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Abstract: In this study a novel microsimulation-based methodology for environmental assessment
of urban systems is developed to address the performance of autonomous mass-mobility against
conventional approaches. Traffic growth and microsimulation models, calibrated using real data,
are utilised to assess four traffic management scenarios: business-as-usual; public bus transport case;
public-bus rapid transit (BRT) case; and, a traffic-demand-responsive-autonomous-BRT case, focusing on fuel
energy efficiency, headways, fleet control and platooning for lifecycle analysis (2015–2045) of a case
study 3.5 km long 5-lane dual-carriageway section. Results showed that both energy consumption
and exhaust emission rates depend upon traffic volume and flow rate factors of vehicle speed-time
curves; acceleration-deceleration; and braking rate. The results measured over-reliance of private
cars utilising fossil fuel that cause congestions and high environmental footprint on urban roads
worsen causing excessive travel times. Public transport promotion was found to be an effective and
easy-to-implement environmental burden reduction strategy. Results showed significant potential
of autonomous mass-mobility systems to reduce environmental footprint of urban traffic, provided
adequate mode-shift can be achieved. The study showed utility of microsimulations for energy and
emissions assessment, it linked bus network performance assessment with environmental policies
and provided empirical models for headway and service frequency comparisons at vehicle levels.
The developed traffic fleet operation prediction methodology for long-term policy implications and
tracking models for accurate yearly simulation of real-world vehicle operation profiles are applicable
for other sustainability-oriented urban traffic management studies.

Keywords: road traffic; energy conservation; microsimulation; emissions reduction; scenario analysis

1. Introduction

Many scenario analysis studies have assessed the long-term impact of traffic man-
agement strategies developed by transport policy-makers. McCollum and Yang [1] note
that vehicle fuel consumption, fuel type, urban population growth and most significantly,
travel demand, are the key factors for achieving lower pollutant emissions from car traffic.
Peng et al. [2] observed that to reduce the energy consumption and pollutant emissions,
transport policymakers seek public transport (PT) services that cater for passenger needs
and reduce reliance on private vehicles by increasing PT usage. Conversely, alternate-fuel
autonomous vehicles (AVs) have changed the dynamics and overall outlook of urban tran-
sit [3]. Behavioural rebounds such as increased demand of private transit due to ease offered
by AVs may reduce the efficiency and energy savings from the use of interconnected AV
fleets capable of communicating with each other and smart transit road infrastructure [4].
Nonetheless, conventional transit operators have become early adopters of AV-based mo-
bility services [5]. Autonomous PT is not a novel idea as land-based passenger transport is
already dominated by autonomous rail transit in many cities [6].
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Though, significant focus of environmental research on AVs has been related to shared
or personalised AV cars [7], largely contributed by reduced air drag and cooperative
braking, also targeted private car traffic [8,9]. Brown et al. (2014) estimated that shared
autonomous vehicles (SAVs) may generate up to 90% fuel energy savings—-arguably, such
vehicles can only act as the first- and last-mile feeder services [10]. Conversely, the results
from Europe’s pilot trial study “CityMobil2” not only show the real benefit of autonomous
vehicles (AVs) in terms of the energy conservation potential of autonomous buses, but also
social acceptance towards such vehicles [11], however, the long-term impact of AVs in PT
still needs to be estimated.

Globally many studies have attempted to estimate the yearly energy consumption and
emissions using annual vehicle inventories on several traffic management scenarios. Traffic
microsimulation models (such as VISSIM, Aimsun, Sidra Intersection, etc.) can estimate the
energy and pollutant-control benefits of various traffic management strategies [12] when
combined with vehicle emission inventory models. However, this usage has been fairly
limited to signal optimisation [13], highway and network capacity optimisation [14], and
traffic safety research [15]. Some researchers have applied microsimulation modelling for
estimating environmental impact on a limited scale. For instance, Oikonomou et al. [16]
applied limited microsimulation models to show that automated public buses can have
11.3 kg CO2-eq. (2%) emissions during peak and 62.3 kg CO2-eq. (24%) during off-peak
hour on an arterial road, but did not address the lifecycle impact under various driving
conditions and particularly the benefit in urban traffic when AVs are introduced instead of
the conventional transport. This remains a significant factor particularly when the overall
sustainability benefit of AV-based PT needs to be traded-off against the high acquisition
cost and potential issues in its operation [17,18].

Further analysis on quantifying the environmental footprint of introducing AVs in PT
fleet, specifically in intensive private car-demanding urban areas can thus improve under-
standing of the lifecycle impacts of such endeavours being proposed in many municipalities.
A comparative advantage of microsimulation models is the ability to focus on managing the
vehicle network of a target area, non-linear traffic flow behaviour, dynamic modelling of
each vehicle and potential for monitoring the platooning behaviour of individual vehicles
in the fleet. As such, a case study highway section in Abu Dhabi, United Arab Emirates is
studied as a representative of car-centric city (~80% car-share [19]), and a microsimulation
based methodology is developed to determine the long-term environmental impacts. The
methodology tested in this study can then be extended to analyse other cases in different
cities, as well as fill a gap regarding long-term performance assessment of AV based PT
comparative to other PT options in an urban traffic situation using high-resolution per
vehicle behavioural and driving estimation models.

The remainder of this paper is structured as follows. First, a background of the study
is presented in the next section. The study methodology including description of case study
model, data sources, traffic management scenarios, and energy and emission calculation
technique are explained in Section 3. Results of proposed methodology by each vehicle type,
the investigation and comparison of trajectories across the four traffic management scenar-
ios, and long-term policy implications (from year 2015–2045) are provided in Section 4. The
conclusions are drawn in Section 5.

2. Background

Today’s roads are subject to excessive traffic congestions that increase energy con-
sumption and exhaust emissions from the transport sector around the world. In the United
States, transport sector is the 2nd largest contributor to greenhouse gas (GHG) emissions,
while the emissions data from other G8 countries and European Union found it contributes
around 2/3rd of the total GHG emissions [20]. Most of these CO2, nitrogen oxides (NOx)
and particulate matter (PM) air pollutant emissions are generated from the fuel consumed
by cars, while the pavement-related emissions form a smaller component of the lifecycle
emissions from road transport sector [21,22]. For example, the passenger car fleet has been
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forecasted to remain the single largest contributor to environmental emissions within the
transport sector in Australia for the year 2020, accounting for around 49,384 gigagrams
CO2 eq. emissions [23]. Thus, reducing passenger car traffic has become one of the hot
topics focused on various green transport policy initiatives to conserve/save energy and
emissions reduction from the road transport networks.

Mikhail et al. [24] noted that by ensuring a shift of around 20–30% from private vehicle
passengers towards PT, significant reductions can be obtained in the total energy demand
from transport network, CO2, and PM emissions. In addition to reducing private vehicle
demand through PT, literature also proposed alternate fuel technologies: compressed
natural gas (CNG), electric and hybrid-electric. McKenzie and Durango-Cohen [25] es-
timated that due to differences in energy input, greenhouse gas (GHG) emissions from
CNG bus operation in United States was 747 CO2 eq./mile lower than diesel bus. They also
noted that emissions from hybrid diesel-electric (834 CO2 eq./mile) and hydrogen fuel cell
(1088 CO2 eq./mile) were even lower but were dependent upon infrastructural support and
energy-supply (fuel) pathways.

AVs are projected as potentially generating significant environmental benefits while
enhancing cost and social performances of transport systems due to reduced air drag and
cooperative braking, as well as creating safe spaces for road users [26]. Traffic simulation
results from automation of private car fleet by Conlon and Lin [27] showed that introduction
of 30% to 100% AVs can reduce the environmental footprint by 0.5% to 4.5%. Greenblatt
and Shaheen [28] found up to 80% emissions reduction due to automation of on-demand
and personal cars. Conversely, Krueger et al. [29] argue that instead of replacing public
transit services, SAVs may in fact offer the “last/first mile solution”. On the other hand,
autonomous public buses may be the future of urban transit due to capacity and early stage
absorbance at less cost than rail transit, particularly as an intermediary to large-scale AV
adoption [5,30] and thus automation of public bus fleets can also enhance environmental
benefits for cities.

The GHG and energy policy analysis tool “Long-range Energy Alternatives Planning
system (LEAP)” was used by Peng et al. [2] to perform analysis of Tianjin-China’s urban
passenger transport sector under different scenarios on a per annum scale. Their results
showed that PT promotion may result in reducing energy consumption by 22% and GHG
emissions by 22.6% over the 30-year analysis period. Barth et al. [31] used International
Vehicle Emissions (IVE) model to estimate high-resolution hourly emissions. The authors
expressed the need for traffic models capable of modelling the real-world stochastic driving
behaviour (cruising, acceleration, and braking) to assess the actual energy consumption
of vehicles.

Generally, these studies used generalised emission factors aggregated by total number
of vehicles for generating results or required extensive library, lifecycle inventory and
calculation components that are not easily reproduceable [32]. For example, Lajunen and
Lipman [33] used vehicle simulation models of various driving cycles representative of city
bus operations to exhibit that energy consumption and pollutant emissions depend upon
accurate modelling of driving behaviour, power-train technology, and bus operation cycles.
Generally, electric buses exhibited lowest GHG emissions (180 g/km CO2 eq.), followed
by hybrid (600 g/km CO2 eq.) and CNG (900 g/km CO2 eq.) compared to diesel buses.
Ali et al. [34] addressed vehicle emissions for a developing country by applying COPERT
model which utilises the impact of fuel technology, vehicle engine type and technology
level, speed, and mileage on the emissions. However, a strong criticism of these models
is that they use average speed to calculate the effect of driving on emissions without any
regards for the on-road conditions and the actual speed profiles that affect the accuracy
of results [35]. Additionally, these models need to be validated and modified for the
application region through national-level adjustment measures (e.g., the work by Smit
and Ntziachristos [36] in Australia for modifying and adapting COPERT for Australian
traffic fleet). For accurate vehicle modelling, Varga et al. [37] proposed microsimulation
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environment to compare relative performance, headway, optimisation and platooning
behaviour of different traffic management scenarios.

