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Abstract: Phosphorus (P) is a key nutrient in forest ecosystems in subtropical regions. However, the
effects of the long-term application of organic amendments on P availability are poorly understood.
Here, we compared the soil P fractions and associated soil properties in southern Chinese Lei bamboo
plantations using both an intensive management system (IMS) and a traditional management system
(TMS). The results show that the IMS significantly (p < 0.05) increased the soil total organic carbon
(C), soil ammonium N (NH4-N), total P, and available potassium content; microbial biomass C and P
content; P activation coefficient, and soil C:P ratios, while significantly (p < 0.05) decreasing pH and
microbial C:P. The labile-P-to-total-phosphorus-content ratio increased significantly in the IMS (46%)
compared with that in the TMS (32%). The selected soil properties (except nitrate [NO3-N]) were
significantly related to soil P fractions (except for concentrated HCl-extracted organic P). The IMS
had a higher C:P ratio and labile P content than the TMS, suggesting that the IMS could promote soil
P transformation and availability. Overall, the IMS increased soil P availability and supply capacity,
and the changes in P forms could be a risk factor for P loss.

Keywords: bamboo plantations; forest management; long-term fertilization; phosphorus loss;
phosphorus availability

1. Introduction

The bamboo forest, also known as “the second largest forest in the world,” comprises
more than 1200 species [1]. The 9th National Forest Resources Survey estimates that there
are 6.01 million hectares of bamboo forests in China. Lei bamboo is a famous and excellent
bamboo shoot species in China, with its tender, crispy, and refreshing shoots, as well as its
high nutritional value and yield; given these characteristics, Lei bamboo has emerged as a
high-quality agricultural and forestry product for export in China [2]. These objectives are
attained via the utilization of intensive management techniques, such as overfertilization
and mulching with organic amendments, with the purpose of improving soil moisture
and temperature in the winter, thereby increasing bamboo shoot production and economic
efficiency [3,4].

Furthermore, organic amendments have been used as exogenous fertilizers to increase
the soil stability, biomass of soil microorganisms, and activity of some soil enzymes, im-
proving the effectiveness of soil remediation [5–8]. Rice husk is one of the common organic
amendments, which is high in C/P ratio (133.4) and produces phenolic acid substances,
which have an allelopathic effect on the plant and are effective at inhibiting disease [9].
Long-term mulching with organic amendments, however, causes an imbalanced distri-
bution of nutrients, including soil carbon and nitrogen, as well as excessive nutrient
accumulation [10]. The impact of organic amendments on the cycle of phosphorus has
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been less well studied. In addition, there is a coupled relationship between soil carbon
and phosphorus. This interaction is caused by soil microbes’ mineralization of organic
phosphorus to produce carbon [11–13]. To date, there are no effective measures to address
the issues related to the long-term intensive management of bamboo forests, particularly
as it pertains to P cycling, which is crucial for comprehending the coupling relationship
between carbon and phosphorus in forest ecosystems.

P ranks second among the nutrients most required by plants for growth and produc-
tivity [14]. P deficiency causes an irregular roots structure by changing the number and
density of lateral roots, decreasing enzyme activities related to C and N metabolism, and
disrupting the structure and abundance of the soil microbial population [15–17]. Addition-
ally, P deficiency also inhibits metabolic and biosynthetic processes such as photosynthesis
and respiration in plants [18,19]. Soil P is a macronutrient with low mobilization, where
only relatively small amounts can be taken up and used by plants [20]. Soil inorganic P
(Pi) is the preferred source for plant uptake and is present in the soil solution. To release
inorganic P for plants to absorb, soil organic P (Po) must be mineralized. The process of soil
P turnover is influenced by a variety of biotic and abiotic variables, with turnover times
ranging from a few weeks to several months [21,22]. However, different P fractions have
different bioavailabilities for uptake by plants and microorganisms, which are crucial for
the biogeochemical processes associated with the P cycling [23]. Therefore, changes in the
P fractions within the soil of intensively managed bamboo forests can largely determine
P availability in the soil, thereby affecting bamboo forest production. The dynamics of
the P fraction depend on various factors, such as topography, climatic environment, mi-
croorganisms, and vegetation [24–26]. Ding et al. [27] found that applying organic matter
amendments in arid and semiarid areas reduced soil salinity, increased organic matter
content, and increased effective soil P levels. Verma et al. [28] discovered that organic
fertilizers were more responsive to changes in NaOH-P within acidic soil. This information
was used to demonstrate the effects of fertilizers on soil. Zhang et al. [29] found that after
10 years of long-term fertilization, phosphorus retention in black, brown, and purple soils
in China differed, and the form of phosphorus changed markedly. The surface layer of black
soil is rich in the organic form of P, whereas the deep layer is rich in P in its inorganic form.
Brown tide and purple soil are both rich in the inorganic form of P. Therefore, studying
the changes in soil properties and P fractions associated with the long-term application
of chemical fertilizers and organic amendments contributes to a better understanding of
biochemical cycling and P bioavailability in bamboo plantations.

