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Abstract: In the context of those countries around the world that are actively promoting sustainable
development of the environment, China has formulated a new “double carbon” strategic goal to
assume corresponding responsibilities. Vegetation carbon sequestration plays a key role in enhancing
the carbon sink capacity toward reaching the carbon peak and carbon neutrality. In order to quantita-
tively study vegetation carbon sequestration, in this article, we used the net primary productivity
(NPP) as an indicator to measure it. In this research, the Datai Coal Mine in western Beijing was used
as the study area, and the spatiotemporal distribution characteristics and the influencing factors of
carbon sequestration through vegetation were analyzed. Based on the meteorological data, remote
sensing images, and the land use data of the mining area, the improved Carnegie–Ames–Stanford
Approach (CASA) was used to calculate the net primary productivity (NPP) of vegetation in the
Datai mining area from 2013 to 2021, to analyze its temporal and spatial distribution in relation to
meteorological factors. The results showed that in the past 9 years, the NPP in the Datai mining area
generally increased from 546 gC/m2 to 601 gC/m2. The NPP in the Mentougou District generally
decreased and had a significant relationship with precipitation, temperature, and solar radiation. The
Mentougou District’s NPP change had a significant positive correlation with the precipitation change
(R2 = 0.8). The Mentougou District’s NPP change had no significant relationship with temperature
(R2 = 0.98) and solar radiation fluctuations (R2 = 0.75). In conclusion, the vegetation NPP in the Datai
Mine regularly changed throughout the year, and its annual vegetation NPP was about twice that of
the Mentougou District, which probably due to the low-intensity mining of the Datai Mine. Thus,
there is no significant impact on the vegetation carbon in this area.

Keywords: net primary productivity; meteorological drivers; spatiotemporal distribution

1. Introduction

Achieving the “double carbon” goal of peak carbon dioxide emissions in 2030 and
carbon neutrality by 2060 is a major strategic decision made by China for the construction
of ecological civilization. This is not only a solemn commitment to all countries in the
world but also, domestically, an inherent requirement for sustainable development [1]. The
“Carbon Peaking Action Plan before 2030” project has formulated by the State Council
in 2021. In order to solve the issues in the ecological restoration projects of abandoned
historical mines, the consolidation and improvement of the carbon sink capacity is listed as
a critical task, and it is proposed that the restoration and management of degraded land
be strengthened. As one of the most critical factors affecting the ecological environment,
climate change directly impacts the structure and distribution of vegetation types [2,3].
The estimation of the NPP of vegetation can directly reflect the response of the terrestrial
ecosystem to climate change and its multi-scale interaction process [4–6]. Therefore, it is of
great significance to study the calculation of vegetation carbon sequestration in coal mining
areas and analyze the impact of climate change on vegetation carbon sequestration.
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The commonly used carbon sequestration calculation methods are divided into direct
observation and model measurement methods. Some authors measured the net photo-
synthetic rate of plants by using a photosynthesis monitor, calculated the fixed carbon
dioxide mass and released oxygen mass of the vegetation leaf area in a single day, and
then used a canopy analyzer to measure the vegetation leaf area index [7,8]. Finally, the
photosynthetic rate method was used to calculate the carbon sequestration of plants. Al-
though this method can obtain the dynamic changes in vegetation carbon sequestration,
it is suitable for measuring vegetation carbon sequestration in urban green areas, parks,
and other similar environments. Meanwhile, the measurement takes a long time, and it is
difficult to obtain the annual change law of vegetation [9]. Although the carbon density
method can measure carbon sequestration over a large scale in areas with a high density of
vegetation, it requires the measurement and recording of data such as breast height and
diameter for all the trees in a sample plot one by one, which requires a large workload,
with specific requirements for the measurement environment, and is unsuitable for areas
with small space [10–12].

Thus, since it is difficult to directly and accurately measure the carbon sequestration
of vegetation by using ordinary positioning and observation methods, relevant scholars
use other indicators to measure the carbon sequestration of vegetation, one of which is the
net primary productivity (NPP) of surface vegetation [13]. The NPP refers to the ability
of plants to use solar light for photosynthesis to fix and convert inorganic carbon (CO2)
into organic carbon. It is the leading indicator for measuring carbon sinks in terrestrial
ecosystems [14,15].

