetric and periodic characteristics of regulation. Optimal regulation allocation
among EVs in an EVA system has been studied in [113] proposing synchronous and asyn-
chronous distributed concepts. The proposed model has considered battery degradation
cost considering operation in regulation service, the inefficiency of charging/discharging,
and the gain/loss ratio. The main objective of this research is to optimize the cost of the
difference between the requested regulation value and the sum of the contribution of EVs
to the service. A centralized model is proposed for participation of EVA in the energy and
regulation market in [114], proposing a real-time charging management framework for EVs.
The proposed model is a hierarchical three-level control model, which allocates optimal
charging set points to the EVs every few seconds. The basic process of charging allocation is
the regulation signals received and updated energy bids and regulations offered by the EVA.
A novel game theory is proposed in [115] for investigating the interactions between EVs
and aggregators in the market, where the participation of EVs in the frequency regulation
market has been studied. In this study, a smart pricing policy and a framework design
for achieving optimal performance of frequency regulation in a distributed fashion are
introduced. Nash equilibrium is applied in the V2G interaction games, which showed that
a decentralized mechanism can achieve optimal performance just as in a centralized con-
trolled system. The authors have proposed an optimal dispatching strategy for maximizing
the profit of EVA and participating in the supplementary frequency regulation market [116].
In this study, a judge framework is proposed for determining the participating EVs of the
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aggregator in frequency regulation, and a regulation power allocation strategy is introduced
for allocating fair charge/discharge power of the participating EVs of the aggregator in fre-
quency regulation. In [117], coordinated control of EVA is proposed for the participation of
EVs in frequency regulation. Accordingly, a coordinated control strategy between EV-load
frequency controller and conventional power generation units’ load frequency controller
is introduced to attain full advantages of EVs in such a regulation market. In addition,
a robust stability criterion is presented in this study for estimating the asymptotically
stable controller considering simultaneous inertia uncertainty and time-varying delays. A
coordinated sectional droop charging control (CSDCC) framework is proposed in [118] for
the participation of EVA in the frequency regulation market, which is applied to a microgrid
with high penetration of renewable energy sources. In addition, a virtual inertia damping
strategy is applied in the proposed control strategy for increasing the system inertia, which
is implemented to avoid EV charging power vibration. In this study, the operation of EVs is
considered only in charging mode without detrimental impacts on the battery life. In [119],
an energy and reserve management model for a distribution network (DN) is proposed, in
which an operation scheme for the EVA is implemented with the primary goal of lowering
the DN’s operating expenses. The EVs aggregator has three different states: load mode,
energy production mode, and idle mode, where it will assist the DN as an energy storage
system. The objective function is to reduce the upper grid’s purchasing power expenses
as well as the generator and EV aggregator’s production costs, and the suggested model
considered both the DG spinning reserve and the EVs aggregator.

2.4. The Effect of EVAs on Network Characteristics

The effect analysis of EVAs on indexes of electric energy systems such as reliability,
efficiency, losses, and stability shows improvements in such indexes. The effect of EVAs on
network characteristics and indexes with a comprehensive overview is demonstrated in
Figure 5. The role of EVAs in electrical energy markets, effect analysis of such agents in
load profile of the electric distribution systems, and efficiency and security analysis of the
penetration of EVs aggregator in day-ahead power market are defined as main contributions
in the area of effect of EVAs in network characteristics. In addition, remarkable efforts have
been carried out in the area of reliability improvement and valley filling of load profiles.
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With a discussion of the major contributions, limitations, research gaps, and prospects
of the research works, Table 4 gives an overview of the impacts of EVAs on network
characteristics.
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Table 4. A summary of recently published papers around effects of EVAs on network characteristics.