It is still unknown how intensive management affects the soil P fractions in bamboo
plantations, particularly how organic C buildup may affect soil P availability. This study in-
vestigated the effects of long-term intensive management (using organic amendments) and
traditional management on the soil properties of Lei bamboo plantations. This study specif-
ically aimed to: (a) investigate the effects of the long-term use of organic amendments on
soil physical chemical properties and P fractions; (b) examine the relationships between soil
C:P stoichiometry and P fractions during the long-term application of organic amendments;
and (c) characterize the relationship between soil P availability and C sequestration.

2. Materials and Methods
2.1. Study Area Description and Soil Collection

The research region is located in Hangzhou, Zhejiang Province, southeast China, in the
Fuyang District (119◦72′ E, 30◦05′ N). The study area’s sample plots’ climate details have
already been described [10]. Briefly, the region has a mid-latitude subtropical monsoon
climate, with a mean annual precipitation and temperature of 1452.0 mm and 16.2 ◦C,
respectively. We established the experimental comparison plantations, namely, Lei bamboo
plantation with an intensive management system (IMS) and a plantation with a traditional
management system (TMS). The two comparison plantations had the same initial site
conditions. During the experimental period (2005–2021), the annual input of chemical
fertilizers (NPK15–15–15) was 600 kg·ha−1 in the TMS. In addition to applying the same
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amount of chemical fertilizer, the IMS used 40 t·ha−1 organic amendment mulch (rice husk)
in November and December to raise the soil temperature and maintain soil moisture for
the early bamboo shoots’ emergence [4]. The IMS was performed over 16 years.

Five subplots (10 × 10 m2) were randomly established in each selected plantation in
October 2021. Soil samples were collected from a depth of 0–20 cm, with five different points
being taken from each subplot, which were mixed to form a composite sample. Samples
for the soil property analysis were sieved (<2 mm) to remove rough stones and roots. The
soil samples were then divided into two parts. An aliquot of each fresh sample was frozen
at 4 ◦C for further analysis, and the remaining samples were air-dried to measure soil
properties and P fractions.

2.2. Soil Basic Properties

For each sample, the soil pH was recorded from a soil suspension of soil: water
(1: 2.5; w·v−1) using a pH meter (PHS-3E; REX, China). The total soil organic C (TOC) was
analyzed using a total organic carbon analyzer (Multi N/C 3100; Analytik Jena, Germany).
Soil nitrate and ammonium N (NO3-N, NH4-N) content was extracted using 2 M potassium
chloride (KCl) and determined using UV spectrophotometry. The total phosphorus (TP)
content was determined using HClO4 and H2SO4. Available potassium (AK) content was
determined using the novAA Atomic Absorption Spectrometer (Analytik Jena, Germany).
Microbial biomass C (MBC) and P (MBP) were determined using the chloroform fumigation
extraction method [30,31].

