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Abstract: Based on panel data from 30 provinces, cities, and autonomous regions from 2001 to 2019,
this paper uses the nonlinear difference-in-difference (DID) method to estimate the distribution of
causal effects of emissions trading policy on emission reduction in Chinese industrial enterprises, and
examines the heterogeneity of the effects. The empirical results show that (1) the emissions trading
policy has a significant effect on industrial SO2 emissions reduction in China, where the reduction
effect is larger in non-pilot areas than in pilot areas; (2) the policy effects are not proportional to the
regional SO2 emissions intensity, and the emissions trading policy is not more effective in regions
with higher industrial SO2 emissions intensities. One advantage of this paper is the use of nonlinear
DID to estimate the emissions reduction effect, which eliminates the bias problem caused by the
strict linearity assumption of the classical DID method. Another advantage is that the combination
of the random forest method avoids the subjectivity in the selection of control variables and uses
distribution effects for multilevel comparisons. This method improves the validity of estimating the
effect of emissions trading policy and provides targeted policy suggestions for the effective promotion
of system implementation, all of which have academic and application value.

Keywords: causal effect; nonlinear difference-in-differences; general random forest; emissions trading
policy; industrial SO2

1. Introduction

The rapid growth of China’s GDP since 1978 has made it the second-fastest-growing
economy in the world in recent times [1]. However, environmental problems have become
increasingly serious, with 135 Chinese cities exceeding air-quality and pollution standards
and 34.0% experiencing acid rain in 2020, an increase of 0.7 percentage points from 2019 [2].
Preventing and controlling pollution and protecting the economic environment have be-
come urgent tasks. The emissions trading system is the first large-scale market-based
environmental regulation policy in China. It plays a regulatory role in resource conser-
vation, environmental protection, and green development for environmental resource
allocation, mainly using market mechanisms. Emissions rights trading originated in the
United States, and the American economist Coase formally proposed pollutant emissions
rights in 1960. China’s emissions rights began to be explored early on, but progress has
been slow [3]. Since 1987, emissions trading has been carried out in several pilot cities, one
after another. However, problems with the secondary market still persist for local emissions
trading and when setting benchmark prices for emissions trading in China [4]. The effect
of emission reduction trading on industrial SO2 reduction has long been debated, so this
issue in China is a fascinating and crucial subject to study.

China launched the “4+3+1" program in 2002, but due to the early implementation
and lack of practical experience at that time, many pilot regions had zero trading volume.
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The pilot program was further expanded in 2007, and the pilot system was improved. Each
pilot region introduced its own policies to suit the local conditions, and the scope and
scale of the transactions also expanded [5]. Therefore, this paper constructs panel data for
30 provinces from 2001 to 2019 based on the 2007 pilot policy as a quasi-natural experiment.
We use 11 approved provinces, such as Jiangsu and Tianjin, as the treatment group and
19 other provinces as the control group and adopt nonlinear DID to evaluate the following
questions: Has China’s first market-based environmental regulation policy had a positive
effect on its emissions reduction? What is the extent of its emissions reduction? Are there
differences in the policy treatment effects for the treatment and control groups? Is the
implementation of the policy more effective for enterprises or regions with higher SO2
emissions intensities?

2. Literature Review

Much research has been conducted on the emissions trading policy. Montgomery
(1971), Woerdman (2000) demonstrated the policy’s feasibility and studied the relevant
policy implementation systems, indicating that the policies should be implemented based
on environmental conditions. Pollution discharge fees should be increased for systems
with higher levels of pollution [6,7]. Cason (2003) proposed that the strict management of
emission enterprises is insufficient to promote emissions trading effectively. At the same
time, it is necessary to strengthen government oversight and emissions management [8].
Rausch and Abrell (2017) investigated a hybrid emissions trading system based on the
uncertain corporate emissions reduction costs and future emissions. The findings show
that a hybrid policy that introduces price or reduction boundaries allows for hedging
differences in marginal reduction costs across subregions [9].

With regard to the emissions reduction effect of the emissions trading policy, many
studies have been conducted in the related literature. Most scholars believe that the
emissions trading policy is effective in reducing emissions. Yan et al. (2012), Li et al. (2016),
and Zhang et al. (2017) conducted quasi-natural experiments with pilot implementations
of the 2002 emissions trading policy in six provinces and cities of China. Their analyses
discovered that the emissions trading policy is able to improve pollution reductions [10–12].
Using the DEA model, Tu et al. (2018) discovered that the emissions trading system not
only reduces pollutant emissions but also aids in economic development [13]. Tang et al.
(2017) discovered that the emissions trading policy helps to reduce SO2 emissions while
reducing corporate profits [14]. Wu et al. (2018) discovered a weak “Porter effect” from
emissions trading in China [15].