Traffic microsimulation software VISSIM was used in a study by Yulianto [38] to
assess road network performances during peak-hours under various simulated traffic
management scenarios. Traffic flow factors of vehicle speeds, travel times, and queue
delays were used to benchmark performances after the Wiedemann-99 based car-following
model was built using actual traffic counts and calibrated for the field conditions. Another
study [39] applied VISSIM using Wiedemann-74 model for simulating local street traffic to
assess the impact of capacity optimisation strategies after the model was calibrated. Speed-
flow curves were used to determine the change in capacity with the change in car traffic
and its impact on lane capacity and roadside parking manoeuvres. The study showed
that an increase in traffic volume reduces vehicle speeds. Focusing on the interaction
between multiple road users, i.e., vehicles and pedestrians, Ziemska-Osuch and Osuch [40]
calibrated a VISSIM microsimulation model using GEH statistic and hourly traffic volume
for analysing vehicle movements on an intersection. These studies demonstrated the utility
of microsimulation for delivering insight about vehicle movements’ mechanics under
various traffic management strategies, however, the analyses were performed for only
hourly based period with limited insight for long-term assessment.

Microsimulation modelling using VISSIM was also adopted by Bandi and George [41]
to evaluate long-term infrastructural improvement project alternatives for addressing
traffic congestions. Although, the study focused on prioritising long-term investments,
no projection for the traffic over the long-term were actually estimated and the study
concluded with only noting the benefit of microsimulation modelling in calculating changes
in traffic flow profiles as the road infrastructure is modified. The impact of reduced
queue delays and improved flow on potential fuel consumption were also noted but no
actual lifecycle impact calculations were presented. Further addressing the environmental
component, Chen and Yu [42] investigated the energy and emissions impact of a bus rapid
transit lane scenario to control private vehicle flow in Beijing. The authors used VISSIM
and CMEM to estimate that due to the difference in fuel energy consumption caused by
variations in stop-delay and braking behaviour, the pollutant emissions might increase by
around 10.68%.

Some studies have examined the environmental footprint of AVs through microsimu-
lation. For example, Manjunatha et al. [43] integrated VISSIM with EPA’s MOVES model
to estimate vehicle energy consumption and exhaust emissions. They used speed and
acceleration outputs from an hour long VISSIM model combined with MOVES emission
factors to calculate impact of different AV penetration rates in car traffic on a small section.
Although, the study provided interesting insight about the environmental benefit of AVs, it
still modelled AV penetration on private cars whereas there is considerable debate about
the impact of AV based PT to be higher than using AVs to just replace conventional cars
on the road [17,44]. Furthermore, the study only estimated short-term benefits on traffic
with limited volume-capacity ratios and only for one direction of traffic which is rarely
the case. Only CO2 emissions were estimated using indirect integration of traffic data,
while these are the most significant exhaust pollutants, NOx and PM emissions may be
equally important.

Song et al. [45] included emissions, safety, and energy consumption indicators by
comparing VISSIM and TransModeler microsimulation models on a simple highway section
after the models were calibrated using GEH and car-following. In both cases, MOVES
was used to calculate the environmental footprint from vehicle movement and traffic
flow factors. It should be noted here that MOVES, despite its estimation capabilities and
accuracies, is a country-specific estimator that can only model the energy consumption and
exhaust emissions for United States traffic fleet. Although, efforts are currently underway
for upgrading MOVES for global applications, currently its usability is limited.

On the other hand, Quaassdorff et al. [46] observed that a combination of VISSIM
with the microscale emission model VERSIT+ is better equipped to assess the energy and
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emission reduction potential of various traffic management strategies by providing ex-
tremely fine temporal and spatial resolution for a global application with more generalised
vehicle inventories that are adjustable for different vehicle types and engine efficiency.
Additionally, an incremental introduction of alternate fuels (e.g., CNG, biofuel, electric)
and vehicles (e.g., AVs) may also be easily modelled to represent a complex discontinuous
adaption rate. Compared to the energy and emission calculators applied for large-scale
energy policy forecasts, the limited modelling atmosphere of VISSIM is capable of creating
several sub-models of psycho-physical, stochastic and time-step interaction of individual
vehicles on a road section under different traffic conditions, which is better equipped
to anticipate and visualise the long-term implications of strategies applied by the local
transport agencies in many parts of the world to manage traffic on a micro or local scale.

The points covered in the preceding paragraphs and summarised in Table 1 highlight
that sustainable transportation systems have to address public attraction towards private
automobiles, intangible economic productivity factors and congested traffic routes. Al-
though, the lifecycle assessment literature on road transport acknowledges the importance
of usage stage [47], largely due to car traffic, the lifecycle assessment methods that provide
a detailed methodology which is not geographically constrained to the US or Europe are
limited at best as most lifecycle assessment work is focused on the pavement surface and its
performance [48,49]. On the other hand, studies analysing environmental aspect of traffic
management strategies focused on aggregated simplified emission or fuel use equations
without any regard to stochastic vehicle behaviours, dynamic penetration rates or change
in mode choice. Few studies analysed sustainable transport management options beyond a
macro level, but mainly analysed the impact using localised models that are not applicable
to the global audience. There are no studies that used micro level models and included
lifecycle implications when implementing alternate transport management strategies. To
demonstrate an alternate modelling technique coupling vehicle and emissions microsimu-
lation with lifecycle assessment, a case study project in the United Arab Emirates (UAE)
is selected. The United Arab Emirates has one of the highest per capita GHG emissions
in the world at 23.3 tonnes per capita CDE and a significant share of these emissions are
contributed by the fuel energy demands from transport sector.

The car traffic in United Arab Emirates has been increasing dramatically due to the
construction boom, population growth (~25% in 2005–2008) and travel demand share of
private vehicles. The local transport department [19] estimates that car trips account for
approximately 80% of total “travel mode split” in the largest and capital City of Abu Dhabi.
This is arguably the primary cause of 18 Mt CDE of GHG emissions in the city from road
transport sector. No water-based PT options are available while the hot climate and high
humidity levels in the region [50,51] makes it difficult for uptake of active transport modes
common in “developed” cities (walking, shared micromobility, etc.), while public bus
service is currently unoptimized [19]. These factors make it an interesting location for
analysing the impact of implementing PT-based alternate traffic management strategies
in a considerably controlled urban environment where the only two transport options,
car traffic and PT services, are easy to analyse under various scenarios. The estimation
and simulation models forming the methodological basis utilise globalised inventories
that can be used by other studies to project long-term environmental footprint of alternate
traffic management strategies, specifically prioritising between the conventional PT and
the AV-based PT as the technological improvements further improve lane capacity and
platooning behaviours.
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Table 1. Summary of the findings and contributions of the previous studies on vehicle emissions and energy demand estimations.
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Current study United Arab
Emirates

VISSIM &
VERSIT+ Microsimulation

Captured vehicle movement, queue delays and speed-time
profiles on a network using pre-defined vehicle profiles

based on real-world data using multiple PT traffic
management scenarios

CO2, NOx,
PM, Energy

use

- Generic
- Instantaneous speed model
- Instantaneous trajectory data

• • • • • • • •

McKenzie and
Durango-Cohen [25] USA - I-O LCA

Applied an input-output based methodology using
average fuel consumption and mileage values to calculate

lifecycle emissions
CO2 eq.

- Average mileage model
- Generic • •

Peng et al. [2] China LEAP Energy planning
model

Evaluated long-term environmental impact assessment of
enhancing PT sector using average mileage, consumption,

and lifecycle parameters

CO2, NOx,
CO, HC,
PM, &

Energy use

- Average mileage & consump-
tion

- Generic

• • •

Lajunen and Lipman [33] USA &
Finland Autonomie Simulink Evaluated lifecycle impact of multiple types of powertrain

technologies for PT services CO2 eq. • • •

Barth et al. [31] India IVE Micro- & macro Estimated exhaust emissions and energy consumption on a
network using traffic fleet characteristics

CO2, NOx,
CO, VOC, &

PM

- Generic
- Multiscale model • • • • • •

Ali et al. [34] Pakistan COPERT Emission factor
model

Utilised average speed profile and user-defined traffic fleet
distribution to calculate environmental footprint Energy use

- Average speed model
- Semi-generic • • •

Varga et al. [37] Hungary VISSIM

Microsimulation

Enhanced PT bus performance on a network by using a
multi-objective speed and platooning control to reduce

energy consumption and waiting times

- Instantaneous speed model
- Generic • • • •

Chen and Yu [42] China VISSIM &
CMEM

Evaluated the environmental footprint of creating a
dedicated bus lane

CO, CO2,
HC, NOx,

PM &
Energy use

- Instantaneous speed model
- Semi-generic • • •

Manjunatha et al. [43]
USA VISSIM &

MOVES
Captured vehicle movement trajectories aggregated by

type and using pre-defined vehicle types to evaluate the
exhaust emissions and energy consumption

- US-specific
- Multiscale model

• • • •
Song et al. [45] • • •

Quaassdorff et al. [46] Spain VISSIM &
VERSIT+

Evaluated environmental footprint across different traffic
hours on a roundabout using pre-defined vehicle profiles

based on real-world data

NOx & PM
- Instantaneous speed model
- Generic • • • • •
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The aim of this study is hence to provide a novel assessment methodology for traffic
management strategies using empirical, predictive, and detailed vehicle models scaled over
to asset’s lifecycle. This approach utilises stochastic car-following behaviour of individual
vehicles to optimise the PT service at a localised/project-level stage and predict future
emissions and energy consumption rates. The controlling technique is the use of real-world
traffic counts and flow data to develop and validate microsimulation models against field-
observed driving behaviour. Study methodology has a wide applicability to transport
system design projects in regions where an over-utilised, high density and mixed private
car traffic is dominant and alternate land-based traffic modes are to be investigated

3. Methodology

All the existing vehicle types from the traffic counts are modelled using detailed
inventory data, traffic growth models, and advancements in fuel and vehicle technologies.
Four scenarios: baseline, bus-based and bus rapid transit-based cases were analysed.
The benefits of vehicle-to-vehicle communication and increased lane capacity offered by
autonomous vehicles are modelled as the future-projected case.

3.1. Case Study Model

The case study location is a 3.5 km stretch of a major five-lane dual-carriageway road
“E10” within Abu Dhabi city highway network. This highway section is among the highest
traffic density roads in the city and has undergone major extension in 2009 and 2019 to
tackle growing traffic needs. Traffic counts for this road were initially estimated by the Abu
Dhabi Department of Transport (ADDoT) and the Abu Dhabi Municipality (ADM) in 2015,
which is selected as the base year for this study. The locations of these traffic count stations
are illustrated in Figure 1. These stations collected information about the vehicle types,
routes, and traffic intensity.
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Figure 1. Case study section of E10 highway and traffic count station locations.