Furthermore, there are four main types of models used to measure the vegetation
NPP: climate–productivity relationship models, ecophysiological process models, remote
sensing application models, and light utilization efficiency models. Climate–productivity
relationship models are established on the basis of the relationship between the net pri-
mary productivity of vegetation and the climate in the early stage of research, and based
on these models, some papers analyzed the current situation of the vegetation NPP in
China and provided targeted suggestions for improving it under different meteorological
environments. However, although the parameters of this type of model are easy to obtain,
the estimation process is based on point and surface [16]. Therefore, some scholars have
established ecophysiological process models, which are based on the vegetation growth
process combined with soil factors based on climatic factors [17,18]. The estimation results
of this type of model are relatively accurate. Although the impact of climate change on
the vegetation NPP can be further stimulated, this model is rather complex in that it is
challenging to obtain the parameter data and difficult to convert the scale of the study
area. Thus, it is impossible to research the mining area. There are two main methods
of combining remote sensing application models. The first is the optimized production
efficiency model (PEM), which is simpler than the environmental and physiological process
model in measuring the vegetation NPP [19]. However, the leaf area index (LAI), one of the
critical parameters of this model, greatly influences the overall measurement of the NPP,
so the measurement accuracy of the LAI is exceptionally high. The second method is the
FOREST–BGC model, which improves the applicability of the ecophysiological process
model [20]. Combined with the LAI obtained with remote sensing, this model can measure
the daily average and the annual average vegetation NPP [21]. Although light utilization
efficiency models can reflect the changes in vegetation information when calculating the
NPP over time, these models are also relatively complex, and human intervention factors
during the establishment of their parameters affect the accuracy of vegetation NPP cal-
culations. The most widely used light utilization efficiency model is the CASA model.
One investigation found when use traditional CASA models to estimate the vegetation
NPP in China, the value of NPP is generally smaller than real NPP value. The reason
is the default value of the maximum light energy utilization rate (0.389 g of carbon per
joule) in traditional model was not applicable in China [22,23]. In a follow-up study, Zhu
(2005) improved the CASA model by adding the vegetation coverage classification data,
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simulated the maximum light energy utilization rate of different vegetation types according
to the vegetation NPP measurement results, and calculated the NPP in China from 1989 to
1993. In the CASA model, although the vegetation parameters are easy to obtain, and the
scale conversion of the research area is convenient, the vegetation NPP cannot be simulated
and predicted. Therefore, selecting an appropriate model to estimate the vegetation NPP
has essential research significance for the restoration of the ecological environment and the
rational development of natural resources [24,25].

Therefore, in this study, we combined the improved CASA model with remote sensing
data to analyze the temporal and spatial variations in carbon sequestration under low min-
ing intensity. The relationship between meteorological factors and the NPP at the mining
area scale was analyzed. This article aimed to remedy the deficiencies of previous research
on the NPP of vegetation in small mining areas. The article also ained to supplement the
study of high-precision spatiotemporal changes in the NPP based on long time series for
low mining intensity mining area. This method was applied to study areas with similar
mountainous landforms and under the low-intensity mining conditions of small coal mines.

Moreover, the aim of this article was to research the spatiotemporal variation character-
istics of the NPP in western Beijing’s Datai Mine from 2013 to 2021 in order to understand
the impact of meteorological elements and coal mining on the NPP. Based on this goal, we
used the improved CASA model to calculate the NPP. The spatial and temporal distribu-
tions of the NPP over long-term periods of the entire Mentougou District were analyzed.
Based on nonlinear fitting, this article used the functional formula to interpret the rela-
tionships between climate and the NPP. Through the functions the most suitable growth
conditions of vegetation were found. The results of this article are helpful to provide more
positive methods to enhance ecosystems and may be applicable to study areas with similar
mountainous landforms and under the low-intensity mining conditions of small coal mines.

2. Material and Method
2.1. Selection of Study Area and Contrast Area

In this paper, the Datai Mine was used as the study area, and by considering the
influence of the mining range of the mining area on the surface, the longitude and latitude
range of the Datai Mine study area was determined; therefore, the plot of the coal mining
area encompassed the inflection point coordinates of 40 minefields in the mining area.
In order to compare the carbon sequestration patterns between the mining area and the
non-mining area, we selected a contrast area with the same scale, which had also simi-
lar ecological factors, such as geological conditions, meteorological environments, and
topographic characteristics (Figure 1).