The DID method is the most commonly used method in this field. For example,
Fu et al. (2018) and Wu et al. (2021) used the DID method and the DID− PSM method
to find that the efficiency of green development can be improved by the SO2 emissions
trading policy, which has little effect on promoting green development [16,17]. Applying
the DID method, Shi et al. (2020) discovered that the system’s implementation positively
impacts energy consumption and improves the green total factor energy efficiency [18].
Ren et al. (2019) and Fu et al. (2019) used the DID method to evaluate the effects of
further increasing the policy pilots after 2007. They found that the implementation of the
policy has shown positive effects for both SO2 emission reduction and economic growth,
which is a win–win in terms of environmental and economic goals [19,20]. Si et al. (2020)
found significant emission reduction effects of emissions trading policy on pollutants SO2,
NH3, and COD [21]. Qi et al. (2020) evaluated the effects of emissions trading policies by
using the PSM− DID method. The results showed that there was a significant emission
reduction effect of policy on industrial SO2 and industrial wastewater emission results,
but there was no significant contribution to green development in the short term ([22].
Yu et al. (2021), Cai et al. (2022), and Luo et al. (2018) conducted studies on carbon
trading rights, demonstrating that carbon trading in China exhibits upward and then
downward trends for the development of carbon technical efficiency [23–25]. With the use
of Support Vector Regression (SVR), Linear Regression (LR), and Analytic Hierarchy Process
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(AHP), Hong et al. (2022) conducted data mining and the evaluation of pollutant emissions,
market prices, marginal benefits of emissions rights, and initial emissions rights [26].
Qi et al. (2021) implemented an emissions trading policy using multi-period DID, which
indicates the policy significantly increased Chinese enterprises’ OFDI [27]. Using the
DID model, Wu et al. (2022) discovered that actions towards the prevention and control
of air pollution can significantly improve air quality in vital resource-based cities [28].
Zhang et al. (2020) used the DID model to examine the impact of the emissions trading
system on environmental efficiency. The results indicate that the policy has significantly
improved the environmental efficiency in these pilot provinces [29]. Li et al. (2022) explored
the impact of an emissions trading system (ETS) on the regional industrial structure.
Their results show that the implementation of ETS can promote upgrades in the regional
industrial structure but can hinder the rationalization of these upgrades [30].

Another body of literature contends that emissions did not decrease with the imple-
mentation of the emissionstrading system. Zhang et al. (2020) used the DID method
to study the environmental and employment impacts of emissions trading policy. They
found that piloting the policy did not improve the environment, but significantly increased
employment levels [31].

As mentioned by Xiang et al. (2016), there is a growing body of literature on natural
experiments on policy implementation using the DID method due to its simplicity and ease
of implementation. However, this method also has many shortcomings. One of the biggest
criticisms is that it only elaborates on linear relations well and no longer works for nonlinear
relations. When using the DID method, some studies have obtained biased results because
of ignoring the strict assumptions required [32]. Another shortcoming is that the method
can only give average treatment–effect estimates and not other quantile estimates. Athey
and Imbens (2006) developed a nonlinear DID method, referred to as “changes-in-changes”
(CIC), to assess the impact of policy changes that replaces the widely used DID model. Un-
like traditional methods, the authors proposed a nonlinear model that allows unobservable
effects to change over time. This nonlinear DID method estimates the entire counterfactual
distribution of outcomes between the treated and untreated groups [33]. Lucas and Mbiti
(2008) investigated the relationship between Kenya’s compulsory primary education policy
and entrance examination grades using the nonlinear DID model. The inhibitory effect of
student attendance was significant at the 1% level, with a positive but small effect at the
middle quantile level and a positive effect at the higher quantile [34].

The literature on the effect of emissions trading policies on emission reductions has
three main characteristics. First, the current research primarily employs the DID method,
but in actual natural experiments, meeting the strict requirements of the DID method is
challenging. However, the results are assumed to be accurate. Second, current literature
assumes that the application of the policy will have the same treatment effect on various
groups, even though various experiments should be conducted to account for individual
differences. Third, while all previous studies have been able to determine the average
treatment effect of the policy, they have not been able to determine the distribution treat-
ment effect. However, the distribution treatment effect explains which geographic areas
the policy is effective for. In this study, we construct panel data of 30 provinces during
the period from 2001 to 2019. The 11 approved provinces of emissions trading policy are
evaluated as the treatment group, and the other 19 as the control group using the nonlinear
DID model. The significance of this work is as follows. (1) We use the nonlinear DID
method to overcome the problem of errors caused by the fact that natural experiments do
not satisfy the strict assumption of DID. (2) Due to differences in the characteristics of
different groups, we expect a different effect. (3) The treatment effect is further obtained to
analyze whether a more obvious emissions reduction effect occurs with the implementation
of the policy in regions with higher SO2 emissions intensities.
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3. Materials and Methods
3.1. The Classical DID Method

For i = 1 . . . N, the data are presented as (Yi, Gi, Ti). We use the indicator Gi ∈ {0, 1}
to denote the treatment group (Gi = 1) and the control group (Gi = 0), where Ti ∈ {0, 1} is
a treatment variable with Ti = 1 if individual i receives treatment, and Ti = 0 if individual
i does not receive treatment. We use Yi to denote the outcome and Y I

i and YN
i to denote the

outcome of individuals with and without treatment, respectively. Let Ii = Gi × Ti; we have

Yi = YN
i ×(1− Ii) + Ii×Y I

i . (1)

In the classical DID model, the outcome of individual i without the intervention satisfies
the following:

YN
i = α + β×Ti + η×Gi + εi, (2)

where β and η represent the time effect and group effect, respectively, and εi is a random
error with εi⊥(Ti, Gi). Classical DID estimates are obtained using the following:

τDID = E[Yi | Gi = 1, Ti = 1]− E[Yi | Gi = 1, Ti = 0]

−[E[Yi|Gi = 0, Ti = 1]− E[Yi|Gi = 0, Ti = 0]].
(3)

3.2. The Nonlinear Difference-In-Difference Method

The DID method usually focuses on the average causal effect of the treatment group.
As the policy effect varied with unobservable features and the distribution of individuals
in the group are different, the average treatment effect on the two groups is not the same.
Although the classical DID method requires relatively few assumptions to calculate the
effect of policy interventions on the treatment group, the effect of policy interventions
on the control group is rarely considered, which is a disadvantage of the classical DID
method. Therefore, there is controversy in the literature about the results of using classical
DID method. Athey and Imbens (2006) proposed the changes-in-changes (CIC) model—a
nonlinear DID method—for estimating the effects of policy interventions on control groups.
In particular, the method assumed that a treatment effect depends on the unobservable
characteristics of an individual rather than directly on the population. The distribution of
treatment effects differed due to the different distribution characteristics of the groups [33].