The purpose of using actual traffic counts is to minimise any uncertainties in results.
Traffic data for representative weeks in the base year was used to model and validate the
case study road segment and origin-destination matrices of the different vehicles for the
simulation of current traffic situation. Traffic is gradually increased to model the traffic-
related emissions and energy consumption of subsequent years up to a projected year
2045 to reflect a 30-year analysis period recommended by local experts [19]. Kazim [52]
and Chinery [53] have performed scenario studies on passenger car growth in the United
Arab Emirates and have recommended an exponential function of time and annual vehicle
growth rate to project the future number of vehicles as follows:

N = No × eα(t−t0), t0 ≤ t ≤ t1 (1)
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where “N” is the number of vehicles in year “t”, “NO” is the initial number of vehicles in
base year “to” and the annual vehicle growth rate is “α” which is taken as 6% for United
Arab Emirates based on the estimates proposed by Chinery [53]. Additional traffic models
are then created here for each subsequent year using the project traffic levels calculated
from this equation, this approach can then be used to provide a more realistic impact of the
promotion of PT traffic management strategies with the annual increase in traffic.

3.2. Traffic Management Scenario Design

The idea behind this study is to compare the long-term energy consumption and pollu-
tant emission impact of implementing three public bus transport-based traffic management
strategies against the existing base case traffic conditions. The United Arab Emirates relies
heavily on imported vehicles to meet its travel needs and no specific regulations were
implemented prior to the year 2000 [54]. Euro IV emissions standard vehicles started rolling
out from 2005 and mandated by 2018 [55]. New vehicles are now recommended to have
Euro V [56] and Euro VI fuel technology engines by 2030. Based on these reasons and age
distribution of vehicles, Table 2 shows the distribution of each Euro emission standard
projected by this study. The vehicles with Euro I and earlier fuel technology occupy 31.7%
share in the base year 2015 and Euro II with 33.5% share, with the share of the subsequent
Euro standards (Euro III–VI) improving each subsequent year to constitute 78.06% share
by the year 2045. The detailed mode share distribution between various vehicle types is
shown in Table 3.

Table 2. European exhaust emissions standard distribution for vehicles in the United Arab Emirates.

Euro
Standard

Global
Regulation

Year

Introduction
Date in

United Arab
Emirates

Small and
Regular Cars

Minibus and
Coach Light Truck

Traditional and
Autonomous

Bus
Heavy Truck

2015 2045 2015 2045 2015 2045 2015 2045 2015 2045

Euro I and earlier 1992 2007 31.67% 4.72% 67.5% 3.33% 62.22% 1.39% 66.94% 0% 52.78% 4.93%
Euro II 1996 2010 33.47% 1.39% 20.28% 15.42% 20.56% 12.5% 19.17% 18.75% 29.44% 5.42%
Euro III 2000 2013 27.78% 1.25% 11.94% 13.75% 13.75% 13.75% 13.61% 13.75% 17.5% 8.13%
Euro IV 2005 2015 6.94% 14.58% 0.181% 20.69% 3.33% 25.28% 0.167% 20.97% 0.194% 18.19%
Euro V 2009 2018 0.14% 16.39% 0.097% 8.89% 0.139% 13.89% 0.11% 8.61% 0.083% 9.93%
Euro VI 2014 2020 0% 61.67% 0% 37.92% 0% 33.19% 0% 37.92% 0% 53.40%

Table 3. LCI data for CO2 emission factors and fuel consumption by vehicle type, fuel and analysis year.

Vehicle Type
Vehicle Traffic
Share in Each
Scenario (%) 1

Fuel Type
Distribution (%) 2 Emission Standard Euro I &

Earlier
Euro

II
Euro
III

Euro
IV

Euro
V

Euro
VI Data Sources

Small-size
cars (Length
≤4.5 m)

BAU: 45.5%
Petrol: 99.6%

Emission Factors
(kg/km) 0.2168 0.2168 0.2120 0.1990 0.1890 0.1774

Romilly [57],
Simons [58],

DIRDC [59], and
ABS [60]

Bus: 36.4% Fuel Consumption
(kg/km) 0.0962 0.0727 0.0665 0.3542 0.3377 0.3219

BRT: 32.3%
Diesel: 0.3%

Emission Factors
(kg/km) 0.1936 0.1936 0.1810 0.1730 0.1660 0.1587

AV-BRT: 29.57%

Fuel Consumption
(kg/km) 0.0598 0.0598 0.0578 0.0546 0.0528 0.0511

CNG/LPG/Other:
0.1%

Emission Factors
(kg/km) 0.1875 0.1750 0.1660 0.1550 0.1470 0.1373

Fuel Consumption
(kg/km) 0.0500 0.0500 0.0528 0.0585 0.0554 0.0525

Regular-size
cars (Length:
4.5 m–6 m)

BAU: 37.54%
Petrol: 99.6%

Emission Factors
(kg/km) 0.4231 0.4120 0.3163 0.3080 0.3120 0.3038

Romilly [57],
Simons [58],

DIRDC [59], and
ABS [60]

Bus: 30.032% Fuel Consumption
(kg/km) 0.0876 0.0787 0.0784 0.0743 0.0709 0.0676

BRT: 26.719%
Diesel: 0.3%

Emission Factors
(kg/km) 0.3118 0.3080 0.2480 0.2450 0.2870 0.2835

AV-BRT: 24.40%

Fuel Consumption
(kg/km) 0.1231 0.0940 0.0736 0.0688 0.0668 0.0648

CNG/LPG/Other:
0.1%

Emission Factors
(kg/km) 0.2809 0.2664 0.2477 0.2399 0.2427 0.2350

Fuel Consumption
(kg/km) 0.1071 0.1125 0.0734 0.0697 0.0663 0.0630
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Table 3. Cont.

Vehicle Type
Vehicle Traffic
Share in Each
Scenario (%) 1

Fuel Type
Distribution (%) 2 Emission Standard Euro I &

Earlier
Euro

II
Euro
III

Euro
IV

Euro
V

Euro
VI Data Sources

Minibus and
coach

(6 m–8 m)
All scenarios:

4.735%
Diesel: 100%

Emission Factors
(kg/km) 0.4410 0.4410 0.3438 0.3398 0.3353 0.3315

Romilly [57], and
DIRDC [59]Fuel Consumption

(kg/km) 0.0899 0.0915 0.0899 0.0765 0.0882 0.1016

Light
truck/LGV

(8–10 m)

All scenarios:
6.64%

Petrol: 97.4%
Emission Factors

(kg/km) 0.2541 0.2383 0.2383 0.2383 0.2383 0.2383

Zanni and
Bristow [61],

DIRDC [59], and
ABS [60]

Fuel Consumption
(kg/km) 0.1300 0.1220 0.0965 0.0958 0.0906 0.0856

Diesel: 2.5%
Emission Factors

(kg/km) 0.2461 0.2406 0.2404 0.2404 0.2402 0.2402

Fuel Consumption
(kg/km) 0.1250 0.1210 0.1040 0.1007 0.1007 0.1007

CNG/LPG/Other:
0.1%

Emission Factors
(kg/km) 0.2217 0.2081 0.2401 0.2354 0.2031 0.1991

Fuel Consumption
(kg/km) 0.1690 0.1690 0.1521 0.1503 0.1413 0.1328

Traditional
public

transport bus

BAU: 0%
Diesel: 71%

Emission Factors
(kg/km) 1.2174 1.1840 1.2389 1.1161 1.0890 1.0200

Romilly [57],
Wang et al. [62],

Kuschel et al. [63]
Nanaki et al. [64],

and ABS [60]

Bus: 16.61% Fuel Consumption
(kg/km) 0.2912 0.3036 0.2976 0.2541 0.2348 0.2081

BRT: 24.02%
CNG: 29%

Emission Factors
(kg/km) 1.1000 1.2500 1.1392 1.2627 1.1278 1.1221

AV-BRT: 0% Fuel Consumption
(kg/km) 0.4635 0.2223 0.2055 0.3102 0.3141 0.2047

Autonomous
public

transport bus

BAU: 0%

CNG: 100%

Emission Factors
(kg/km) 1.1000 1.2500 1.1392 1.2627 1.1278 1.1221

Bus: 0% Fuel Consumption
(kg/km) 0.4635 0.2223 0.2055 0.3102 0.3141 0.2047BRT: 0%

AV-BRT: 29.06%

Heavy truck
(10 m–12 m)

All scenarios:
5.586%

Diesel: 100%

Emission Factors
(kg/km) 0.6845 0.6726 0.6726 0.6524 0.6410 0.6218 Zanni and

Bristow [61], and
ABS [60]Fuel Consumption

(kg/km) 0.2890 0.2890 0.2404 0.2404 0.2355 0.2306

1 Based on www.export.gov/article?id=United-Arab-Emirates-Automotive,gulfnews.com/news/uae/environment/
new-car-fuel-economy-standard-for-uae-1.1903057 (accessed on 10 October 2022), www.khaleejtimes.com/article/20
110514/ARTICLE/305149834/1002 (accessed on 10 October 2022), www.constructionweekonline.com/article-49
209-higher-emission-standards-reshaping-uae-vehicle-fleets/1 (accessed on 10 October 2022), members.wto.org/
crnattachments/2014/tbt/ARE/14_4732_00_e.pdf (accessed on 10 October 2022). 2 Based on [19,53,65–67].

3.2.1. Do Nothing or Business-as-Usual: Traffic Management Scenario 1 (BAU)

The BAU scenario assumes that the current lane configuration on the case study high-
way section shall continue without any modifications. The five lanes in each carriageway
shall continue to be dedicated to conventional mix-vehicle type traffic. Following the cur-
rent situation on the case study route, no PT is provided on the road. Assuming consecutive
growth in economy and vehicle sales, the traffic continues to grow 6% every year based
on the secondary growth models from literature (Section 3.1), until the year 2045. The
vehicle weight classes in the collected traffic counts are used to establish the vehicle fleet
breakdown as: small-size cars (length ≤ 4.5 m and engine size ≤ 2.5 litres); regular-size
cars; minibus and coaches; light-duty trucks (LDV); and heavy trucks. It is also assumed
that following the two recent extensions, i.e., in 2009 and 2019, and lack of adjacent vacant
land, no extra budget is allocated for future extension works.