Ref. Main Contributions Considerations Research Gaps/Future
Directions Published Year

[120]
Power system load frequency
control with EVA considering
communication delay

Smart grids and
communication
characteristics, active
power imbalance

Calculation of the time delay
margin and transmission delay. 2022

[121]
V2G effects on electrical
distribution systems with high
EV penetration

Analysis of both
unidirectional and
bidirectional effects of V2G

Consideration of coalition of
EVAs with renewables entities
and financial incentives

2022

[122]

A hybrid risk-stochastic
approach for assessing the
impact of EVAs in
transmission-constrained AC
unit commitment

Injection of reactive power
by EV charging stations to
the system, demand
response, uncertainties
associated with wind
energy sources and EV
drivers’ daily patterns

Real-time analysis of the role of
EVs in energy systems 2021

[123]
Coordination of EVAs for
distribution feeder peak
shaving and valley filling

Bi-level programming,
real-time operation model,
EV drivers’ comfort

Minimization of power losses
considering power flows of the
distribution system

2022

[124]

Load frequency stability
analysis of time-delayed
multi-area power systems with
EVAs

Bessel-Legendre Inequality
and Model Reconstruction
Technique

Smart grids and communication
characteristics 2020

[125]
Impact of non-systematic
plug-in behavior on grid
connected to EVAs

Agent-based model,
large-scale EV case,
flexibility analysis of
power systems

Analysis of EV drivers’ charging
choices and EV usages 2021

[126] Effects of EVAs on power grid
operation risks and frequency

Frequency emergency
control of electrical energy
systems

Comfort levels of EV drivers
when participating in V2G
services

2020

The role of EVA in electrical energy markets has been studied in [127] by introducing
a concept for the information characterization between aggregators, system operators,
and costumers. In this study, the integration of EVs in the Iberian Market-MIBEL has
been investigated and the formulation of various degrees of availability of the relevant
information is proposed. Different strategies for adopting EVAs have been described
in [128], where various tariffs proposed for EVAs depending on EV users’ preferences have
been investigated. In other words, different strategies that an aggregator can employ in
user tariffs are analyzed in a case study for Quito, Ecuador. The authors have studied the
application of EVAs in the load profile of the electric distribution systems, considering a
case study of the transportation network of Zurich [129]. Accordingly, a tuning method
is proposed in this study, which aims to valley filling and peak shaving by changing the
utility function parameters in considering an external price signal. The effects of EV PLs on
distribution system dependability are discussed in [130], where the distribution feeder’s
reliability indices are calculated utilizing a recently suggested unique storage capacity
model of a PL that takes into consideration the load and component outage data of the
feeder. The average interruption duration, average interruption frequency, and energy not
served are all used in this study as reliability indexes. The authors have concentrated on
the design of a typical day-ahead power market for the integration of EVA in the power
system in [131], which takes advantage of increasing the efficiency and security of the
system and decreasing the environmental effects. The model investigates the relationship
between the coordination of the charging schedule of EVs and the capability of the system
in admitting penetration of such vehicles. The proposed model permits V2G services in



Sustainability 2022, 14, 15747 15 of 24

the adapted market design considering service limitations on the provision. The authors
have studied the role of EVA in improving the reliability of the power system by supplying
the spinning reserve of the system [132]. The proposed model is effective in obtaining
the optimal charging schedule of the vehicles while improving the reliability and cost of
the system. An agent-based model is proposed for modeling the aggregator participation
in spinning reserve, and a dynamic game theory is adopted for deciding on the market
players offers in electricity market. In other words, the model investigates the compromise
between the cost of spinning reserve supply and the cost of system risk. In [133], the
distributed optimization of EVA has been studied considering two relevant objectives,
which include valley filling and minimum charging cost. The proposed framework, which
consists of local and global objectives, is based on the alternating direction method of
multipliers (ADMM) approach. The authors have evaluated the proposed model for 1
million EVs and 100,000 EVS for the valley filling problem and both valley filling and
charging cost minimization, respectively. The authors have studied the impacts of market
regulations on the behavior of the EV owners and EVA in [134], where both the regulator
and aggregator points of view have been considered. In this study, an offering/bidding
strategy is modeled by applying a hybrid method based on multi-agents and a dynamic
game. In addition, the optimal probabilistic operation of EVs is studied considering
uncertainties associated with driving patterns and electricity market prices taking technical
and contractual constraints into account. A stochastic model is proposed in [135] for
evaluating the effects of EVA on distribution systems. In this reference, MCS is applied for
investigating the stochastic nature of EVs load, including stochastic spatial and temporal
characteristics. The investigations show that suitable optimization and the control scheme
of EVs is effective in eliminating the negative effects of EV loads on voltage levels, phase
unbalances, and system losses. In [136], the aggregated load imposed on the electricity
distribution network by battery health-conscious charging of EVs is estimated. The daily
energy cost of EVs and degradation cost are considered a multi-objective optimization
problem for obtaining optimal charging magnitudes and time of charging. Then, aggregated
EVs power load demand and the related peak load is investigated using results obtained
for aggregated EVs charge patterns optimized. Short-term allocation of reactive power
and definition of reactive power supply function (RPSF) for aggregated EVs are studied
in [137], which allows the system operator to engage EVs in the reactive dispatch of the
network. Accordingly, a real-time method is proposed in this study for calculating the
reactive power supply function of the EVs after estimating the optimal set points of EVs.
The proposed model enables EVs for supplying reactive power service with low marginal
cost during on-peak periods. In [138], for enhancing the reliability of radial distribution
systems using the particle swarm optimization algorithm, DR programming and smart
charging/discharging of EVs are examined. Due to the good benefits of both DR and EVs
in dealing with emerging global concerns such as the decline of fossil fuel reserves, urban
air pollution, and greenhouse gas emissions, this analysis was completed. Additionally, the
prioritization of DR and EVs is described as increasing distribution network dependability
and assessing distribution network characteristics.