2.2. General Situation of Datai Mine

The Datai Mine is located in western Beijing’s mining area in the Mentougou District,
Beijing City. The mine was formally established in 1958, with a designed production
capacity of 600 kt/a and an actual production capacity of 800 kt/a. It was closed in
September 2019. The mine has a mining history of 61 years and is a representative steep
seam coal mine in China. The mine strike is 10.8 km long. A contrast chart of the upper and
lower wells of the Datai Mine is shown in Figure 2a. Eight coal seams can be mined, the
total coal thickness is 12.5 m, and the coal seam inclination is 45~88◦. The mining elevation
of the coal seam is +400~−500 m. The coal seam of the mine is divided into nine mining
levels, and the bottom elevations of each level are, respectively, +288 m, +190 m, +90 m,
−10 m, −110 m, −210 m, −310 m, −410 m, and −510 m. The mine adopts vertical shaft
and inclined shaft mining mode, and adopts a series of cross-holes pass through coal seam
group; the geological section is shown in Figure 2b. Two kinds of coal mining methods were
adopted, namely a flexible-cover-support mining method for coal thicknesses of >1.6 m
and a long-wall-sublevel dense mining method for coal thicknesses of <1.6 m. When the
flexible-cover-support method was adopted, the roadway slope of the working face was
arranged in sections of 23~25◦ in the stage.
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Figure 1. Location map of the study area, contrast area, and Mentougou District of Datai Mine.

The climatic condition of the Datai mining area is a warm–temperate, semi-humid,
semi-arid monsoon continental climate. There are four distinct seasons: dry winter, windy
spring, little rain, rainy summer, and sunny and mild autumn.

The vegetation type in the Datai Mine is that of a warm–temperate, deciduous broad-
leaved forest, and the available forest land is shrub forest or mixed forest (Figure 2c). Forest
vegetation is mainly distributed in Zhongshan Mountains above 1000 m above sea level
(Figure 2d). In the low mountainous areas below 1000 m above sea level, vegetation is
severely damaged due to frequent human activities.

The problems related to the geological environment in this mining area mainly man-
ifest as land occupation, topographic and landform damage, gangue mountain collapse,
thin soil layers, and severe soil erosion. Therefore, we selected the Datai Mine in western
Beijing as our research object, and in this paper, we discuss the various characteristics of its
vegetation NPP based on the situation of artificial restoration after the environment of the
mining area is damaged.
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2.3. Datasets

The original parameter data include the monthly data of the normalized difference
vegetation index (NDVI), solar radiation, temperature and precipitation, which from 2013
to 2021 in the Mentougou District.

(1) Meteorological data mainly include sunshine duration, precipitation, average tem-
perature, and other data, which are all from the data provided by the Institute of
Geographic Science and Natural Resources Research. Based on the commonly used
processing methods, first, the data of 15 meteorological stations in the Datai Mine
study area and its surrounding areas in the Mentougou District were selected, and the
invalid values were deleted from the temperature and precipitation data. Then, we
used a software program to calculate the solar radiation data, based on the Angstrom–
Prescott equation (Zuo et al., 1963). Finally, ArcGIS was used to process the mask and
resolution of the study area, and then the meteorological grid data (30 m) from 2013
to 2021 were obtained.

(2) A vegetation-type map was derived from the remote sensing monitoring data of the
Geo-Science Data Network. Firstly, we used the ArcGIS program’s raster projection
for remote sensing images, to ensure that the spatial range and projection type of
the output image is consistent with the file of the study area. Secondly, the spatial
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analysis of the data and the background value of the file were also carried out. Fi-
nally, the resulting data were converted into a file format consistent with that of the
meteorological data.

(3) The NDVI data were derived from the geographic data cloud platform. We selected
Landsat TM products within the study area with a spatial resolution of 30 m. First of
all, it is necessary to carry out the radiometric calibration and atmospheric correction
of the NDVI; then, use the formula calculate the NDVI and extract by mask with the
study area; finally, a file with the meteorological data was generated. The results
images are shown in Figure 3a,b.
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2.4. Calculation of Net Primary Productivity

As the study area is located on a mountainous landform, the regional scale is small, the
vegetation type in the area is of a single type, and its distribution is uneven. In this paper,
we used the improved CASA model and its related software to calculate the net primary
productivity of vegetation [26]. In the formula, NPP(x,t) is the net primary productivity of
pixel x in the t period. The absorbed photosynthetic active radiation (APAR) by plants and
the actual light energy utilization rate (ε) are two critical factors representing the vegetation
NPP [27–29]:

NPP(x,t) = APAR(x,t) × ε(x,t) (1)

where APAR(x,t) is the photosynthetically active radiation (gC/m2) absorbed by pixel x in
the t period, and its formula is as follows:

APAR(x,t) = SOL(x,t)×FPAP(x,t) × 0.5 (2)

In the above formula, SOL(x,t) is the total solar radiation absorbed by pixel x in the t
period (MJ/m2), and FPAP(x,t) is the absorption ratio of the incident photosynthetically
active radiation by the vegetation layer. The constant 0.5 is the photosynthetically active
radiation used by the vegetation layer to account for the total solar radiation. In FPAP(x,t),
the normalized difference vegetation index (NDVI) and the simple ratio index (SR) have an
excellent linear relationship; thus, combining the two factors can improve the calculation
accuracy. The calculation of a pixel’s FPAP value can be found in the studies of Chen [30,31].

In addition, ε(x,t) is the actual light energy utilization (gC/MJ) of pixel x in the t
period, and its formula is as follows:

ε(x, t) = Tε1(x, t)× Tε2(x, t)×Wε(x, t)× εmax (3)

In the above formula, Tε1(x, t) and Tε2(x, t) are the stress effects of low temperature
and high temperature on the light energy utilization rate, respectively; Wε(x, t) is the water
stress influence coefficient; and εmax is the maximum light energy utilization rate (gC/MJ)
under the ideal condition of surface vegetation.
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2.5. Trend Analysis of NPP

The trend analysis method based on univariate linear regression was used to analyze
the inter-annual NPP from 2013 to 2021 [32]. The calculation formula is as follows:

Kslope =
n×∑n

i=1(i×NPPi)−∑n
i=1 i×∑n

i=1 NPPi

n ∑n
i=1 i2 − (∑n

i=1 i)2 (4)

In this formula, Kslope is the linear slope, NPPi is the annual total net primary produc-
tivity in the ith year, and n is 9. When Kslpoe > 0, it means that the NPP is increasing over
time; otherwise, the NPP is decreasing.

2.6. Correlation Analysis of NPP and Meteorological Factors

Based on the correlation coefficient between the net primary productivity of vegetation
and meteorological factors (temperature, precipitation, and solar radiation), the formula is [33]:

ρxy =
∑n

i=1[(xi − x)(yi − y)]√
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

(5)

In the above formula, ρxy is the correlation coefficient of the two variables; n is 9; xi
and yi are the NPP value and the meteorological value of the two variables in the ith year;
and x and y are the mean values of the two, respectively.

2.7. Fitting Relationship between NPP and Meteorological Factors

In order to further study the gradient relationship between the vegetation NPP and
meteorological factors, in this section, we used the Origin software to construct a nonlinear
curve model based on the principle of least squares. By fitting 21 functional formulas, the
maximum value of R2 was selected as the relationship between the vegetation NPP and
climatic factors. As shown in Table 1, five functions were selected as representatives, which
are listed along with their relevant goodness of fit.

Table 1. Fitting coefficient table of NPP and meteorological factors.

Function/R2 Boltzmann
Function

Gaussian
Function

Logistic
Function

Sine
Function

Exponential
Function

NPP1 (T) 0.98 0.95 0.04 0.96 0
NPP2 (P) 0.78 0.80 0.76 0.73 0.79
NPP3 (R) 0.73 0.75 0.73 0.72 0

(1) The Boltzmann fitting of the NPP and temperature (T):

Dl_NPP1(T) =
A1 −A2

1 + e(T−T0)/dx
+ A2 (6)

In this formula, A1 is the minimum value of the Boltzmann function; A2 is the maxi-
mum value of the function; T0 = (A1 + A2)/2; and dx is the time period.

(2) The Gaussian fitting of the NPP and precipitation (P):

Dl_NPP2(P) =
A

w
√
π/2

e
−2(P−Pc)2

w2 + P0 (7)

In the above formula, P0 is the minimum value of the Gaussian function; A/w
√

(π/2)
is the function peak; Pc is its corresponding abscissa; and W is the standard deviation.
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(3) The Gaussian fitting of the NPP and radiation (R):

Dl_NPP3(R) =
A

w
√
π/2

e
−2(R−Rc)2

w2 + R0 (8)

In this formula, R0 is the minimum value of the Gaussian function; A/w
√

(π/2) is the
function peak; Rc is its corresponding abscissa; and W is the standard deviation.