3.2.1. The Changes-In-Changes Model

First, a random variable Ui is introduced to represent the region’s unobservable
characteristics in order to better identify the CIC model. To simplify the analysis, we drop
the the subscript i and use (Y, G, T, U) to denote the vector of random variables. Then, we
define the following:

YN
gt = YN | G = g, T = t, Y I

gt = Y I | G = g, T = t,

Ygt = Y | G = g, T = t, Ug = U | G = g,

where Yi = YN
i ×(1 − Ii) + Ii×Y I

i , and Ii = Gi×Ti represents the treatment indicator.
FYN ,tg, FY I ,tg, FY,tg and FU,g denote the corresponding distribution functions. Ygt represents
the untreated subgroups, which are subgroups other than (g, t) = (1, 1). At the same time,
a set of hypotheses about the distribution of the counterfactual status of the treatment
groups in terms of the second-period outcomes are analyzed. Therefore, we can use the
simultaneous distribution of the observable values (Y, G, T) to express the distribution
of FYN ,11. Indeed, these findings suggest that FYN ,11 can be expressed by conditional
outcome distributions about the other three subpopulations FY,00, FY,01, and FY,10, which
are observable.

Assumption 1 (Model): In the absence of an intervention, the outcome of an individual
satisfies the relationship YN = h(U, T), where h is an unidentified, nonlinear function.
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Since h does not change as the group changes, differences between groups result from the
distribution of U. To identify FYN with this model, the following hypotheses are required.

Assumption 2 (Monotonicity): For t = 0, 1, the production function h(U, T) strictly
increases in U.

Assumption 3 (Time Invariance): The structure of a group remains constant over time.
Given a group G, U as an unobservable variable is time-stationary; that is, U ⊥ T | G.

Assumption 4 (Support): 4supp[U | G = 1] ⊆ supp[U | G = 0].
Different from the CIC model, the classical DID model has two additional assumptions:

U = η×G + ε, h(U, T) = α + β×T + U,

that is, YN
i = α + β×Ti + γ×Gi + εi. As a result, the classical DID model is a special case

of the CIC model, which relaxes and generalizes the classical DID model’s assumptions.
Assumptions 1–3 are collectively referred to as the CIC model, and the authors pro-

pose that Assumption 4 be invoked selectively as needed. According to Assumption 1, the
results are not obtained directly depending on the group, and all associated unobservable
variables must be encapsulated in a simple indicator U. According to Assumption 2, higher
unobservable values must match higher outcomes. Weak monotonicity is only a standard-
ization in a given subpopulation. Since we assume that unobservable values cause higher
values in both periods, it is only limitative. When the unobservable variable is a personal
characteristics such as health or ability, this structure naturally arises. Additive models
allow for the existence of rich non-additive structures and can satisfy strict monotonicity
automatically. As the outcome Ygt is continuous in models, the difference between strict
and weak monotonicity is minimal. Furthermore, this assumption is overly restrictive
if particles exist in the YN

gt distribution. Assumption 3 requires that the population of a
given group remains constant over time. The CIC and DID methods are based on the
assumption that the differences between groups must be stable to achieve the state of affairs
in which one group can be used to eliminate trends in the other. Assumption 4 implies
that supp[Y10] ⊆ supp[Y00] and supp[YN

11] ⊆ supp[Y01], and this assumption is relaxed in
the authors’ subsequent inferences.

3.2.2. Treatment Effect on Treatment Group

Based on the above assumptions, the counterfactual distribution can be obtained after
the following derivation:

FYN ,11 = FY,10

(
F−1

Y,00(FY,01(y))
)

, (4)

where the distribution function of FYN ,11 is unobservable but we can derive the other three
distribution functions from the data. Using these three observable distribution functions,
we can obtain the unobservable distribution function. The average treatment effect (ATT)
can be written as follows after a series of transformations:

τCIC = E
[
Y I

11 −YN
11

]
= E

[
Y I

11

]
− E

[
KCIC(Y10)

]
= E

[
Y I

11

]
− E[F−1

Y,01(FY,00(Y10)]. (5)

Clearly, no assumptions are made about the specific form of the h function in the
preceding process, so the entire identification process is non-parametric. Moreover, the
effect can be estimated using the sample mean and actual distribution. In other words,
the CIC model does not require assumptions as strict as those of the DID model and
generalizes the model.

3.2.3. Treatment Effects on the Control Group

To date, we have constructed a model with no intervention. In the presence of an
intervention, no outcome model is required to infer the effect of the policy change on
the treatment group, that is, the effect of the "treatment" on the treated. We simply need
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to compare the treatment group’s actual outcome to the counterfactual. However, more
structure is needed to analyze the effect of policy intervention on the control group.