2.3. Fractionation Procedure for Soil P

The protocols for P fractionation extraction have been described by Tiessen and
Moir [32] and Hedley et al. [33] (Figure 1). Briefly, air-dried soil (0.5 g) was collected and
shaken with 30 mL 0.5 M NaHCO3 (pH 8.5), 0.1 M NaOH, and 1 M HCl for 16 h each to
extract the NaHCO3-P, NaOH-P, and D.HCl-P fractions, respectively. The soil residue was
extracted with 10 mL of concentrated HCl at 80 ◦C (conc. HCl-P). The final residue was
boiled with 5 mL of concentrated H2SO4 and 10 drops of HClO4 (residual P). Soil Pi was
calculated as the sum of NaHCO3 Pi-, NaOH-Pi, and HCl-Pi, and soil organic phosphorus
(Po) was calculated as the difference between total P and Pi [34–36].
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Figure 1. Flow diagram of the P fractionation method.

2.4. Statistical Analysis

To facilitate interpretation, P fractions were classified into three main groups according
to their availability: labile P, moderately labile P, and non-available P (sparingly labile P
and residual P) [37]. Labile P contained NaHCO3-P; moderately labile P consisted of 0.5 M
NaOH-P and D.HCl-Pi; similarly, non-available P was composed of concentrated HCl-P and
residual P. All statistical analyses were performed using SPSS 19. Significant differences at
p < 0.05 were assessed by analysis of variance (ANOVA) and the least significant difference
(LSD) test. Visual analyses were performed using the vegan and ggplot 2 packages in R
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version 4.2.1. The correlation coefficient between soil physicochemical properties and soil
phosphorus fractions was also determined. Using the Origin 2022b version, we investigated
the relationship between changes in the soil phosphorus fractions and the soil C:P ratio.

3. Results
3.1. Soil Basic Properties

The soil properties differed significantly between the two management practices
(Table 1). Compared with the TMS plots, the IMS plots had significantly (p < 0.05) lower
pH values and (p < 0.05) higher levels of soil TOC, MBC, TP, AP, MBP, AK, NH4-N, soil
C:P, and P activation coefficient (PAC). However, no significant differences (p > 0.05) were
observed between the two management practices for NO3-N and microbial C:P.

Table 1. Soil basic properties under different management systems.

TMS IMS

pH 4.48 ± 0.03 a 3.90 ± 0.05 b
TOC (g·kg−1) 34.38 ± 0.20 b 83.07 ± 0.99 a

MBC (mg·kg−1) 356.67 ± 13.55 b 793.78 ± 16.36 a
NH4-N (mg·kg−1) 21.37 ± 2.64 b 30.57 ± 0.75 a
NO3-N (mg·kg−1) 10.74 ± 0.17 a 10.81 ± 0.32 a

TP (g·kg−1) 1.69 ± 0.00 b 2.81 ± 0.06 a
AP (mg·kg−1) 304.50 ± 5.42 b 789.06 ± 8.24 a

MBP (mg·kg−1) 43.26 ± 2.26 b 115.22 ± 5.48 a
AK (mg·kg−1) 68.24 ± 0.55 b 280.94 ± 1.48 a
Microbial C:P 8.35 ± 0.61 a 6.95 ± 0.33 a

Soil C:P 46.18 ± 1.85 b 63.31 ± 6.13 a
PAC 0.18 ± 0.00 b 0.28 ± 0.01 a

1Values are expressed as the mean (n = 5) ± SE. Values with different lowercase letters on the same row indicate a
significant difference (p≤ 0.05) between to the two management practices (LSD test). TMS: traditional management
system; IMS: intensive management system. TOC: Total organic carbon; MBC: Microbial biomass carbon; NH4-N:
Soil ammonium nitrogen; NO3-N: Soil nitrate nitrogen; TP: Total Phosphorus; AP: Available phosphorus; MBP:
Microbial biomass Phosphorus; AK: Available K; Soil C:P, TOC: TP; PAC, the ratio of AP: TP; Microbial C:P, MBC:
MBP.