2.5. Planning of the Power System in the Presence of EVAs

The power system integrated with EVAs makes use of car batteries to help the electrical
energy network; however, the planning of the power system should be done taking into
account challenges of the system operator, such as reliability challenges, congestion, and
loss increase. Figure 6 shows different viewpoints on the planning of power systems
in the presence of EVAs. Welfare maximization of EVs aggregator systems in long-term
conditions, aggregation of the battery modeling for energy planning, and optimal siting
and sizing of vehicle parking are the primary contributions to power system planning in
the presence of EVAs. Also, efficiency and reliability investigations, as well as economic
analysis, are studied as planning topics for such systems.
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A novel optimization problem for the optimal allocation problem of EV parking
lots and the optimal scheduling of EVs in a smart distribution network are investigated
in [18]. The proposed problem considers a variety of elements, including technological
and economic concerns, to arrive at a feasible solution, where minimizing network losses
and feeder voltage drop, as well as meeting all network demand, are all taken into account
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as technical concerns. The authors in [145] provided a new solution methodology for
evaluating the optimal allocations and sizes of parking lots in radial distribution networks
that incorporates a current metaheuristic approach of competition over resources. The key
goal is to improve network resilience while keeping costs low, where enhancing reliability,
improving power loss cost, and decreasing investment costs are considered. In [146], a
welfare-maximizing regulation allocation (WMRA) approach was proposed to explore
the coordination of numerous EVs to execute EVA regulatory services. The proposed
algorithm’s major goal is to maximize the EVA system’s long-term societal welfare while
taking into account the expense of EV battery degradation over time. The proposed
WMRA algorithm, which is based on a broad Lyapunov optimization model, operates
in real-time and does not require any information on the system statistics. The authors
in [147] proposed a flexible structure for aggregating batteries of the EVs and performing
aggregation modeling for energy planning. The suggested model also uses input time
distributions such as average SoC at destination and the number of incoming and departing
vehicles. To acquire charging power input and distributed charging management, dynamic
programming is used. The authors in [148] investigated the ideal siting and sizing of
aggregator vehicle parks to achieve the lowest power loss and voltage variations. As a
result, particle swarm optimization (PSO) is used to determine the best park location and
size, as well as to investigate the best power flow after the car park is installed. This model
can be used to investigate how to increase the stability and dependability of the power
network for park siting and sizing. The authors have proposed an idea for effective usage of
capacity and energy of the parked EVs in [149], considering the EVs parking average of 92%
of the day. Accordingly, an aggregating control scheme is proposed for controlling bids in
the German market using the MCS model. In other words, the main objective of this paper
is to investigate the participation of EVs in providing control power in terms of efficiency,
reliability, and economic aspects. An optimal charging planning for EVA has been studied
in [150] by employing a decentralized optimization concept. The proposed decentralized
method computes the capability of each EV in their charging tendency in a distributed
way, which results in determining the charging tendency of a small number of EVs by an
aggregator. The long-term goal of the aggregator for improving market share and acquiring
optimal rates of the aggregator has been explored in [151], where the long-term goal of the
aggregator for enhancing market share and obtaining optimal tariffs of the aggregator has
been studied. In this study, oligopoly energy and reserve markets have been modeled by
employing a bi-level formulation using a multi-agent system and dynamic game theory.
Accordingly, the optimal self-scheduling of EVA and best bidding/offering strategies are
obtained.