First, note that the difference between the counterfactual distribution of Y I
01 and YN

11
is qualitative. After all, three subgroups do not receive treatment, all of which could be
used in determining the outcome distribution without treatment in a fourth subgroup.
Though only one subgroup received the treatment, we still want to know the distribution
of Y I

01. Therefore, we can build a transformation based on group 1 and apply it to Y00, that
is, assuming within a group that the distribution of U does not change over time. More
specifically, Y I

01 = hI(U0, 1), Y00 = h(U0, 0), and

Y I
01 ∼ hI

(
h−1(Y00; 0), 1

)
. (6)

Because the distribution of U1 remains constant over time, for y ∈ supp[Y10],

F−1
Y I ,11(FY,10(y)) = hI

(
h−1(y; 0), 1

)
. (7)

The roles of group 0 and group 1 in KCIC(y) are simply switched. Following this logic,
we apply the method described previously to calculate the counterfactual distribution
of Y I

01. In other words, replacing G with 1− G and taking Assumptions 1–3, we assume
that Y I = hI(U, T), where hI(u, t) increases strictly in U. Then, we can determine the
distribution of Y I

01 from the distributions of Y00, Y10, and Y I
11 on the restricted branch set[

Y I
11
]

as follows:

FY I ,01(y) = FY,00

(
F−1

Y,10
(

FY I ,11(y)
))

. (8)

3.3. Model Selection

To study the effect of emissions trading on industrial SO2 emissions reduction, in
this paper, we use the CIC model. To be more specific, we begin with h(U, 0) = U. In
this case, U represents the industrial SO2 emissions intensity, which is demonstrated
by the regional emissions trading policy at period 0 after accounting for other control
variables. Because of the impact of heterogeneity between groups and the effects caused
by the emissions trading policy at period 0, the distribution of U | G = g should have a
discrepancy between different groups. In addition to the assumption that U is normalized
in this case, the application of the CIC model must satisfy two assumptions. First, the
distribution of U among the group does not change with time. Because U represents the
region’s characteristics, changes in the emissions trading policy cannot cause regions to
adjust quickly and should not influence whether to implement the emissions trading policy.
This assumption is reasonable. Second, in the absence of policy interventions, the resultant
functions h(U, 1) of the two groups should be the same. This assumption excludes the
relationship between the industrial SO2 emissions intensity and the pilot area’s emissions
trading policy over time. On this basis, two additional assumptions are required by the
more stringent DID model. (1) The main difference between the pilot and non-pilot regions
of the emissions trading system is the industrial SO2 emissions intensity. (2) The additive
effect is the same for all individuals over the process of change over time. Based on natural
quasi-experiments, these assumptions are difficult to prove. The distribution of industrial
SO2 exhibits different shapes with different groups and over different time periods, so we
use the CIC model here to investigate the effect of the emissions trading policy.

When applied to the problem studied in this paper, the treatment is the emissions
trading policy. The outcome variable Y represents the SO2 emissions intensity; G indicates
whether the provinces, cities, or regions are pilot areas for emissions trading, presented
as either 1 or 0; and T represents the time indicator variable of whether the pilot policy of
emissions trading begins to be implemented, and is 1 if the start date is 2007 or later and
0 otherwise.
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3.4. Variable Selection and Data Description
3.4.1. Explained Variable

The industrial SO2 emissions intensity (lnpso2) is expressed as industrial SO2/gross
industrial output (tonnes/billion CNY), providing a more accurate description of industrial
SO2 emissions.

3.4.2. Core Explanatory Variables

Time, the dummy variables for each group, and the interaction terms of dummy
variables for the policy implementation provinces and the policy implementation time are
the main explanatory variables. Treat denotes the dummy variable for policy implemen-
tation provinces. If the province is one of the 11 provinces approved by the Ministry of
Environmental Protection in 2007, the dummy variable Treat takes a value of 1; otherwise,
it takes a value of 0. For the time dummy variable (Time), a start date of 2007 or later takes
a value of 1, and that before 2007 takes a value of 0. The primary variable of interest is the
interaction terms between the two dummy variables: Treat*Time.

3.4.3. Control Variables

The factors influencing the industrial SO2 emissions intensity are controlled as thor-
oughly as possible based on data availability. The following 18 control variables are chosen:
population size, industrial pollution control, investment in industrial waste gas control,
sewage charges, economic development level, wage level, regional technological innovation
level, technology introduction, technology level, fixed assets, industrialization level, indus-
trial structure, scale of the service industry, degree of marketization, number of employees,
scale of energy consumption, education development, and fiscal decentralization. At the
same time, to carry out the relevant research in this paper, the industrial SO2 emissions
intensity, economic development level, wage level, regional technological innovation level,
technology introduction, technology level, fixed assets, population size, investment in
industrial pollution control, investment in industrial waste gas control, sewage charges,
scale of energy consumption, and number of employees are all logarithmically treated
based on the actual data.

By summarizing all the variables used in this paper, Table 1 illustrates each variable’s
definition and the data source.

Table 1. Definition and description of each variable and data source

Variable Symbol Variable Description Data Source Units

Area Number id 1–30 - -
Time variables year 2001–2019 - -

Policy dummy
variables treat 0 or 1

Provincial and
Municipal

Environmental
Protection Departments

Dummy variables

Time dummy variable time 0 or 1

Environmental
Protection Department
of each province and

city

Dummy variables

Industrial SO2
emission intensity lnpso 2

Industrial SO2
emissions/Total
industrial output

China Environmental
Statistics Yearbook Tonnes/Billion CNY

Regional technological
innovation level patent Number of patent

applications granted
China Statistical

Yearbook Individual
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Table 1. Cont.