3.2. Soil P Fractions

Labile, moderately labile, and sparingly labile P increased significantly under the
IMS (Table 2). Compared with the TMS, the content of NaHCO3-Pi and NaHCO3-Po in
the fractions was elevated by 62% and 64%, respectively, in the IMS. Additionally, the
NaHCO3-Pi content was at its maximum compared with the other P fractions. In terms of
moderately labile P, the P fractions extracted by NaOH, NaOH-Pi and NaOH-Po, increased
by 32% and 42% in the IMS, respectively, whereas the D.HCl-Pi fractions underwent a
significant decrease of 35%. As for sparingly labile P, the conc. HCl-Po trend was not
consistent with that of conc. HCl-Pi; the concentration of conc. HCl-Pi did not change
significantly in the IMS and was the lowest in the P fraction. Compared with the TMS, the
content of residual P fractions in the IMS increased by 54%.

Our results show that the IMS significantly affected the relative content of each P
fraction (Figure 2). The relative level of labile P was 46% of the total P, indicating an
increase associated with the IMS treatment (Figure 2a). Furthermore, the relative contents
of NaHCO3-Pi and NaHCO3-Po in relation to total P increased by 8% and 6%, respectively.
Notably, NaHCO3-Pi contributed the most to the total P in the IMS (28%) (Figure 2b).
The IMS also altered the composition of moderately labile P. Following organic amend-
ment application, the relative content of moderately labile P decreased from 52% to 42%
(Figure 2a). The proportion of NaOH-extracted and 1 M HCl-extracted Pi in moderately
labile P decreased with organic amendment application; however, the proportion of NaOH-
Po was unchanged (Figure 2b). Compared with the TMS, applying organic amendments
did not change the relative content of Nonlabile P; however, the composition varied within
a limited range of 1–2% (the relative content of conc. HCl-P decreased) (Figure 2b).
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Table 2. Mean content of soil P fractions (g·kg−1) under different management systems.

P Fraction TMS IMS

NaHCO3-Pi 0.31 ± 0.04 b 0.77 ± 0.02 a
NaHCO3-Po 0.18 ± 0.06 b 0.50 ± 0.03 a

ΣLabile P 0.49 ± 0.01 b 1.28 ± 0.04 a
NaOH-Pi 0.30 ± 0.00 b 0.44 ± 0.02 a
NaOH-Po 0.32 ± 0.02 b 0.55 ± 0.02 a
D.HCl-Pi 0.26 ± 0.01 a 0.17 ± 0.08 b

ΣModerately P 0.88 ± 0.43 b 1.16 ± 0.04 a
Conc.HCl-Pi 0.08 ± 0.00 b 0.11 ± 0.00 a
Conc.HCl-Po 0.06 ± 0.01 a 0.08 ± 0.00 a

ΣSparingly labile P 0.14 ± 0.02 a 0.19 ± 0.01 a
Residual P 0.06 ± 0.01 b 0.13 ± 0.01 a

ΣNonlabile P 0.20 ± 0.02 b 0.32 ± 0.04 a
1Values are expressed as the mean (n = 5) ± SE. Values with different lowercase letters on the same row indicate
a significant difference (p ≤ 0.05) between to the two management practices (LSD test). ΣLabile P (NaHCO3-
Pi, NaHCO3-Po); ΣModerately labile P (NaOH-Pi, NaOH-Po, D.HCl-Pi); ΣSparingly labile P (Conc.HCl-Pi,
Conc.HCl-Po); ΣNonlabile P (ΣSparingly labile P, Residual P).
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Compared with the TMS, the contents of Po and Pi increased significantly in the IMS
(Figure 3). Specifically, in the IMS, the Pi content was 1.18 times greater than that of Po.
However, with organic amendment application, the relative content of Pi decreased from
60% to 54%, whereas the relative content of Po increased from 40% to 46%.
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phosphorus is total organic phosphorus (TPo); geochemical phosphorus is total inorganic phosphorus
(TPi).
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3.3. Correlation Analysis between P Fractions and Soil Properties