The vehicle fuel policy is assumed to be consistent with the current trends where the
majority of passenger cars (small and regular) are petrol vehicles [66,67] followed by diesel
and other fuel technology types [53] as also shown in Table 3. The fuel energy consumption
of these cars is based on the average value for vehicles in each class. The vehicle sales report
from Fox [68] states that majority (32%) of the passenger vehicles sold in the United Arab
Emirates region during past few years were Toyota followed by Nissan (16.6%), Mitsubishi
(11.1%), Hyundai (7.1%), BMW (4.8%) and Ford (3.5%). Among the individual vehicle
makes; Toyota Corolla and Camry, Land Cruiser and Pajero SUV were the most common
models. Passenger taxi vehicle policy is dominated (80–85%) by Toyota Camry vehicle
share [69], and as such, it is modelled within the passenger car category with United Arab

www.export.gov/article?id=United-Arab-Emirates-Automotive,gulfnews.com/news/uae/environment/new-car-fuel-economy-standard-for-uae-1.1903057
www.export.gov/article?id=United-Arab-Emirates-Automotive,gulfnews.com/news/uae/environment/new-car-fuel-economy-standard-for-uae-1.1903057
www.khaleejtimes.com/article/20110514/ARTICLE/305149834/1002
www.khaleejtimes.com/article/20110514/ARTICLE/305149834/1002
www.constructionweekonline.com/article-49209-higher-emission-standards-reshaping-uae-vehicle-fleets/1
www.constructionweekonline.com/article-49209-higher-emission-standards-reshaping-uae-vehicle-fleets/1
members.wto.org/crnattachments/2014/tbt/ARE/14_4732_00_e.pdf
members.wto.org/crnattachments/2014/tbt/ARE/14_4732_00_e.pdf
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Emirates average car occupancy rate (1.7 passengers/car [19,70]). Following the current
vehicle sales and policy trend in the United Arab Emirates, the average age of all cars in
case study location is assumed as 5.2 years [71] and the average age for other vehicle types
is assumed as 6.39 years [72].

3.2.2. Public Bus Transport Service: Traffic Management Scenario 2 (Bus)

The information gathered by authors from the publicly available intercity bus sched-
ules and DoT Abu Dhabi [19] indicate that local public bus services typically operate
hourly or half-hourly frequency, with around 50 passenger seats (per bus) regardless of the
peak/off-peak traffic demand. Local traffic surveys [70] show that the average public bus
occupancy is in the range of 40–60% of the passenger seats, while DoT Abu Dhabi [19] found
that public bus transport currently carry 20% of daily passenger traffic. Most buses operate
on diesel fuel technology, with CNG buses only recently introduced in the region. It is
assumed that if a bus service is introduced in the case study area with the current city-wide
average bus headway of 30 min between two buses, the passenger mode share may switch
to the existing mode-share profile in the areas of Abu Dhabi where such services have been
already provided, i.e., 20% for PT and a total of 80% for small- and regular-size car traffic
(Table 3). The total number of car passengers for the BAU case (CPj

BAU) is determined first
by multiplying the total car traffic count from the counting stations in Figure 1 with the
“average car occupancy” value of 1.7. It is then used to calculate the reduction in the car
traffic for the “Bus” scenario as follows.

CTs
j =

CPBAU
j × CSs

j

avg. car occupancy
(2)

where “CT” is the car traffic of category “j” (small/regular) car, “s” represents any of the
traffic management scenarios considered in this study, and “CS” is the mode share of “j”
type cars in the scenario “s”. The traffic count for other vehicle types is assumed to be
the same as the BAU scenario with only the passenger car traffic reduced due to the bus
service operating alongside the existing traffic by the year 2045. Traffic growth model
from Equation (1) are used to project future traffic levels. The fuel technology, fuel energy
consumption and the CO2 emissions are detailed in Table 3. Based on the characteristics of
the Abu Dhabi bus fleet and the findings by Chinery [53] on gradual penetration of CNG
vehicles, around 29% of bus fuel is assumed to be CNG-based. However, as the United
Arab Emirates already has an extensive CNG distribution network, CNG bus use may
significantly improve in the coming years. This equation can also be used by other studies
to calculate the approximate decrease in car traffic when an alternate mode, particularly
public transport is provided, in absence of the larger land-use, transit routes and area
profile models.

3.2.3. Bus Rapid Transit Service: Traffic Management Scenario 3 (BRT)

The current service frequency in the case study region is not generally varied through-
out the day to address the peak hour traffic demand. Although, a demand-responsive bus
network is planned to provide a reliable service with peak period frequencies of at least
4 buses per hour [19] over long-term. As a potential traffic management scenario on the
case study highway route, the frequency of bus service is increased (headway = 15 min)
to match the 4 buses/h target. The extreme left lane on both carriageways is constrained
to only serve the public BRT service. BRT service is considered to operate constantly
at same service frequency level (i.e., headways) by the year 2045. Due to a significant
decrease in the BRT travel time compared to the bus scenario, it can be logically argued
that more passengers may choose to travel by PT, following Wu and Pojani [73] and the
findings of a previous study by the authors on the case study route where respondents
were more inclined to use buses provided a more frequent service is introduced [74,75].
Thus, mode share of PT service is slightly increased to 25%. Vehicle fuel technology is
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assumed to remain unchanged throughout the years. Table 3 lists the detailed vehicle fuel
consumption parameters.

3.2.4. Autonomous Vehicle-Based BRT: Traffic Management Scenario 4 (AV-BRT)

The AV-BRT scenario is a future-based theoretical scenario which is an escalation of the
high-speed tram service policy plans and the BRT scenario. The low energy consumption
benefits of autonomous vehicles which were investigated in this study include vehicle-
to-vehicle communication to minimise the gaps between vehicles and the acceleration-
deceleration rate to increase fuel economy [26] and space utilisation, gear-shift perfection
and improved speed-flow profiles. The fuel technology of autonomous vehicles being
developed currently is mainly based on electric powertrains [17]. Although the complete
adoption of electric fuel engines in transport sector may drastically reduce the energy
consumption and exhaust emissions, many uncertain factors in the Abu Dhabi and GCC
region remain. The energy-intensive need for air-conditioned vehicles due to the hot
Middle Eastern climate, large investment required in fuel distribution infrastructure and
upgrades of power generation grids to reduce reliance on electricity generation by fossil
fuels in the United Arab Emirates [76] and the global uncertainty in travel range of electric
vehicles still need further research.

Conversely, manufacturers such as Ford Motor Company, are already researching CNG
or electric-CNG hybrid autonomous vehicles [77]. The focus of the current paper is to assess
the reductions in fuel energy consumption and exhaust pollutants due to the reduction in
private car use and improved traffic flow profile at a micro level to provide decision-makers
worldwide with an alternate assessment methodology. As such it is assumed that the
hypothetical autonomous buses utilise existing CNG fuel distribution networks for their
energy needs (Table 3). On the case study highway section, the extreme left lane on both
carriageways is restricted to only serve the AV-BRT service. Hasan et al. [75] found that
public bus transport use can be increased in Abu Dhabi by increasing bus service frequency
during peak traffic hours and by providing a dedicated BRT service due to the resulting
reduction in passenger journey time on buses. In the AV-BRT scenario, peak hour bus
frequency is increased to 5 min headway between two buses while the off-peak service
frequency is unchanged from the BRT scenario. The mode share of public bus service is
increased to 35% during peak hours and 25% during off-peak hours, which is still less than
the 41% PT mode share estimated by the preferred PT traffic management scenarios of the
local department of transport. Therefore, the actual benefits of implementing the improved
PT strategy may be more than the conservative calculations in this study.

3.3. Vehicle Modelling System

This study utilises VISSIM as microsimulation vehicle modelling system to model the
traffic flow behaviour, queue formation and delays by considering the interaction between
passenger cars, light- and heavy-duty vehicles, and public bus transport service. VISSIM
is a behaviour- and time step-based microsimulation model capable of analysing vehicle
transit under traffic control strategies by taking into account the interactions between
several types of vehicles [78]. Fellendorf and Vortisch [79] argue that since VISSIM is
based on link-connector system, it can accurately model the complex geometries of actual
roads to represent the real-world traffic movement patterns and flow behaviours of the
driver-vehicle-fuel units. To that end, the vehicle acceleration-deceleration, and speed-time
parameters in VISSIM can be stochastically varied to consider the “car-following” logic
of drivers under traffic management scenarios based on the relative distances and speeds
compared to surrounding vehicles.

The exhaust emissions model VERSIT+ developed by TNO Laboratories [80] is used
alongside VISSIM to analyse the real-world high-resolution energy and emission impacts.
It is preferred over other models due to its capability of importing complex vehicle speed-
acceleration spatial trajectories and predict the emission rates (g/h) for each vehicle class
modelled in VISSIM. The VERSIT+ model is based on more than 12,000 vehicle types,
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fuel energy consumption, vehicle make and model, fuel technology and 246 emission
algorithms for each type and category representing real-world driving conditions [46,81].
The model uses multivariate regression techniques to calculate the traffic emissions (TEj)
for each of the vehicle classes by taking into account the g/km emission factors (EF

j,k,l)
based on fuel energy consumed due to actual driving patterns [82] in terms of speed-time
profile. It also considers engine response to aggressive acceleration-braking as well as
cold-started engines.

3.4. Microsimulation Model Development

VISSIM is used in this study for simulating traffic flow data and analyse the benefit
of PT and AV-based solutions. The road section geometric conditions and vehicle profiles
were modelled as per the base year traffic counts. This VISSIM-based model uses a time-
step stochastic modelling approach which models vehicle-driver unit as fundamental
entity applying a psychophysical Wiedemann-74 (merging traffic) and Wiedemann-99
(highway) car-following-model relying on ten parameters for modelling actual driving
behaviour [83,84]. These parameters are presented in Table 4. This paper does not focus on
the mathematical interrelation between these parameters and as such the empirical formula
for these are not presented in this study since others [85] extensively cover this. A brief
description of these parameters is provided below while default values are listed in Table 4.
The vehicle sizes, speed curves, bus headway, and dwell times are modelled based on the
actual conditions on the case study area.

Table 4. Default vs. calibrated parameters of the Wiedemann-99 highway driving behaviour model.

Model Parameters (Unit) Default Values Calibrated Values

Standstill distance—CC0 (m) 1.50 1.50
Headway time—CC1 (s) 0.9 ± 0.2 0.5

“Following” variation—CC2 (m) 4.00 6.80
Threshold for entering “following”—CC3 (s) −8.00 −8.00
Negative “following” threshold—CC4 (m/s) −0.35 −0.35
Positive “following” threshold—CC5 (m/s) 0.35 0.35

Speed dependency of oscillation—CC6 (1/m·s) 11.44 11.44
Oscillation acceleration—CC7 (m/s2) 0.25 0.25
Standstill acceleration—CC8 (m/s2) 3.50 3.50

Acceleration with 80 km per hour—CC9 (m/s2) 1.50 1.50

• “CC0” and “CC1” are the coefficients applied for calculating safe car-following distance
in metres as following, and values can range from 0 to ∞.

dxsa f e = CC0 + (v × CC1), for v = speed o f f ollowing vehicle (3)

• “CC4” and “CC5” represent the speed and acceleration coupling relation of a succeed-
ing and following vehicles, both values should be equal but carry opposite signs and
smaller values indicate a tighter coupling of vehicles in the simulation traffic.