Variable Symbol Variable Description Data Source Units

Economic development
level gdp GDP China Statistical

Yearbook Million/Person

Wage level wage Average wages of
employees

China Statistical
Yearbook CNY

Scale of the service
industry service

Value added tertiary
sector/Gross Domestic

Product

China Statistical
Yearbook Score

Technology
introduction fdi Amount of foreign

direct investment
China Statistical

Yearbook Billion CNY

Fixed assets fassets Investment in fixed
assets

China Statistical
Yearbook Billion CNY

Educational
development edu

Average years of
schooling in the

workforce

China Statistical
Yearbook Year

Fiscal decentralization fiscal

Fiscal expenditure per
capita by province/

(Fiscal expenditure per
capita in each province
+ Fiscal expenditure per

capita in the central
government)

China Statistical
Yearbook Score

Industrialization level indus
Secondary sector value
added/Gross Domestic

Product

China Statistical
Yearbook Score

Scale of energy
consumption energy 1 Total energy

consumption
China Energy

Statistical Yearbook Million tonnes

Energy consumption
structure energy 2

Coal energy
consumption/Total
energy consumption

China Energy
Statistical Yearbook Score

Population size pop
Number of resident

population at the end
of the year

China Statistical
Yearbook Million people

Number of employees labour Number of labour force
at the end of the year

China Statistical
Yearbook Million people

Investment in
industrial pollution

comtrol
invest 1

Investment completed
in industrial pollution

control

China Environmental
Statistics Yearbook Million CNY

Investment in
industrial waste gas

comtrol
invest 3

Investment in
industrial waste gas

treatment

China Environmental
Statistics Yearbook Million CNY

Sewage charges charge Amount of sewage
charge levied

China Environmental
Statistics Yearbook Million CNY

Degree of
marketization market

Local government
expenditure/Gross
Domestic Product

China Statistical
Yearbook Score

Technology level rd

Industrial Enterprises
Above Scale Internal

expenditure on science
and technology

China Science and
Technology Statistical

Yearbook
Million CNY

Descriptive analysis is performed on all variables, and Table 2 describes the statistical
analysis of the data.
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Table 2. Descriptive Statistical Analysis of Variables

Variable Obs Mean Std. Dev. Min Max

id 570 15.5 8.663044 1 30
year 570 2010 5.482036 2001 2019
treat 570 0.3666667 0.4823177 0 1
time 570 0.6315789 0.4828001 0 1

lnpso2 570 4.803911 1.328462 −1.4503 7.6214
edu 570 8.553047 1.187864 3.960645 12.68113

energy1 570 8.854377 0.7369401 5.69454 10.63079
energy2 570 0.4495641 0.1595189 0.0163233 0.883037
patent 570 9.076958 1.677473 4.248495 13.1757

pop 570 8.166417 0.7529524 6.259582 9.351927
indus 570 0.4719952 0.1726606 0.0835022 1.672889

service 570 0.5794321 0.4741081 0.0648192 2.595965
fassets 570 8.60031 1.256432 5.252709 10.98615
invest1 570 11.57812 1.128235 6.914135 14.16335
invest3 570 10.87706 1.325285 4.941642 14.06343
charge 570 10.41566 1.037038 6.763654 12.56843
market 570 0.2099161 0.0949413 0.0767083 0.6283544
fiscal 570 0.8077755 0.0893072 0.3417719 0.9949374
wage 570 10.38492 0.6950548 8.97563 12.307

labour 570 7.572334 0.8125459 5.631212 8.874903
rd 570 13.61397 1.477453 8.747828 16.95744

gdp 570 9.138368 1.125942 5.6984 11.5868
fdi 570 4.833506 1.733361 −1.1713 7.7457

lso2 570 9.300873 10.62118 −0.0037 80.9593

3.5. Random Forest to Select Control Variables

There are two methods for ranking the importance of control variables in random
forests, mainly based on mean decrease impurity and mean decrease accuracy. Mean
decrease impurity means that for each tree, the control variables are ranked according to
their impurity, and finally, the whole forest is averaged. Accuracy reduction is achieved
by reordering the values of a column of features and observing how much it reduces the
accuracy of the model. It directly measures the effect of each feature on the prediction
accuracy of the model. For significant control variables, this method reduces the accuracy
of the model significantly, while for insignificant control variables, this method has little
effect on the accuracy of the model. Correspondingly, the two representations of feature
importance ranking in the regression tree are %IncMSE and IncNodePurity. %IncMSE is
the increase in MSE. Specifically, each control variable such as X1 is assigned a random
value. If X1 is important, the prediction error will increase. So the increase in error is
equivalent to the decrease in accuracy. The same is true for IncNodePurity. In the regression
problem, node purity is actually the reduction of RSS (residual sum of squares). Node
purity increase is equivalent to the reduction of the Gini coefficient; that is, the data in the
node or classification are the same, known as Mean Decrease Gini.

Because the dependent variable in this paper is a continuous variable, a random forest
regressor is constructed using the R package random forest. The number of trees used after
parameter tuning is 500, and the leaf node defaults to one-third of the control variables.
Based on the already constructed random forest regression model, the 18 control variables
that influence the industrial SO2 emissions intensity can be ranked in order of importance.
Then, the cross-validation method is used to select the top-ranking control variables, which
have a greater influence on the industrial SO2 emissions intensities.

Figure 1 depicts the importance ranking of the 18 control variables in this paper by
using random forests. The term “%IncMSE” represents the increase in mean squared
error. By substituting random variables at random and observing the error in the model
after the substitution, the variable becomes significant as the error increases. That is,
the significance of the control variable is proportional to its magnitude; “IncNodePurity”
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denotes an increase in node purity. The sum of squares of residuals is used to calculate
this indicator. Similarly, the magnitude of this variable is positively correlated with its
importance. We discovered a discrepancy in the order of importance of control variables
based on the different criteria of “%IncMSE” and “IncNodePurity.” This paper chooses the
first few control variables with “%IncMSE” as the standard based on the specific situation
that affects the industrial SO2 emissions intensity.