The correlation coefficients between the soil P fractions and soil properties are shown
in Figure 4. NH4-N content was significantly correlated with all extracted P fractions
(except for conc. HCl-Po and residual P), whereas NO3-N was not correlated with all the P
fractions. TP, AP, and MBP were significantly positively correlated with NaHCO3-Pi/Po,
NaOH-Pi/Po, and conc. HCl-Pi, negatively correlated with D.HCl-Pi (R2 = −0.89, 0.90,
and 0.91), and showed no significant correlation with conc. HCl-Po (p > 0.05). AK
was similar to AP, exhibiting a higher correlation with all P fractions. In contrast, soil
pH was significantly negatively correlated with extracted P (NaHCO3-Pi, R2 = −0.94;
NaHCO3-Po, R2 = −0.88; NaOH-Po, R2 = −0.87; NaOH-Po, R2 = −0.90; conc. HCl-Pi,
R2 = −0.88; residual P, R2 = −0.88), and significantly positively correlated with D.HCl-Pi
(R2 = 0.81). TOC content was positively correlated with the soil NaHCO3-Pi and NaOH-Pi
contents (R2 = 0.99, 0.92); conversely, it was negatively correlated with D.HCl-Pi fractions
(R2 = −0.91). No correlation was observed between conc. HCl-Pi/Po fraction and TOC.
MBC exhibited similar relationships to that between the TOC and P fractions; MBC was
highly correlated with NaHCO3-Pi, NaOH-Pi, NaHCO3-Po, and NaOH-Po fractions, and
all of these correlations were positive. Furthermore, the linear regression results show that
soil C:P ratios were positively correlated with labile and moderately labile P (Figure 5).
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4. Discussion
4.1. Impacts of Long-Term Application of Organic Amendments on Soil Physicochemical Properties

This study shows that the IMS significantly increased soil TOC, MBC, NH4-N, MBP,
AP, and AK levels (Table 1). This is due to the ability of soil microbial activity and soil
respiration to accelerate the rate of decomposition of nutrients (C/N, P, and K) in organic
amendments [38–40]. Consequently, the nutrients in the organic matter were higher in
concentration than the crop requirements, causing a significant buildup of AP, N, and K.
In addition, organic amendments have direct and indirect effects on the TOC [40], with
residues of recalcitrant C compounds, the coupling effect of trace metal ions, and changes
in the microbial community effectively increasing soil organic C levels [38,41]. Moreover,
organic amendments stimulated the overall fixation rate of NH4-N and prevented NO3-
N accumulation in the soil upon fierce competition with nitrifying agents for available
NH4-N [42]. According to the results of this study, soil MBC was significantly negatively
correlated with NH4-N and significantly positively correlated with NO3-N [43]. Thus, the
IMS constraint on nitrification processes leads to NH4-N accumulation in the soil. Increased
P content indicates that the P added to the IMS is stored in the soil and not fully used by
the plant, as it exceeds the P concentration required by the plant [42]. Furthermore, adding
a lot of organic amendments lowers soil pH and generates large amounts of hydrogen ions
(H+), which may be triggered by an increase in organic acid secretion [44] and an increase
in nitrification processes (leaching of NO3-N) [45].

4.2. Impacts of Long-Term Application of Organic Amendments on the P Fractions and MBP

NaHCO3-Pi and NaHCO3-Po are the active fractions in plants and microbes [46]. The
labile P (1.28 g·kg−1) content was highest in the soil under the IMS conditions; NaHCO3-Pi
and NaHCO3-Po levels increased by 60% and 64%, respectively (Table 2), consistent with
the findings of Ahmed et al. [47], who showed that the combined application of inorganic
P fertilizers and manure enhanced labile P. That the IMS improves soil organic matter is
one explanation. NaHCO3-Pi, a transient P fraction that is accessible to plants, is abundant
in soils high in organic matter [48,49]. Soil microorganisms functioning as sources and
sinks for labile P is another factor [50]. Zhang et al. [10] showed that the IMS had a marked
influence on the structure and diversity of soil bacterial communities, which include a large
number of bacteria involved in the C and N cycles, stimulating the microbial demand for P,
where NaHCO3-Po acts as a rapid replenishment of available P sources [45]. In addition,
this study discovered that the labile P fraction represents a large proportion of the TP (labile
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P accounts for 61% of TP) (Figure 2). Thus, the prolonged use of organic amendments
encourages the accumulation of labile P, particularly NaHCO3-Pi, which poses a high risk
for P loss.