• “CC6” represents speed oscillation of following vehicle compared to preceding vehicle,
i.e., a higher value indicates that the following vehicle driver will accelerate more fre-
quently as its distance to preceding vehicle grows which is not a common observation
in congested situations, so its effect is negligible on congested highways.

• “CC7” is the acceleration during above oscillation phase, and it controls for driver
tendency to accelerate gently or suddenly depending upon the magnitude.

• “CC8” is the acceleration from a stopping condition and the actual accelerations within
the simulation are varied stochastically by the in-built algorithms in the software as
per the user-defined upper- and lower-bound values.

• “CC9” defines the vehicle acceleration when travelling at 80 km/h and has little effect
on congested highway situations.
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3.4.1. Microsimulation Model Calibration

The process of calibrating a microsimulation model involves changing various pa-
rameters until the model faithfully replicates field vehicle movements. During calibration,
VISSIM’s settings are changed to reflect the behaviour of the modelled highway network
as closely as possible. The typical weekday traffic dataset from first week of the base year
2015 traffic counts was used to build the OD matrix input. Figure 2 shows a graph of
the model run results for the whole week plotted against the field-observed vehicle flow
profile (vehicles/h).
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Figure 2. Field vs. modelled traffic flow profile for model run with default VISSIM driving
behaviour settings.

The initial simulation run had a number of errors, with more than 2000 vehicles
becoming lost vehicles upon queuing over 1 min for a lane-change. Overall, the simulated
model did not meet the GEH statistic criterion with the simulated traffic counts for nearly
all traffic stations failing the cut-off criteria of GEH < 5 for 85% of the cases [86], highlighting
the need for model calibration. Although the calibration was done manually, it takes into
account appropriate parameter modifications and realistic driving movements. Its purpose
was two-fold (i) reducing the differences in the parameters set, and (ii) bringing the GEH
value within an acceptable range [41], with an overall aim to create a microsimulation model
capable to replicate field-observed conditions. As such, following several optimization
approaches, the calibrated parameters presented in Table 4 are selected. In general, the
calibration procedure started from specifying enhancement scenarios where the values for
the first three user-calibrated parameters (CC0, CC1 and CC2) are progressively altered by
different percentages (e.g., 15%, 25%, 50%, etc.). This procedure is already well-established
within research and industrial applications of microsimulation modelling [12,86]. The
simulated traffic count results using these driving behaviour parameters only negligible
(15% error or less than 100 vehicles per hour) differed from the observed counts, as shown
in Figure 3.

3.4.2. Microsimulation Model Validation

The traffic-count dataset for the second week of 2015 base year applied to the de-
veloped microsimulation model was then used for validating the calibrated base-case
VISSIM model. Figure 4 shows a comparison between the traffic-volume profile for the
modelled and field-observed dataset. The findings indicate that, with the exception of
a few small inaccuracies, the simulated traffic-counts were able to accurately reflect the
actual traffic condition on studied highway section, since the percentile error is within the
acceptable margins.
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3.5. Calculation of Pollutant Emissions and Energy Consumption

The pollutant emissions based on VERSIT+ are calculated using the EnViVer emission
modelling tool containing the real-world driving conditions representative of several on-
road and laboratory trials of vehicles to accurately account for driving behaviour, speed, and
traffic control measures for different road types. The emissions calculations are determined
from vehicle age, engine fuel consumption based on the injection technology (Euro I, Euro
II, Euro III, Euro IV, Euro V and Euro VI engines), fuel technology (diesel, petrol, CNG,
electric) and their distribution over fleet [87]. Traffic exhaust emissions (TEj) are calculated
as follows [88]:

TEj = ∑
k,m

(EF
j,k,l × TVk,m × Lm) (4)

where EF
j,k,l is the g/km emission factor for “j” pollutant, vehicle class “k” and speed-time

profile “l”, per h traffic volume is “TVk,m” on a road section “m” of road length “Lm”. The
vehicle categories (light-duty, heavy-duty, passenger cars, bus, minibus, and coach, etc.),
vehicle size, fuel technology, and engine fuel consumption standards are input into the
model. EnViVer then calculates the pollutant emissions based on these factors and the fuel
consumption of vehicles which is dictated by the relevant Euro standards. The energy
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consumption values were calculated based on fuel consumption of each vehicle type, fuel
and vehicle distribution in the traffic and the average CO2 emissions per litre of each fuel
type [89]. The lifecycle inventory (LCI) which is used in this study to calculate the pollutant
emissions and energy consumption is shown in Table 3 earlier.

4. Results and Discussion
4.1. Current Traffic Situation

Traffic counts from representative weekday traffic dataset of the base year 2015 were
used to provide the OD matrix in the BAU scenario. The current weekly traffic count results
for the different vehicle types are graphed at hourly resolution in Figure 5 below. The
period from 4–7 May 2015 and 10 May 2015 represents typical working days for the Abu
Dhabi city. The peak in traffic between 7:00 am and 8:00 am during workdays corresponds
to the morning rush hours due to the start of the workday, particularly significant for
passenger car traffic in terms of small-size cars (~8700 vehicles) and regular-size cars
(~7200 vehicles). The period between 2:00 pm–3:00 pm represents the high traffic densities
during lunch hours which again show a rise in general traffic with a substantial increase
in private vehicle traffic. The evening peak hours between 7:00 pm–8:00 pm also exhibit a
similar trend corresponding to the end of workday traffic. The period from 8–9 May 2015
represents the weekend. The traffic peak period trends are hence indicative of the typical
non-working days flow patterns. For example, the 5:00 pm–7:00 pm passenger vehicle peak
may show travel activities of residents for leisure purposes.

Sustainability 2022, 14, x FOR PEER REVIEW 18 of 34 
 

 

Figure 5. Current weekly traffic on E10 highway section by vehicle type (BAU, year 2015). 

4.2. Projected Energy Consumption and Exhaust Emissions Distribution in BAU 

BAU energy consumption due to fuel consumed by vehicles, was dominated by pri-

vate car traffic due to the larger vehicle population share of small- and regular-size cars. 

Figure 6 shows that during the base year 2015, energy consumption for small-size cars 

was the highest at 360.66 TJ, followed by regular-size cars (174.96 TJ) and heavy trucks 

(174.75 TJ). The CO2 and PM exhaust emissions were also highest for small-size cars 

(20.772 kilo-tonnes CO2 and 2.134 tonnes PM) and regular-size cars (17.904 kilo-tonnes 

CO2 and 1.644 tonnes PM) followed by heavy trucks (9.342 kilo-tonnes CO2 and 0.936 

tonnes PM). These comparatively higher exhaust emissions and energy consumption in-

dicated that more attention should be focused on addressing the high traffic volume of 

private cars. 

 

Figure 6. Total energy consumption and CO2, NOx, and PM emissions by vehicle type for the base 

year 2015 in BAU scenario. 

The significant energy consumption associated with heavy trucks is due to the high 

calorific value of diesel fuel used by heavy-duty engines. In case of NOx emissions, diesel 

fuel consumed by heavy trucks yielded the highest exhaust emission of 41.373 tonnes. 

Small- and regular-size cars also exhibited high NOx emissions, i.e., 12.559 tonnes and 

16.293 tonnes. The higher NOx exhaust emissions of heavy trucks were caused by the 

higher volume of diesel fuel compared to passenger cars that largely relied on catalyst-
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4.2. Projected Energy Consumption and Exhaust Emissions Distribution in BAU

BAU energy consumption due to fuel consumed by vehicles, was dominated by
private car traffic due to the larger vehicle population share of small- and regular-size
cars. Figure 6 shows that during the base year 2015, energy consumption for small-size
cars was the highest at 360.66 TJ, followed by regular-size cars (174.96 TJ) and heavy
trucks (174.75 TJ). The CO2 and PM exhaust emissions were also highest for small-size cars
(20.772 kilo-tonnes CO2 and 2.134 tonnes PM) and regular-size cars (17.904 kilo-tonnes CO2
and 1.644 tonnes PM) followed by heavy trucks (9.342 kilo-tonnes CO2 and 0.936 tonnes
PM). These comparatively higher exhaust emissions and energy consumption indicated
that more attention should be focused on addressing the high traffic volume of private cars.

The significant energy consumption associated with heavy trucks is due to the high
calorific value of diesel fuel used by heavy-duty engines. In case of NOx emissions, diesel
fuel consumed by heavy trucks yielded the highest exhaust emission of 41.373 tonnes.
Small- and regular-size cars also exhibited high NOx emissions, i.e., 12.559 tonnes and
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16.293 tonnes. The higher NOx exhaust emissions of heavy trucks were caused by the
higher volume of diesel fuel compared to passenger cars that largely relied on catalyst-
based petrol engines. Similarly, difference between the two types of petrol cars (small-
and regular-size) was caused by the category of fuel consumed and differences among
the in-cylinder combustion processes of both types of cars due to the make and model
variations. In United Arab Emirates, a significant portion of regular-size cars, e.g., Land
Cruisers, BMWs, and Mercedes, etc., use RON 98 high-octane fuel which has a lower NOx
emission rate than the RON 95 low-octane fuel used in the prevalent small-size cars such
as Toyota Corolla and Hyundai Accent, etc.
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year 2015 in BAU scenario.

The vehicle population in the United Arab Emirates is expected to continuously
grow over the years due to the population growth, economic development, and demand
for private passenger cars. Traffic modelling has demonstrated that the rate of energy
consumption and the rate at which exhaust pollutants are emitted from the vehicles on the
case study highway section will increase several fold in the next 30 years (Figure 7) if no
attempt at improvement is made. Gao et al. [90] note that the frequent acceleration and
deceleration of vehicles account for large fuel use in high traffic density areas. Similarly,
the energy consumption rate for the case study highway was also determined by the
traffic density, vehicle flow rate, acceleration-deceleration, and speed. The traffic volume
increased with each subsequent year which then corresponded to a rapid reduction in
engine speed and vehicle velocity as the studied highway section approaches saturation
flow rate. These findings are evident in Figure 7 which shows that even though over the
years more Euro V and Euro VI energy and pollutant-control vehicles are introduced into
the daily traffic and the older models are retired, the accumulative energy consumption
and exhaust emissions are significantly dependent upon the engine operating conditions,
traffic flow rate, fuel economy and acceleration-deceleration rate.