Figure 1. Plots ranking the importance of the control variables. The left plot shows the mean
squared error (%IncMSE), and the right plot shows the node purity (IncNodePurity). In each plot,
the two horizontal axes represent the importance of the variable, and two dotted lines indicate
that the corresponding variables become increasingly important as mean squared error and node
purity increase.

To improve the model’s performance, determining how many control variables are
best suited for model prediction is critical. In this paper, the number of control variables
to be added to the model is determined by ten-fold cross-validation. The smaller the
cross-validation error, the better the model fits. At the same time, the number of control
variables is optimal. Figure 2 depicts a ten-fold cross-validation graph, with the horizontal
axis representing the number of feature variables and the vertical axis representing the
cross-validation error. We discover that adding more irrelevant control variables does
not improve prediction accuracy, so having more control variables is not better. The
cross-validation curve above clearly shows the relationship between model error and the
number of control variables used for fitting. The error increases when the number of control
variables is 0–2, but it gradually decreases when the number of control variables is 2–5. It
is probably smaller when the number of control variables is 5. As the number of control
variables increases, the error becomes larger. As a result, we select five control variables
to minimize error and achieve the ideal state. Therefore, using “%IncMSE” as the control
variables sorting criterion, the top five essential control variables are chosen to add to
the model, which are wage level, energy consumption structure, regional technological
innovation level, foreign direct investment level, and education level.
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Figure 2. Ten-fold cross-validation validation error plot

4. Results

This paper evaluates the emission reduction effect of the emissions trading policy
on industrial SO2. The difference in the policy treatment effects between the treatment
and control groups is also confirmed. Moreover, the study illustrates the effect of pol-
icy implementation on emissions reduction for enterprises or regions with higher SO2
emissions intensities.

4.1. Empirical Analysis of the Effect of Industrial SO2 Emissions Reduction

We use a random forest approach to select the control variables needed in the model,
which are wage level, energy consumption structure, regional technological innovation
level, foreign direct investment, and education level. Previous studies assumed that
policy implementation had the same treatment effect on the treatment and control groups.
However, due to individual differences, the treatment and control groups had different
treatment effects. This paper primarily employs the CIC model based on relevant panel
data from 30 provinces and cities from 2001 to 2019 with the CIC command in STATA16.0
to make an empirical analysis.

Table 3 shows the empirical results for the estimation of the policy effects, and the
values in parentheses are the estimated standard errors obtained after 50 iterations of the
self-help algorithm. With the highest importance as screened by random forest, these
results are obtained by sequentially including the top five control variables, which are wage
level, energy consumption structure, regional technology innovation level, foreign direct
investment level, and education level.

From the coefficients of the control variables, the magnitude of the coefficient of wage
level is −0.6109, which shows that an increase in wages reduces the emissions of industrial
SO2. Wage growth indicates an improvement in the enterprises’ development level. To
pursue higher-quality development, enterprises will pay more attention to the scale of
pollutants generated and minimize the pollution of the environment while gaining benefits.
The state can establish relevant policies that aid in the development of enterprises and raise
the development level of enterprises to reduce emissions. The coefficient of the energy
consumption structure is 1.6652, which means that more pollutants will be released as it
rises. This will have a negative effect on industrial SO2 emission reduction. In order to limit
pollutant emissions, coal should be burned as infrequently as possible and fossil fuel energy
should be substituted with clean new energy. The regional technological innovation level
coefficient is −0.2869. In this study, we analyze the number of granted patent applications
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as a proxy for the degree of innovation in the region. We find that regional technical
innovation is positively correlated with the ability of industrial SO2 emissions reduction.
As regional technological innovation levels increase, businesses use new technologies to
carry out production tasks and cleaner technologies to address pollutant emissions with
the achievement of emissions reduction. Foreign direct investment has a coefficient of
−0.0511. The level of technology introduction in this paper is represented by foreign direct
investment. It can be seen in Table 3 that foreign direct investment can promote the effect of
industrial SO2 emissions reduction, but only marginally. Foreign investment can improve
production technology and increase technological investment, thus improving production
technology and reducing industrial SO2 emissions. The coefficient of education level is
−0.1910, indicating that increasing the average education level has an inhibitory effect on
pollutant emissions. Improving citizens’ education levels positively affects people’s quality
of life, which promotes human capital accumulation and reduces industrial SO2 emissions.

Table 3. Treatment effects.

Variable Treatment Group Contral Group

Treat*time −0.1702 ** −0.2968 **
(0.0918) (0.1301)

wage −0.6109 *** −0.6109 ***
(0.1464) (0.1267)

energy2 1.6652 *** 1.6652 ***
(0.1874) (0.1931)

patent −0.2869 *** −0.2869 ***
(0.0411) (0.0392)

fdi −0.0512 * −0.0512 *
(0.0252) (0.0267)

edu −0.1910 *** −0.1910 ***
(0.0347) (0.0318)

Note: () represents the standard error term, *, **, *** represent significant at the 10%, 5%, and 1% levels, respectively.