The NaOH-Pi/Po content in the IMS plots increased significantly as a result of
this investigation. This finding is consistent with the most relevant studies, including
Yan et al.’s [51] study showing that the deposition of organic amendment lowered soil pH,
increased the adsorption capacity for Fe-Al oxides, and promoted the formation of com-
plexes with additional free P. Meanwhile, Fe and Al mineral concentrations are relatively
high in acidic soils (pH < 5) [52,53]. Furthermore, in the current study, the content and
ratio of D.HCl-Pi sharply declined with the long-term use of organic amendments (Table 2),
which is consistent with Nan’s finding [54]. Organic molecules released by microbial
decomposition of organic matter have been shown to interfere with the binding of P and
calcium (Ca) in soils. The D.HCl-Pi may be Ca-P, because Fe-P or Al-P remaining after
NaOH extraction is insoluble in acid [52]; when the easily extractable P is depleted, it is
then mobilized in the labile fraction. Soltangheisi et al. [55] speculated that cover crops
should convert the D.HCl-Pi fraction to other available P fractions for plant uptake.

Moreover, the stability of HCl-extractable P strongly depends on the pH [37]. We
found a significant positive correlation between D.HCl-Pi and pH (R2 = 0.81, p < 0.05)
(Figure 4). The study area included the subtropical region with acidic soils and poorly
stabilized P fractions. Notably, organic amendments significantly lowered soil pH (Table 1),
The combined use of organic amendments and fertilizers stimulates microbial demand for
P, resulting in the secretion of more phosphatases or more H+ to promote the dissolution
of insoluble phosphates and increase protons (H+) in the soil solution, leading to soil
acidification [56]. Therefore, the D.HCl-P decreased, possibly because of a decreased soil
pH, thereby causing Ca dissolution. Additionally, the long-term application of organic
amendments significantly increased the moderately available P level (Table 2). This is
consistent with Khan et al.’s [37] findings, who also noticed the presence of a large amount
of moderately available P in the topsoil. Consequently, the long-term application of organic
amendments transformed moderately labile P and enhanced the proportion of its fractions
in the soil, facilitating P subsurface transport.

Non-available P is the most recalcitrant form of P. Notably, non-available P does not
readily exchange with soil solutions and includes HCl-P and residual P fractions [57]. In
this study, the residual P content in the IMS treatment was significantly elevated compared
with the TMS treatment (Table 2), which was consistent with the results of Verma et al. [28],
who showed that NPK treatment resulted in an increase in residual P, which was attributed
to the participation of these phosphorus fractions in the long-term phosphorus cycle [47].
Residual P is a stereoisomer of inositol hexakis phosphate and is the most stable form
of soil organic P synthesized by plants that enter the soil upon the direct deposition of
plant material [42]. Therefore, residual P accumulation results from a long-term interaction
between organic amendments and Lei bamboo roots.

Soil microorganisms are the most sensitive indicators that can rapidly and accurately
sense detect changes in soil quality [41]. Excluding soil inorganic and organic P fractions,
organic amendments also increased soil MBC and MBP (Table 2), consistent with the
findings of Zeng [58] in torch pine and bamboo plantations. The availability of readily
metabolizable C from organic amendments may be the main cause of the increase in MBC.
This beneficial effect is caused by plant growth and microbial proliferation, both directly
and indirectly [40]. Wang et al. [59] showed that microbial demand for carbon promotes
MBP, and that soil MBP is highly dependent on the quantity and quality of organic matter
returned to the soil, particularly volatile organic matter. In addition, degrading organic
amendments stimulates soil phosphatase to synthesize aryl sulfate lyase, thereby promoting
the degradation of organic matter [40]. In synthesis, the P fraction is influenced by organic
amendments, explaining the positive effect on soil P supply induced by the increase in the
labile and moderately labile P fractions in the IMS.
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4.3. Impacts of Long-Term Application of Organic Amendments on Soil Stoichiometry and Its
Ecological Implication