3. Result and Analysis
3.1. The Analysis of Time Series Variation Characteristics of NPP in the Study Area
3.1.1. The Monthly Variation Characteristics of NPP of Vegetation in the Study Area

Figure 4 indicates that the monthly average vegetation NPP had a change in trend
in the Mentougou District, the Datai Mine research area, and the control area from 2013
to 2021. From the 9-year data, it can be found that the monthly average value of the net
primary productivity of vegetation in the study area of the Datai Mine was 11.4% higher
than that in the control area. The NPP of vegetation in the three areas rapidly increased
from April and reached the peak carbon sequestration capacity from June to August. The
maximum value range in the research area of the Datai Mine was 110.8–124.7 gC/m2, which
is basically unchanged.
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Figure 4. Comparison of monthly average vegetation NPP from 2013 to 2021. (a–i) are the represent
data from 2013 to 2021 respectively.

In conclusion, the variation characteristics of the vegetation NPP in these three regions
were the same each year; the monthly average value of the vegetation NPP in the Datai
Mine study area and the control area was relatively close. The changing trend of the
vegetation NPP in the Mentougou District was relatively flat.

3.1.2. The Annual Characteristics of NPP of Vegetation in the Study Area

According to the changing trend in Figure 5a, although the vegetation NPP in the
control area slightly decreased from 2013 to 2014 and slightly increased from 2017 to 2018,
they all reached their peaks in 2019. The year-on-year increases were 10%, 12.5%, and 8%
in the study area, the control area, and the Mentougou District. In 2019, the vegetation NPP
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in the three regions became the highest value, while the lowest value in the control area
and other areas were in 2014 and 2018 respectively.
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In conclusion, the variation characteristics of the average annual vegetation NPP in
the three areas were the same. From the average annual change, it can be concluded that
the mining operations in the Datai mining area in western Beijing had no significant impact
on the surrounding environment. The annual average vegetation NPP in the study area
was always higher than that of other areas, and the changing trend tended to be consistent,
indicating that the efforts toward the environmental restoration and management of the
Datai mining area are currently not significant.

Figure 5b shows the annual temporal change characteristics of the vegetation NPP in
the Datai study area from 2013 to 2021. It can be seen from the figure that the vegetation
NPP first increased and then decreased throughout each year, and the maximum value was
concentrated in June (2016–2021); the maximum value in 2014–2015 was found in July; and
only in 2013, the maximum value was in August.
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3.2. Spatial Variation Characteristics of Vegetation NPP in the Mentougou District

Based on the CASA model, the distribution characteristics of the vegetation NPP in the
Mentougou District from 2013 to 2021 were calculated, as shown in Figure 6. The maximum
and minimum NPP values were 447 gC/m2 and 402 gC/m2 in the years 2021 and 2018,
respectively. The low value of the NPP was concentrated in the eastern area but generally
improved over the 9 years under study.
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Figure 6. Spatial distribution of vegetation NPP in Mentougou District from 2013 to 2021. (a–i) are
the represent data from 2013 to 2021 respectively.

From the spatial distribution figure of the vegetation NPP in the Mentougou District
from 2013 to 2021, it can be seen that the NPP in the eastern region was lower than that of
the other regions. This is because the eastern region is located in an industrial development
zone, and its pollution has had a significant impact on the environment, indicated by the
red color in some areas, while the population of the Mentougou District is concentrated in
the central area, which has also a certain impact on the environment, and it is indicated
in pale yellow on the spatial distribution figure; since the southwest area mostly covers
scenic spots and nature reserves, its NPP value was mostly higher than the other areas. The
highest NPP values were mostly distributed in the Shuanglong Gorge Scenic Area and the
Baihua Mountain Nature Reserve.

After performing the univariate linear regression analysis to determine the pixel-by-
pixel variation trend of the vegetation NPP in the Mentougou District over the past 9 years,
as shown in Figure 7a, it was found that in 30% of the area, the linear slope of the NPP
was less than 0. The rate of change from a significant decrease to a significant increase was
9–21–50–17–3%. The figure displays that most areas of the Mentougou District showed
a trend of stability and decline over the 9 years, the NPP of the whole area gradually
increased from south to north, and the areas with a significant increase in the vegetation
NPP were concentrated in the eastern and northern parts.