4.2. Distribution Effect

In terms of the average treatment effect, the emissions trading policy shows a signif-
icant suppression effect on the industrial SO2 emissions in both the pilot and non-pilot
areas. Furthermore, the average treatment effect in the non-pilot areas is higher than that in
the pilot areas. However, there are some subjective factors while selecting pilot areas. The
higher the industrial SO2 emissions intensity, the more likely the pilot areas are selected.
Therefore, the 10th and 90th percentiles are added to the quartiles to analyze at which stage
the emissions trading policy is more effective for industrial SO2 emissions intensity.

As with the treatment in the previous subsection, the average treatment effect indicates
that the emissions trading policy has a significant suppressive effect on the industrial SO2
emissions intensity in the pilot areas. The distribution effect allows us to observe more
precisely at which stage the industrial SO2 emission intensity is positively affected by the
policy implementation. As can be seen from Table 4, the implementation of the emissions
trading policy has a significant suppressive effect on the industrial SO2 emissions intensity
at 10 percentile. The absolute values of the contral group coefficients are larger than those of
the treatment group, indicating that the implementation of the policy has shown a stronger
effect on emissions reduction in non-pilot areas. Only for industrial SO2 emission intensity
at the 25th percentile, the treatment effect for the control group is negative at the 1% level,
with a coefficient size of −1.1279. The coefficients for industrial SO2 emissions intensities
at the higher percentile do not pass the significance test.
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Table 4. Distributed treatment effects.

Subsites Treatment Group Contral Group

Mean −0.1702 ** −0.2968 **
(0.0918) (0.1301)

q10 −0.6638 ** −0.9136 ***
(0.2619) (0.2460)

q25 −0.2163 −1.1279 ***
(0.1357) (0.4205)

q50 −0.0714 −0.1756
(0.1128) (0.1552)

q75 0.1043 0.0859
(0.0795) (0.0916)

q90 0.0199 0.0199
(0.1048) (0.0863)

Note: () represents the standard error term, **, *** represent significant at the 5%, and 1% levels, respectively.

When the control variables are added sequentially, the results show that the policy
is more effective at the lower percentile and that none of the coefficients at the higher
percentile pass the significance test. This indicates the implementation of the emissions
trading policy is less effective for “dirtier” industrial enterprises or regions but more
effective for the regions with lower SO2 emissions. However, these industrial enterprises
or regions with higher pollutant emissions intensities are the main source of environmental
damage. Therefore, the government should improve the market-trading mechanism in
regions with lower industrial SO2 emissions to further implement and promote the policy.
Supervision and management should be strengthened in regions with higher industrial
SO2 emissions. In this way, the policy implementation can have significant effects on these
enterprises , thereby achieving the goal of environmental protection.

5. Robustness Check
5.1. Placebo Test

For the robustness check, we replace the explained variable industrial SO2 emissions
with domestic SO2 emissions. The robustness test results are shown in Table 5.

Table 5. Placebo test.

Treatment Group Contral Group

Mean −0.2180 0.2356
(1.0017) (1.2336)

wage −2.9476 *** −2.9476 ***
(0.9029) (0.8052)

energy2 35.5129 *** 35.5129 ***
(4.2869) (4.4650)

patent 1.9950 *** 1.9950 ***
(0.4304) (0.4142)

fdi (0.4304) (0.4142)
(0.4358) (0.3899)

edu 0.0930 0.0930
(0.2928) (0.3342)

Note: () represents the standard error term, *** represent significant at the 1% levels, respectively.

Since the emissions trading policy mainly targets industrial SO2 emissions, no effect
should be seen on domestic SO2 emissions. According to the results, the average treat-
ment effects of treatment group and control group are not significant, indicating that the
implementaiton of the emissions trading policy has no significant effect on domestic SO2
emissions regardless of the inclusion of the control variables. The results confirm the
implementation of the emissions-trading policy plays a catalytic role in industrial SO2
emissions reduction. Moreover, the estimation results are robust.
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5.2. Replacement Policy Intervention Time Point

This paper uses 2007 as the policy-impact point, but some areas in China began to
implement the emissions trading policy as early as 2002. As a result, 2002 is chosen as
the start date of policy intervention to generate a new start date dummy variable, Time1
(if the start date is before the year 2002, the value is 0; otherwise, it is 1). Table 6 reports
the estimates of the emissions trading policy effects after replacing the start date of the
policy intervention with 2002. From test results, the average treatment effect after replacing
the start date dummy variable is clearly not significant in either the treatment or control
groups. Furthermore, we see that the treatment effect of the emissions trading policy after
replacing the start date dummy variable is also insignificant at the lower percentile. This
indicates that the emission reduction effect produced by the emissions trading policy is not
caused by the start date.

Table 6. Replacement policy intervention time point.

Treatment Group Contral Group

Mean −0.3329 0.5423
(3.3377) (4.2634)

q10 −1.5500 2.8954
(4.7020) (10.5034)

q25 −2.7905 0.8571
(3.0349) (2.9364)

q50 −1.6975 −3.1183
(2.5386) (3.6534)

q75 −0.5105 11.7543 *
(3.5240) (4.3629)

q90 2.9460 5.4399 ***
(11.8022) (3.6034)

Note: () represents the standard error term, *, *** represent significant at the 10% and 1% levels, respectively.

5.3. Excluding the Policy Impact of the Same Period

In response to the increasingly changing environmental issues, China has undertaken
several pollution control policies since 2000. The more representative means of environ-
mental regulation is the regulation on “the Administration of Emissions Fee Collection”
adopted in 2002. The simultaneous implementation of multiple policies may lead to the
estimation of the nonlinear DID model confounding the effects of other policies. In this
paper, we further exclude the effect of sewage charge collection on the estimation results
by adding the total amount of sewage charges collected by provinces as a control variable.
If the interaction with the pilot emissions trading policy is still significant after adding the
control variable, the decrease in the scale of pollutant emissions is not entirely due to the
collection of sewage charges.