The long-term application of organic amendments can play an important role in soil P
dynamic cycling [4,60]. This study revealed that organic amendment significantly increased
the geochemical (Pi) and biochemical (Po) fractions (Figure 3), providing slow-release P
sources for bamboo and soil microorganisms. The importance of geochemical (Pi) and
biochemical (Po) factors in soil P dynamics has been supported by previous studies; Po
is considered the ultimate source of soil AP, explaining why lignin in rice straw can in-
crease the AP functional group via the competitive adsorption of phosphorus [61–63].
Thus, the long-term application of organic amendments effectively increased the rela-
tive Po content. Nevertheless, by adding 14C or 33P–labeled glucose-6-phosphate to soil,
Christine et al. [64] found that microorganisms used more C than phosphorus derived
from glucose-6-phosphate, suggesting that the microbial mineralization of Po is microbially
driven by the need for C, rather than P. The coupling between carbon and phosphorus
facilitates the accumulation of soil Po. Therefore, the long-term combined use of organic
amendments and fertilizers in bamboo plantations results in a higher rate of Po accumula-
tion than Po mineralization.

Furthermore, consistent with previous studies [65], the proportions of labile and
moderately labile P fractions in this study were positively correlated with soil TOC and
MBC (Figure 4), suggesting a possible role of TOC in accumulating labile and moderately
labile P [37,47]. One explanation is that the long-term application of organic amendments
raises the relative abundance of Proteobacteria (Proteobacteria primarily contribute to changes
in soil C and N motion), effectively enhancing soil nutrient cycling [10,66]. This in turn
stimulated the activity of soil labile and moderately labile P fractions. Another explanation
is the increased number of negatively charged functional groups in the TOC, which interact
with Fe and Al oxides to facilitate the desorption of P on the surfaces of the oxides [67,68].
In addition, Al oxides are insensitive to redox and have high affinities for P, which can
significantly increase labile P. Therefore, the long-term application of organic amendments
affects the soil C: P ratio and TOC content, increasing soil labile P and soil phosphorus
availability.

Soil stoichiometry directly reflects soil fertility and assesses the soil’s P status [69].
This study showed that the soil C:P ratio was significantly increased. In contrast, the
microbial C:P ratio did not change significantly in the IMS compared to that in the TMS
(Table 2), consistent with the findings of Zhang [70]. The soil C:P ratio is closely related to
phosphatase activity and phoD gene abundance [54], and acid phosphatase and alkaline
phosphatases are crucial in promoting the mineralization of Po via the enzymatic conversion
of Po to inactive Pi [71]. Therefore, our data support previous findings that increasing
soil C:P ratio destabilizes labile Pi accumulation. Contrary to Muhammad et al.’s [72]
findings, which stated that a high soil C:P ratio was negatively correlated with labile P, this
investigation revealed that the soil C:P ratio was positively correlated with labile P and
moderately correlated with P (Figure 5). Different forest and agricultural soil types can
explain these conflicting results [70]. As mentioned above, a higher soil C:P ratio would
increase the amount of labile P, thereby encouraging soil P conversion and availability.

5. Conclusions

Our study’s findings indicate that acidification and nutrient imbalance in bamboo
forest soils after the long-term application of organic amendments severely altered the
soil P fraction. The most evident increases in labile and moderately labile P facilitated the
mobilization of soil P for plant availability, directly promoting P conversion and reducing
its accumulation in the soil. In addition, organic C mineralization and high soil C:P ratios
promoted the conversion of Po to labile P, regulating the soil P cycle. Taken together, these
findings indicate that the long-term application of organic amendments can alleviate P
deficiency in bamboo plantations and increase the soil P’s supply capacity and potential,
providing insights into the drivers of P dynamics and helping mitigate P loss.
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