Figure 7 shows that the energy consumption and exhaust emissions rate continued
to increase in the subsequent years and the highest values were observed during the last
10 years, i.e., from 2035–2045. During base year 2015, energy consumption rate for small-size
cars was 41.54 × 103 MJ/h, for regular-size cars 20.154 × 103 MJ/h and 20.129 × 103 MJ/h
for heavy trucks. The reason for these results was the low fuel economy of small-size cars,
particularly in traffic congestions, large total travel distance of both types of passenger cars
due to the larger share in traffic, and larger fuel economy of heavy-duty engines. After
considering all vehicle types, the total energy consumption rate for the entire vehicle fleet
on the case study highway section for the last 10 years was 2.91 times higher than the
combined energy consumption rate of vehicles during the initial 20 years. The minimum
overall vehicle energy consumption rate was 91.224 × 103 MJ/h observed for the base year
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2015 and the highest value of 4225.18 × 103 MJ/h was calculated for the year 2045 which
was 46.32 times higher than the base value.
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Exhaust emission rates further confirmed the results of total emissions for base years in
terms of individual contribution by each vehicle type as: CO2, NOx and PM for small-size
cars (2.393 tonnes/h for CO2, 1.877 kg/h for NOx and 0.246 kg/h for PM), regular-size cars
(2.062 tonnes/h CO2, 1.446 kg/h NOx and 0.189 kg/h PM), heavy trucks (1.076 tonnes/h
CO2, 4.766 kg/h NOx and 0.108 kg/h PM) followed by light trucks (0.306 tonnes/h CO2,
0.269 kg/h NOx and 0.021 kg/h PM) and minibus and coaches (0.264 tonnes/h CO2,
1.098 kg/h NOx and 0.039 kg/h PM). Similar to the accumulative energy consumption rate,
exhaust emissions rates were minimum for base year due to high acceleration-deceleration
in subsequent years caused by traffic growth. The CO2, NOx, and PM exhaust emissions
rates during the years 2035–2045 were, respectively 2.65, 2.08 and 1.83 times higher than
the combined emissions rates for the initial 20 years period. The maximum values reached
126.379 tonnes/h (CO2), 126.369 kg/h (NOx) and 6.267 kg/h (PM) for the accumulated
emissions rates of the year 2045, respectively accounting for 20.71, 13.36-, and 10.37-times
higher values than the base year 2015.

It is noteworthy that the passenger car traffic remains problematic in the case study
region. The energy consumption rate was highest for the car traffic accounting for 67.63%
in the base year 2015 and 86.80% in the year 2045. Similarly, 73.01% of the total yearly
exhaust CO2 emissions rate and 72.05% of the total yearly exhaust PM emissions rate from
the entire traffic fleet were contributed by the passenger cars. The NOx emission rate for the
“heavy trucks” category traffic is also a huge challenge as it constituted around 50.40% of
the total NOx emission rate per year, as shown in Figure 7. The primary reason behind this
observation is high NOx emissions from older diesel engines. Euro III and earlier heavy-
duty diesel fuel engines are more prevalent as the Euro V and Euro VI standards have only
recently been introduced in the United Arab Emirates. This may cause low emission trucks
to being introduced much later into the vehicle fleet. However, it is argued here that a
large-scale policy change is needed on the national level to mitigate this issue and initiate
stricter emission regulations on diesel fuel and particularly heavy trucks. Conversely, at a
micro level, some reduction in car traffic is needed to meet the energy consumption and
exhaust pollutants decrement goals of the local authorities.

4.3. Projection of Car Traffic in Traffic Management Scenarios

The case study highway represents a key travel route connecting several outer suburbs
to the inner-city and central business district areas and running parallel to the entire city.
Hence, it is expected that it will also experience rapid growth in passenger car traffic along
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with rest of the country mirroring a steady population growth. Total passenger car traffic
on the case study route is thus expected to increase from 57.589 million/year in 2015 to
330.763 million/year in 2045, accounting for an increase of 273.174 million cars in the BAU
scenario (Figure 8).

Sustainability 2022, 14, x FOR PEER REVIEW 20 of 34 
 

Exhaust emission rates further confirmed the results of total emissions for base years 

in terms of individual contribution by each vehicle type as: CO2, NOx and PM for small-

size cars (2.393 tonnes/h for CO2, 1.877 kg/h for NOx and 0.246 kg/h for PM), regular-size 

cars (2.062 tonnes/h CO2, 1.446 kg/h NOx and 0.189 kg/h PM), heavy trucks (1.076 tonnes/h 

CO2, 4.766 kg/h NOx and 0.108 kg/h PM) followed by light trucks (0.306 tonnes/h CO2, 

0.269 kg/h NOx and 0.021 kg/h PM) and minibus and coaches (0.264 tonnes/h CO2, 1.098 

kg/h NOx and 0.039 kg/h PM). Similar to the accumulative energy consumption rate, ex-

haust emissions rates were minimum for base year due to high acceleration-deceleration 

in subsequent years caused by traffic growth. The CO2, NOx, and PM exhaust emissions 

rates during the years 2035–2045 were, respectively 2.65, 2.08 and 1.83 times higher than 

the combined emissions rates for the initial 20 years period. The maximum values reached 

126.379 tonnes/h (CO2), 126.369 kg/h (NOx) and 6.267 kg/h (PM) for the accumulated emis-

sions rates of the year 2045, respectively accounting for 20.71, 13.36-, and 10.37-times 

higher values than the base year 2015. 

It is noteworthy that the passenger car traffic remains problematic in the case study 

region. The energy consumption rate was highest for the car traffic accounting for 67.63% 

in the base year 2015 and 86.80% in the year 2045. Similarly, 73.01% of the total yearly 

exhaust CO2 emissions rate and 72.05% of the total yearly exhaust PM emissions rate from 

the entire traffic fleet were contributed by the passenger cars. The NOx emission rate for 

the “heavy trucks” category traffic is also a huge challenge as it constituted around 50.40% 

of the total NOx emission rate per year, as shown in Figure 7. The primary reason behind 

this observation is high NOx emissions from older diesel engines. Euro III and earlier 

heavy-duty diesel fuel engines are more prevalent as the Euro V and Euro VI standards 

have only recently been introduced in the United Arab Emirates. This may cause low 

emission trucks to being introduced much later into the vehicle fleet. However, it is ar-

gued here that a large-scale policy change is needed on the national level to mitigate this 

issue and initiate stricter emission regulations on diesel fuel and particularly heavy trucks. 

Conversely, at a micro level, some reduction in car traffic is needed to meet the energy 

consumption and exhaust pollutants decrement goals of the local authorities. 

4.3. Projection of Car Traffic in Traffic Management Scenarios 

The case study highway represents a key travel route connecting several outer sub-

urbs to the inner-city and central business district areas and running parallel to the entire 

city. Hence, it is expected that it will also experience rapid growth in passenger car traffic 

along with rest of the country mirroring a steady population growth. Total passenger car 

traffic on the case study route is thus expected to increase from 57.589 million/year in 2015 

to 330.763 million/year in 2045, accounting for an increase of 273.174 million cars in the 

BAU scenario (Figure 8). 

 

Figure 8. Long-term projection of passenger car traffic from 2015–2045. Figure 8. Long-term projection of passenger car traffic from 2015–2045.

This indicates that the highway will reach its operational capacity in a few years.
After the introduction of a dedicated PT service and corresponding mode shift of private
car passengers in favour of PT, the expected increase in passenger car population will be
around 179.32 million (34.4% less), 151.38 million (44.6% less) and 136.13 million (50.2%
less) vehicles for the bus, BRT and AV-BRT scenarios, respectively after 30 years. This
progressive reduction in car traffic will undoubtedly result in an improvement in traffic
flow factors of vehicle speed-time curves, less acceleration-deceleration, and braking. The
last two are due to reduced queue delays and vehicle travel times. A combination of these
will result in decreased energy consumption and exhaust emissions, as discussed in the
following sections.

4.4. Projection of Flow Rate Factors in Traffic Management Scenarios

The microsimulation results for the 2015 and the subsequent years in the BAU-case
supported the preliminary results from field measurements, showing that peak-hour traffic
periods consistently experienced traffic congestion and lower vehicle speeds that resultantly
cause frequent acceleration-deceleration and braking. The duration of the vehicle queues,
average vehicle speed-time curves for the various years’ traffic volumes were recorded.
The average weekly vehicle queue delays in all traffic management scenarios are presented
in Figure 9. The results for year 2020 are used here as the earliest period in the studied
highway’s lifecycle when the differences in flow rate factors between the different scenarios
start becoming prominent. Additionally, these are calculated for the starting and end-
counter on the mainline adjacent to HW3 counting station on the studied highway.

These results show a consistency with the traffic count results where the weekdays
and peak working hours (6 am–7 am and 5 pm–7 pm) exhibited the highest queue delays
at 189 s (at peak) and 152 s at the very least which was observed at 10:30 am on the first
weekday, for the base case. After implementing PT bus service, the queue delays reduced
by 27% (50 s) for the Monday 6 am–7 am peak, further reducing by 35% (66 s) in BRT case,
and 46% (85 s) in the AV-BRT case. For the intermediate decline at 9 am, the queue delay
difference between BAU and bus case was 25% (45 s), BRT by 34% (57 s), and AV-BRT by
45% (73 s). These trends were similar for the rest of the weekdays, while during weekend,
the AV-BRT exhibited queue delays as 67 s (45%) for the 7 pm–8 pm evening peak.

Figure 10 shows the results for vehicle speed-time curves on studied road section
for a representative week in year 2020 across all traffic management scenarios. It can be
seen from this figure that the vehicle speeds initially increased at an average hourly rate
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of 0.2% per h in BAU case, after which it started to decline by 5.1% per h to hit the lowest
at 48 km/h at 7 pm on Tuesday, 5 May 2020 following which it increased at an average
hourly rate of 16% to reach the peak of average vehicle speed of 66 km/h on Friday 2 am,
8 May 2020. It should be noted here that these are average speeds that include both private
cars and heavy vehicles that are regulated to drive at different speeds, yet these average
values present a good estimate of the projected driving conditions. These speeds somewhat
remained same until 3 pm on Saturday, 9 May 2020 when it started declining at an average
rate of 0.7% as the week started.
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These trends continued for the other traffic management scenarios, further confirming
the queue delays results. The AV-BRT scenario showed the highest increase in average
vehicle speeds, arguably due to shifting of more passengers to PT, a reduction of car traffic
and congestions, and reduction in acceleration-deceleration and braking cycles that are
often causal outcomes of congestions. For this AV-BRT case, the average vehicle speeds
initially plateaued at 71 km/h, following which it started declining at an hourly rate of
2.3% to reach the bottom-limit of 64 km/h at 5 pm on Tuesday 5 May 2020. It then started
increasing at the rate of 18% per h for the peak average vehicle speed of 83 km/h on Friday
2 am 8 May 2020. The BRT case was the second-best performing, followed by the bus case.