Based on the grading map of the average vegetation NPP value in the Mentougou
District from 2013 to 2021 (Figure 7b), it can be seen that 11% of the area had a vegetation
NPP value of 0–75 gC/m2, 16% of the area had a vegetation NPP value of 75–200 gC/m2,
16% of the regional vegetation NPP value was 200–300 gC/m2, 24% of the regional vegeta-
tion NPP value was 300–600 gC/m2, and 33% of the regional vegetation NPP value was
between 600 and 700 gC/m2.
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3.3. Analysis of Meteorological Driving Factors of Vegetation NPP in the Datai Mine Study Area
3.3.1. Temporal Analysis of Vegetation NPP and Meteorological Factors in the Study Area
of Datai Mine

(1) The relationship between vegetation NPP and temperature (T)

From the monthly vegetation NPP sample data and the corresponding monthly av-
erage temperature, the change in the vegetation NPP showed a law of slowly increasing,
sharply increasing, and then slowly increasing, so the Boltzmann function was used for
fitting. Figure 8a shows the Boltzmann fitting curve of the 9-year monthly vegetation NPP
value and the monthly average temperature (T). The gradient relationship between the
NPP and temperature (10) is shown in Figure 8b with the vegetation NPP–T gradient curve;
the temperature value interval T ∈ [−5.6, 25.8], ◦C.

NPP1(T) =
−110

1 + e(T−17.6)/2.7
+ 115 (9)

kT(T) =
40.7e(T−17.6)/2.7[
1 + e(T−17.6)/2.7

]2 (10)

where NPP1 (T) is the fitting function of the monthly vegetation net primary productivity
and the monthly average temperature, gC/m2; T is the monthly average temperature, ◦C;
the kT(T) is the variation gradient of the monthly vegetation NPP with respect to the
temperature.
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Figure 8. (a) The relationship between vegetation NPP and temperature in the study area; (b) the
gradient of vegetation NPP with respect to temperature.

The R2 of the fitting function NPP1 (T) was 0.97, indicating that there was a positive
fitting relationship between the two factors. It can be seen from the vegetation NPP
temperature increase gradient that the extreme value point of KT(T) was Tm = 17.6 ◦C,
when T ∈ [−5.6, 17.6], the growth rate of the vegetation NPP increased with the increase in
temperature; T ∈ [17.6, 25.8], and the growth rate of the vegetation NPP decreased with the
increase in temperature.

(2) The relationship between NPP of vegetation and precipitation (P)

With the increase in precipitation, the change in the vegetation NPP showed a con-
tinuous growth–maintained stability law, so the Gaussian function was used for fitting.
Figure 9a is the Gaussian fitting curve of the monthly vegetation NPP value and the monthly
average precipitation (P) for the 9 years. The gradient relationship between the vegetation
NPP and precipitation (12) is shown in Figure 9b with the vegetation NPP–P gradient curve;
the precipitation value interval P ∈ [0, 331.8], mm.

NPP2(P) = 101.1(1− e−2 (P+9.2)2
3474.2 ) (11)

kP(P) = 0.12(P + 9.2)e−2 (P+9.2)2
3474.2 (12)

where NPP2 (P) is the fitting function of the monthly vegetation net primary productivity
and the monthly average precipitation, gC/m2; P is the monthly average precipitation, mm;
kP(P) is the variation gradient of the monthly vegetation NPP with respect to precipitation.
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Figure 9. (a) Relationship between vegetation NPP and precipitation in the study area; (b) variation
gradient of vegetation NPP with respect to precipitation.

The R2 of the fitting function NPP2 (P) was 0.80, which indicates that there was a
positive fitting relationship between the two factors. It can be seen from the NPP precipi-
tation gradient that the point is the Pm extreme point of fitting the NPP–P function; that
is, when P ∈ [0, 2.1], the growth rate of the vegetation NPP increases with the increase in
precipitation; when P ∈ [2.1, 331.8], the growth rate of the vegetation NPP decreased with
the increase in precipitation, and the growth was suspended until the precipitation was
101.08 mm.