Table 7 reports the estimated effects of the emissions trading policy after removing the
emissions charge levy policy. It can be seen from the table that the average treatment effects
after adding the control variable of sewage charges on industrial SO2 emissions intensity
are −0.1889 and −0.2908, indicating that the effect of the emissions trading policy on
industrial SO2 emissions reduction is still significant. Furthermore, we look at its emissions
reduction effect from the quantile points: the treatment effects for industrial SO2 emissions
intensity in the treatment group are −0.5082 and −0.2028 in the 10th and 25th percentiles,
respectively, which are significant at the 10% level. In the control group, the treatment
effects for industrial SO2 emissions intensity are −0.9242 and −0.8615 in the 10th and 25th
percentiles, respectively, which are significant at the 5% level. According to the treatment
effect coefficients, the reduction effect of the control group is still greater than that of the
treatment group. For the high quantile, the treatment effect was not significant in either the
treatment or the control group. This demonstrates that the findings of this paper are sound.
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Table 7. Treatment effect after excluding the impact of the pollution discharge fee collection policy.

Treatment Group Contral Group

Mean −0.1889 *** −0.2908 ***
(0.0723) (0.1127)

q10 −0.5082 *** −0.9242 **
(0.1609) (0.3298)

q25 −0.2028 * −0.8615 **
(0.1182) (0.3969)

q50 −0.0718 −0.0726
(0.1052) (0.1186)

q75 0.0503 0.0632
(0.0826) (0.0856)

q90 −0.0879 −0.1160
(0.1254) (0.1107)

Note: () represents the standard error term, *, **, *** represent significant at the 10%, 5%, and 1% levels, respectively.

6. Discussion and Conclusions

Using the panel data from 30 Chinese provinces and cities from 2000 to 2019, this
paper employs the nonlinear DID method to analyze the of the emissions trading system’s
effect on industrial SO2 emissions reduction. Compared with the classical DID methods,
there are two major advantages of the nonlinear DID method: first, it relaxes the linear
assumption, which does not always hold in practice. Second, the method can give estimates
of the distribution effects in different quartiles, whereas the classical DID method can only
give an average treatment effect. In particular, this paper evaluates the distribution effects
of industrial SO2 emissions intensity at the 10th, 25th, 50th, 75th, and 90th percentiles. In
addition, we verified the robustness by replacing the dependent variable with domestic SO2
emissions, advancing the policy implementation time and excluding any contemporaneous
policy effects. The main conclusions of this study are summarized as follows:

• First, a certain emissions reduction effect on Chinese industrial SO2 emissions occurs
with the implementation of the emissions trading policy. Increases in wage level,
regional technological innovation level, foreign direct investment, and education level
have significant inhibitory effects on industrial SO2 emissions. The effect of the policy
is slightly greater in non-pilot areas than in pilot areas.

• Second, the effect of the policy is slightly greater in non-pilot areas than in pilot
areas. That is, the treatment effect of the control group is slightly larger than that of
the treatment group. In terms of distribution effects, the areas with lower pollutant
emissions intensity take the better policy’s emissions reduction effect. However, some
subjective factors influence the selection of the pilot areas. The areas with higher
pollutant emissions are more likely to be selected as pilot areas. As a result, the
policy intervention has been demonstrated to not have the same treatment effect on
every individual.

• Third, for both the pilot areas and the non-pilot areas, the implementation of an emis-
sions trading policy has a significant emissions reduction effect on areas (enterprises)
with low industrial SO2 emissions intensities. However, areas with larger pollutant
emissions did not show a significant effect. In fact, the emission reduction effect of the
policy diminishes as the SO2 emissions intensity increases. This also explains why the
policy’s implementation has a slightly higher treatment effect on the control group
than on the treatment group.

By reviewing the above conclusions, this study gives the following policy recommendations.

1. The government should improve the market trading system in the pilot areas, unify the
market trading standards, and strengthen the supervision of policy implementation in
the pilot areas. The implementation of any policy requires clear laws and regulations
as well as implementation standards. Therefore, the government should introduce and
clarify the relevant regulations of the emissions trading market and unify the quota-
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allocation methods in each province and city. Moreover, the pricing and evaluation
standards related to trading should be enhanced to promote the fair promotion of the
emissions trading policy in the pilot areas.

2. To ensure the smooth operation of emissions trading, the government should enforce
relevant laws and regulations, strengthen the supervision of the emissions rights trad-
ing market in pilot areas, and impose appropriate penalties on illegal emissions units.
In addition to the relevant regulations at the national level, the relevant regulations of
provinces and municipalities should also be very clear to give full play to the positive
role of the market in environmental management.

3. The current emissions-trading policy for enterprises or regions with higher SO2 emis-
sions does not play a positive role in reducing emissions. Therefore, the government
should strengthen the total volume control and quota allocation for areas with higher
industrial SO2 emissions and raise the trading fees. Total volume control and quota
allocations are critical to the foundation, which are prerequisites for the emissions
trading market’s smooth operation. For regions or enterprises with different levels
of industrial SO2 emissions intensities, a more reasonable total amount of pollutant
emissions should be determined in combination with the local environmental capacity.
Furthermore, a reasonable emissions reduction task should be prescribed according
to the pollutant emissions intensity. At the same time, refining the list of enterprises
and industries that conduct emissions trading and making a reasonable plan for the
total amount of emissions in a targeted manner are suggested.
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