The results presented in Figure 11 show the average vehicle travel time results for
the studied highway section that show cumulative effect of vehicle flow rate factors. The
situation was worst for BAU case with an hourly increase of 51% where the peak average
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travel time was for the 6 pm–7 pm traffic at 430 s confirming the average speed results
of ~48 km/h, after which the travel time started reducing. Nonetheless, it remained over
300 s during weekdays, while it exhibited a weekend peak of 319 s at 3 pm on Friday,
8 May 2020 and started reducing afterwards to remain over 220 s before sharply declining
to 138 s at 5 am on Sunday 10 May 2020 for the BAU scenario. These trends were similar
for the bus and BRT cases with a decline of 23% (98.8 s) and 37% (158.3 s), respectively for
the 6 pm–7 pm peak hours.
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For the off-peak hours of 10 pm–11 pm, this reduction in travel time was lower at 16%
(29.7 s) for bus and 25% (47 s) for the BRT case during rest of the weekday. During weekend,
this reduction was at 177.4 s for bus 186 s for BRT cases at the peak hours. The AV-BRT
case exhibited a slightly different trend where the weekdays showed two different travel
time inclination peaks at 2 pm–3 pm and second at 6 pm–7 pm. Similarly, the reduction
in travel times were more prominent between the peak and off-peak hours showing a
difference of 45% (112 s) between them. The reduction between BAU and AV-BRT for the
6 pm–7 pm peak was 48% (206.5 s) and 27% (50.2 s) during the 3 am–4 am off-peak period,
for the weekdays.

4.5. Energy Consumption

In general, a significant reduction in traffic energy consumption was observed that
further reinforce the observation for the queue delays, vehicle speeds and travel times
variables. Figure 12 shows accumulated energy consumption results for all vehicle types
in all scenarios from the years 2015–2045. The energy consumption for the base year
2015 was estimated at 791.95 TJ which increased at an average yearly growth rate of
approximately 14% to attain the year 2045 energy consumption value of 36,953.18 TJ after
exhibiting an increase of 46.66 times, in the BAU scenario. As discussed earlier, this high
energy consumption over the long-term was mainly caused by the passenger car traffic,
and traffic modelling projected the significant energy conservation potential of public bus
transport-based traffic management scenarios (Figure 12).

The maximum values reached in year 2045 for “Bus Case”, “BRT Case” and “AV-BRT
Case” traffic scenarios were 26,685.73 TJ, 20,197.66 TJ and 12,723.84 TJ, respectively. These
results show that the energy consumption reduced by 27.8%, 45.3%, and 65.6%, respectively
for the three scenarios in the year 2045. Up to 12% of the accumulated vehicle fuel energy is
consumed during this period of the total highway traffic lifecycle considered in this study.
These results not only show the dominant role of passenger vehicles in the total energy
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consumption of the case study highway traffic but also the huge benefit of optimising PT
according to the traffic demand.
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Additionally, despite the mode shift in favour of PT, the private car is still assumed
as the dominant transport mode accounting for around 53.97% share of the traffic on the
case study highway section. It is also noteworthy that this study only assessed the impact
of optimising BRT around peak traffic hours using fast, reliable, and interconnected au-
tonomous buses that mainly provided the benefit of automated acceleration-deceleration
driving, better vehicle platooning and smooth vehicle speed profile. The energy conser-
vation benefits are therefore from lower fuel consumption, i.e., improved fuel economy,
smoother traffic flow behaviour, and the high calorific value of CNG. However, the fuel
energy consumption may be further reduced by using electric buses, provided the energy
supply grid is adequately developed and not based on fossil fuels for production needs.

4.6. Exhaust CO2 Emissions

The exhaust CO2 emissions results are mainly generated from the petrol fuel consumed
by passenger cars and diesel fuel from heavy vehicles. Out of all the exhaust emissions
considered, CO2 emissions are the most environmentally significant due to higher global
warming potential of CO2. The alternate traffic management scenarios assess CO2 emissions
reduction through provision of hypothetical PT service. The accumulative CO2 exhaust
emissions reduction potential of public bus service was estimated as 300.68 kilo-tonnes
(27.2%) in “Bus Case” scenario compared to the BAU scenario for the year 2045 as shown
in Figure 13.

Figure 13 also shows that BRT and AV-BRT scenarios yielded a higher reduction
potential of 499.28 kilo-tonnes (45.2%) and 722.97 kilo-tonnes (65.4%), respectively, in
the year 2045. Similar to the findings of Peng et al. [2], exhaust CO2 emissions trend
from vehicles is comparable to the energy consumption trend from Figure 12 for the
2015–2045 period. On the other hand, the BAU CO2 emissions from year 2045 as es-
timated from microsimulation traffic modelling were 20.87 times higher than the 2015
base year. Exhaust CO2 emissions exhibited an average growth rate of approximately
11% which is significantly higher than the estimates of Ou et al. [91] and Peng et al. [2]
based on macro level city-wide emissions; and micro level road emission case studies by
Barandica et al. [92] and Santos et al. [93].

4.7. Exhaust NOx Emissions

The BAU scenario results for the year 2015 exhaust NOx emissions presented in
Section 3.2 earlier showed that NOx emissions share of diesel fuel consumed by heavy
trucks is significantly larger than other vehicle types. Figure 14 shows that over long-term,
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the NOx emissions increased at an average rate of 9.7% to attain the highest value of
1292.23 tonnes in the year 2045 which is 15.74 times higher than the base year NOx emis-
sions of 82.1 tonnes, in the BAU scenario. For the NOx emission reduction potential of
the alternate traffic management scenarios in the year 2045: the “Bus Case” exhibited
361.32 tonnes lower emissions (28%); the BRT scenario emissions were 604.48 tonnes
(46.8%); and AV-BRT scenario emissions were 755.13 tonnes (58.4%) lower than BAU. These
reductions are caused by the lower NOx emission potential of the CNG fuel used in bus
vehicles and reduction in the total volume of petrol fuel combusted in passenger car engines
due to the decline in car traffic. The decrement in NOx emissions may not only reduce
acid rain potential but also influence the smog and PM formation in the densely populated
areas surrounding the key E10 highway analysed in the current study.
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4.8. Exhaust Particulate Matter (PM) Emissions

The PM emissions were calculated as 55.16 tonnes for the year 2045 in the BAU scenario
(Figure 15), which increased at an average rate of 8.2% per year from the 5.24 tonnes PM
emissions estimated for the base year 2015. A significant share of PM emissions was caused
by diesel and petrol combustion engines of heavy trucks and passenger cars. The reduction
potential of alternate traffic management scenarios in terms of exhaust PM emissions was
not significantly realised until about the year 2020 with an average reduction rate of <5%
during this period for the accumulative vehicle emissions.
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Traffic modelling results showed significant reduction in subsequent years as the “Bus
Case”, BRT and AV-BRT scenarios exhibited an average PM exhaust emissions reduction
potential of 18.3%, 20.1%, and 23.8%, respectively for the 2021–2045 period, as shown
in Figure 15. Exhaust PM emissions for year 2045 for these three PT scenarios were
42.76 tonnes, 41.08 tonnes and 34.48 tonnes. The difference between PM emission reduction
benefits of “Bus Case” and BRT scenarios was comparatively lower than the AV-BRT
scenario over the assessed 30-year period. This was due to the lower PM emission from the
100% CNG combustion engines used in AV-BRT scenario, compared to the higher (71%)
share of diesel fuel engines in the “Bus Case” and BRT scenarios.

4.9. Long-Term Policy Implications

The total energy consumption and exhaust pollutants (CO2, NOx, and PM) emissions
for the different traffic management scenarios assessed in this study are illustrated in
Figure 16. The main causes of energy consumption and CO2 and PM exhaust emissions are
the excessive reliance of (potential) passengers on private car transport, combusted petrol
and diesel fuel, and the high emissions from the large number of older Euro III vehicles in
the traffic fleet. The case study highway “E10” currently serves more than 9500 vehicles at
peak hour in each direction, as counted for the base year 2015. Traffic growth and variations
in the vehicle driving characteristics in the subsequent years are modelled in the current
study using high-resolution microsimulation models. It was observed that large-scale
traffic gridlocks will occur if no improvements are made to the transport network.

The fluctuating traffic flow acceleration-deceleration and higher operating duration of
vehicle engines in traffic gridlocks are undoubtedly expected to increase the total fuel energy
consumption of the studied traffic fleet. Figure 16 shows that total energy consumption
of BAU scenario over the 30 years period from 2015–2045 is estimated to be primarily
generated from the fuel consumption of small-size cars at 235.301 × 103 TJ. It was followed
by regular-size cars with 33.154 × 103 TJ, heavy trucks at 28.646 × 103 TJ, light trucks at
8.746 × 103 TJ and minibus and coach at 4.741 × 103 TJ due to engine fuel combustion.
Petrol was noted as the most dominant fuel consumed by the passenger cars, followed by
diesel and CNG and other alternate fuel types contributing the smallest share.

Exhaust CO2 and PM emissions from cars carry the highest share among the accumula-
tive emissions of all vehicle types. In BAU scenario, 39.2% (3.733 × 103 kilo-tonnes) of CO2
emissions are generated by small-size cars from 2015–2045. Regular-size cars contributed
33.8% (3.218 × 103 kilo-tonnes), heavy trucks added 17.6% (1.679 × 103 kilo-tonnes), light
trucks generated 5% (0.478 × 103 kilo-tonnes) and minibus and coaches only contributed
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4.3% (0.412 × 103 kilo-tonnes) to the accumulative CO2 emissions from the vehicle fleet on
the studied highway section.
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Figure 16 shows that 232.525 tonnes (40.7%) of the total PM emissions for the 30-year
period in BAU scenario are from small-size cars. These are caused by; substantially large
vehicle counts of small-size cars and the resulting higher travel distances compared to other
vehicle types, higher primary and secondary organic aerosol emissions from the Euro V
and Euro VI petrol cars after atmospheric aging [94]. The use of diesel particulate filters in
modern diesel engines may also influence the comparative PM emissions rates among the
studied vehicle types. Similarly, PM emissions from regular-size cars were estimated as
179.180 tonnes (31.4%), followed by diesel engine heavy trucks (17.9%) and minibus (6.6%)
and light trucks (3.5%) due to the fuel type, fuel combustion technology and volumetric
share in the total traffic count of the studied highway section.