3. Research Gaps and Future Research Directions

Although various research studies have been published around EVAs in electric distri-
bution networks, several challenges still exist around modeling EVAs. The following items
are listed as important challenges and issues as future directions for research around EVAs:

• Improvement of the market bidding strategies considering a comprehensive uncertainty-
handling concept, which models all the uncertainties associated with EV drivers’
behavior as the arrival/departure time of the EV driver to/from the charging station,
the daily trip pattern, and SOC of the battery of the EV, renewable energy sources, load
of the system, and power market price. For example, hybrid stochastic programming
and robust optimization/information gap decision theory methods can be used for
modeling the uncertainties associated with charging and regulation prices, as well as
EV drivers’ behavior in optimal operation, control, and bidding processes of the EVAs.
In such an area, the investigation of a dynamic model of large-scale EVAs, considering
the stochastic nature of EVs and network of parking stations of EVs (i.e., a network of
EV charging stations with smart management and communications) is essential.

• Implementation of decomposition techniques methods for improving the optimization
and computational process of the problems associated with EVAs in energy systems.
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The employment of decomposition methods is beneficial to parallelizing the solving
techniques for multi-cluster high-performance computing when dealing with EVAs
integration to energy markets and electric utilities. Such methods will be helpful in
studying the coordination of EVAs in non-spinning reserve and energy markets as well
as storage systems such as fly-wheels or other battery-based energy storage systems
in the energy market services. Also, coordinated operation of MGs containing EVAs
and demand response resources for providing active and reactive power to the grid
can be studied by such models.

• When assessing the role of EVs as load/storage in modeling the operation of the energy
system, forecasting the behavior of EV drivers is crucial. For this reason, increment of
the precision and evaluation metrics of the prediction models for EVs considering the
forecasting uncertainty is crucial. For energy grids to operate reliably and optimally,
researchers should create high-performance load modeling and prediction models of
EV energy demand. In such an area, application of clustering models for classification
of EV drivers’ behavior to different clusters is beneficial. Also, the integration of EVAs
to energy markets and clusters of microgrids with high penetration of renewable
energy sources and large popularity of EVs can be modeled by applying appropriate
machine learning and deep learning models.

• Investigating insights into the battery degradation problem in real-time dispatch of
the EVAs in energy markets, and implementation of complementarity modeling to
evaluate price equilibria between interacting agents at the retail level for eliminating
the supposition of centralized direct load control are other important topics to be
focused on. A crucial part of EVs is the battery, for which the degradation should be
considered when modeling the vehicle and if the battery pack will be used in V2G
modes. Given the economic and environmental factors, multi-objective optimizations
should consider the trade-off between several objectives, including energy prices,
pollutant gas emissions, battery degradation, and compensating vehicle drivers for
V2G services. In this situation, it is important to consider each aim fairly while
comparing them, which can be done by applying a game-theoretic analysis.

• Future directions may also focus on competition of EVAs with each other and with
other entities such as DR aggregators, network-constrained optimal operation of
energy hubs/residential communities/electric utilities and EVAs, consideration of
coalition of EVAs with renewables entities and financial incentives, and study on
comfort levels of EV drivers when participating in V2G services.

4. Conclusions

The high penetration of EVs in electric distribution networks and future smart grids
play effective roles in network indexes and environmental aspects, which is more sensible
while aggregated by an agent. Accordingly, several remarkable efforts have been performed
around EVAs, considering the challenges of such issues in power markets, electrical energy
systems, and operation and planning issues. This paper aimed to provide a comprehen-
sive review and outlook on EVAs and electric energy networks. For each research study
published around EVAs, most of the contributions of each research study and novelties in
modeling the EVA are investigated and reported upon. Moreover, the main considerations
of research around EVAs studied by different researchers are discussed. Additionally,
future trends around EVAs and their application in energy systems are introduced, which
can be considered the subject of research studies in such areas in the future. This paper,
which provided a comprehensive review and outlook on the application of EVAs in energy
systems, can largely help the researchers around EVAs.
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