Compared to other exhaust emission categories, heavy-duty diesel engines are recog-
nised for higher NOx emissions than other vehicle engines [90]. Figure 16 shows that for the
BAU scenario, approximately 50.4% (5.985 × 103 tonnes) of the accumulative NOx emissions
were generated by heavy trucks. Small-size cars contributed 19.8% (2.357 × 103 tonnes)
followed by regular-size cars with 15.3% (1.817 × 103 tonnes). To effectively control the
NOx emissions, further improvement policies regarding freight transport are needed which
are outside the scope of the current study focused on passenger transport.
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The development plans for Abu Dhabi city [95] are aimed at increasing the mode
share of PT to 41% and reducing CO2 emissions by around 35% by adding tram lines,
developing clean energy and expanding non-oil commercial sectors. However, the traffic
management scenarios assessed in the current study require fewer changes in the existing
infrastructure. Based on existing governmental reports and passenger survey conducted
by Hasan et al. [75] for Abu Dhabi city, Figure 16 results show that with only 20% mode
shift in favour of public bus transport modelled in the “Bus Case”, accumulative vehicle
energy consumption from a representative highway section case study can be reduced by
76.396 × 103 TJ (24.6%), exhaust CO2 emissions by 2.258 × 103 kilo-tonnes (23.71%), exhaust
NOx emissions by 3.409 × 103 tonnes (28.71%) and exhaust PM emissions by 104.307 tonnes
(18.25%) over 30 years period from 2015–2045. This scenario only considered replication of
the existing city-wide mode share patterns on the studied highway. Moreover, the current
public bus fleet composition is assumed with diesel fuel as the dominant fuel technology.

In the hypothetical BRT scenario for the 2015–2045 period, energy consumption re-
duced by 109.842 × 103 TJ (35.37%), exhaust CO2 emissions by 3.3 × 103 kilo-tonnes
(34.66%), exhaust NOx emissions by 5.337×103 tonnes (44.94%) and exhaust PM emissions
by 114.986 tonnes (20.12%). Although the BRT scenario can achieve the energy consumption
and exhaust emissions reduction aims of local policymakers, it still utilises diesel fuel for
71% of its energy needs. As the local transport department currently imports vehicles to
support its public bus fleet and is also investing in converting diesel engines of many of its
existing buses to CNG engines, a hypothetical AV-BRT scenario may match these energy
consumption and exhaust pollutants reduction measures. It is a supply side measure,
and as such may be easier to implement [2] with little investments and over a very short
duration. Furthermore, AV-based PT systems have already been tested in many parts of the
world. The results for the AV-BRT scenario show that with slight modification to the bus
fleet, reliance on the already developing CNG fuel grid and bus service frequency variation
according to peak/off-peak traffic demand; significant energy and pollutant reductions can
be achieved.

Figure 16 shows that the energy consumption of AV-BRT was 173.16 × 103 TJ (55.75%)
lower than the BAU scenario over 30 years period. The CO2, NOx, and PM emissions were
also significantly lower at 5.213 × 103 kilo-tonnes (54.76%), 5.967 × 103 tonnes (50.24%) and
140.931 × 103 tonnes (24.66%), respectively, in the 2015–2045 period. Although all assessed
scenarios were effective in reducing the energy consumption and exhaust pollutants, AV-
BRT has been found as the most effective short-term measure. However, creation of
secondary clean fuel energy resources for electric fuel and fuel technology improvements
should also be assessed for their individual reduction potential.

This study contributes to the existing research by developing a theoretical foundation
to analyse and compare the interrelated lifecycle impacts of traffic management policies
on the road transport system. It also contributes by developing a detailed inventory data,
which can be used by future researchers for predicting energy and emissions in/outflows. A
wide majority of literature on the topic is focused on the road transport sector in the United
States and Europe [47,96], where the transport system is already highly developed, the
passenger mode share between cars and public transport is more balanced [97–99], and the
vehicle inventories and analysis models and methodologies are also specific to these regions
which cannot be generalised to other regions, particularly in the developing world where
the over-reliance on cars and lack of systematic lifecycle analysis approach is affecting
optimisation of traffic management strategies [100,101]. Although, the analysed benefits
will be region-specific, as is the case with any lifecycle analysis study where the results
are benchmarked against a base case, this does not affect the validity of microsimulation
models to calculate high-resolution per vehicle environmental impacts.

The benefit of microsimulation models compared to the distance-based emission mul-
tiplication approach is that it can model the dynamic per second acceleration-deceleration
due to queue formation, gradual introduction of better vehicle fuel technology (Euro I vs.
later standard engines) vehicle units in the traffic fleet and the more accurate impact of PT
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and automation of PT techniques in reducing lifecycle impacts from road transport sector.
These reductions can help the local municipal and transport authorities in meeting the
long-term energy conservation and pollution-control, which can be also useful for meeting
similar government-led environmental targets in other regions. The modelling approach,
which extends microsimulation from a per h or peak hour road capacity analysis to a lifecy-
cle analysis tool, estimation equations for calculating the projected reduction in car traffic
by precisely calculating the number of road passengers (using average vehicle occupancy)
and the baseline analysis results can be followed by any other study in other regions to
estimate the impact of traffic management strategies. Such studies can utilise the approach
from this study to monitor the effect on exhaust emissions and energy consumption to aid
the policy-makers in justifying the cost–benefit of control strategies.

5. Conclusions

Private car dominance, population growth, and growing metropolitan areas are pro-
jected to result in high energy consumption and exhaust pollutants emissions from road
traffic. The local transport policymakers in many cities are developing plans to encourage
a shift from conventional cars to clean energy measures and upgrading the existing PT
network with more bus vehicles, autonomous PRT vehicles, high-speed trams, and light rail.
The methodological approach, relying on microsimulation models utilising high-resolution
traffic flow data, presented here provides a detailed assessment of fuel energy and pollutant
emissions under different traffic policy scenarios based on the lifecycle analysis approach.

Case study 30-year (2015–2045) lifecycle results for a major highway section serving
large traffic volume (peak hour > 9500 vehicles/h, each direction) were analysed. By
introducing a public bus transport line and slightly varying bus frequency based on
traffic demand (as being considered by local transport authority), significant reduction
in fuel energy consumption (35.37%) and exhaust pollutants emissions (>20.12%) can be
achieved. Energy consumption rate in “Bus Case” can be cut by 1186.088 × 103 MJ/h
(28.1%), CO2 emissions rate by 34.745 tonnes/h (27.5%), NOx by 34.109 kg/h (27%) and PM
emissions rate by 1.595 kg/h (25.5%) in year 2045. Similarly, BRT scenario reduced year 2045
energy consumption, CO2, NOx, and PM emission rates by 1904.484 × 103 MJ/h (45.1%),
57.055 tonnes/h (45.1%), 56.343 kg/h (44.6%), and 1.608 kg/h (25.7%), respectively. AV-BRT
scenario demonstrated the optimum results with nominal upgrades of existing bus fleet.
The highest reduction was estimated for energy consumption as 55.75% (173.16 × 103 TJ),
followed by CO2 emissions as 54.76% (5.213 × 103 kilo-tonnes), NOx emissions as 50.24%
(5.967 × 103 tonnes) and PM emissions as 24.66% (140.931 × 103 tonnes) over the period
from 2015–2045.

These reductions were mainly generated by reduced reliance (25–35%) on private
cars and replacing diesel by CNG as the fuel source for PT buses. This diversion of users
from cars to PT caused an improvement in traffic flow rate which was responsible for the
reduction in exhaust emissions and energy consumption. For example, in year 2020, the
introduction of buses reduced average weekly vehicle queue delays by 27%, travel times by
23%, and increased average vehicle speeds by 13%. After introducing a public BRT service,
average weekly vehicle queue delays decreased by 35% and travel times by 37%, while
average vehicle speeds increased by 29%. The AV-BRT service exhibited a decline of 46% in
queue delays and 48% in travel times, while the average vehicle speeds increased by 26%.

A general relationship between vehicle counts or travel distances and energy con-
sumption was also noted. Results also show that energy use and pollutants generation are
not only directly correlated but also highly dependent upon private car ownership. Large-
scale policy initiatives to reduce reliance on private cars such as reliable, high-speed, and
optimised PT systems are required. Significant potential of traffic microsimulation models
for road and traffic policies scenario analyses regarding long-term energy conservation
and pollution-control was noted which may be useful for similar studies in other regions.
The prototype methodology presented in this study exhibits the utility of microsimulation
modelling for calculating the long-term energy consumption and emissions from traffic
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fleet and the benefit of alternate traffic management strategies such as autonomous buses
within an urban setting. Although, there are some environmental footprint assessment
models in literature for road traffic, these either use aggregated values to determine the
overall impact of traffic management strategies that may not be accurate for comparative
assessment or use region-specific models that are not generalizable for global application.

Nonetheless, there are some limitations of this methodology. The storage demand
for the microsimulation models is quite significant as the models are being run which
might be affect its application on low specification devices. However, the optimization
options offered by the models may warrant a trade-off against computation power as it
can be adequately run using medium range personal computers. Furthermore, the data
used in this study is for different approaches on the same highway section and additional
work is required to generalize the results for large scale application. The benefit in traffic
flow-profile (indicative by the travel time and queue formation) in the microsimulation
models are determined for the modelled area and may be higher or lower depending
upon the traffic flow situations in another area. While this does not affect the modelling
capabilities of the presented method to be transferrable to another area or the sustainability
benefit of using autonomous buses for PT, it will still need calibration for local conditions
as is true for any simulation study.

Another limiting aspect is the use of the historical growth model to predict the increase
in traffic. Although, this does not prevent the study method to be used for comparison of
traffic management strategies and its efficacy as a long-term emission measuring tool, it
may be improved by using a land-use and socio-economic calculator for estimating a more
realistic traffic growth trend as part of future work. The emission estimation tool presented
in this study calculate the exhaust emissions to compare the benefit of autonomous public
buses as emission abatement strategy, but future studies can build upon to also include
non-exhaust emissions as part of the estimation.
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