(3) Relationship between vegetation NPP and solar radiation (R)

With the increase in solar radiation, the change in the vegetation NPP showed a
trending law of first decreasing and then a continuous increase, so the Gaussian func-
tion was used for fitting. Figure 10a is the Gaussian fitting curve of the monthly veg-
etation NPP value and the monthly average solar radiation (R) for the 9 years. The
gradient relationship between the vegetation NPP and precipitation (14) is shown in
Figure 10b, with the vegetation NPP–P gradient curve; the value range of solar radiation is
R ∈ [0, 719.8], MJ/m2.

NPP3(R) = 123.2− 121.2e−2 (R−308.9)2
395.5 (13)

kR(R) = 0.003(R− 308.9)e−2 (R−308.9)2
395.5 (14)

where NPP3 (R) is the monthly net primary productivity of vegetation and the monthly aver-
age solar radiation fitting function, gC/m2; R is the monthly average solar
radiation, MJ/m2; kR(R) is the monthly variation gradient of the vegetation NPP with
respect to solar radiation.
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gradient of vegetation NPP with respect to solar radiation.

The R2 of the fitting function NPP3 (R) was 0.75, which indicates that there was a
positive fitting relationship between the two factors. From the data for the vegetation
NPP solar radiation gradient, it can be seen that the point was the Rm extreme point of
fitting the NPP–R function; that is, when R ∈ [219.8, 509.8], the vegetation NPP growth rate
increased with the increase in solar radiation; when R ∈ [509.8, 719.8], the growth rate of
the vegetation NPP decreased with the increase in solar radiation.

3.3.2. Multivariate Analysis of Vegetation NPP and Meteorological and Mining Factors in
the Mentougou District

Considering the factors of climatic, the Datai mining area (for example: ground surface
settlement), and human intervention, this section summarizes the data of the maximum
ground surface settlement (GSS), coal production (CP), artificial restoration cost (ARC),
meteorological factors, and the vegetation NPP of the Datai Mine from 2013 to 2021.

The GSS data were derived from the deformation monitoring summary report of the
Datai Mine from 2013 to 2021, and the ARC data were derived from the “Design Plan of
Geological Environment Treatment Project for Waste Dumps Subsidence Pits of Datai Coal
Mine” and the “Geological Environment Protection and Land Reclamation Plan for Datai
Coal Mine in West Beijing”. Since the Datai Mine was closed on 17 September 2019, its coal
output from 2020 to 2021 was zero.

In order to eliminate the limitation of the units and magnitudes of the different
factors’ data, we considered the meteorological factors and the vegetation NPP data as
dimensionless numbers (DNs). The maximum values of the vegetation NPP data and
each meteorological observation factor’s monthly average data derived from the Datai
Meteorological Station are shown in Table 2.
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Table 2. The monthly average maximum values of vegetation NPP and meteorological and mining
area factors from 2013 to 2021.

Year NPPmax
(gC/m2) Tmax (◦C) Pmax (mm) Rmax

(MJ/m2)
GSS
(mm)

CP
(kt)

ARC
(kcny)

2013 114.5 24.7 203.8 664.4 7.2 903 0
2014 114.0 26.7 119.8 693.1 16.8 898 3515
2015 111.6 24.8 110.8 716.7 18.1 933 0
2016 112.4 25.2 331.8 681.5 20.2 840 0
2017 110.8 25.4 206.5 719.7 21.5 933 7659
2018 111.5 25.8 155 653.6 45.7 1000 0
2019 115.1 25.9 84.9 690.9 48.5 361 7250
2020 121.1 25.7 127.3 647.2 30.2 0 0
2021 124.7 24.6 308.5 683.4 37.6 0 0

After fitting the vegetation NPP with the maximum surface subsidence, the coal yield,
and artificial restoration costs, it was found that the correction determination coefficient
(Rˆ2_adjusted) was 0.87, indicating a high fitting degree. It can be seen from the fitting
results of the characteristics of low-intensity mining areas that among meteorological
factors, the temperature was the main factor affecting the changes in the NPP of vegetation,
and the impacts of the mining area and human intervention are secondary factors. The
dimensionless fitting results are as follows:

Dl_NPP(CP, GSS, ARC, T, P, R) = −0.03− 0.004 CP− 0.003 GSS + 0.0001 ARC + 0.69T + 0.37P + 0.14R (15)

3.3.3. Spatial Analysis of Vegetation NPP and Meteorological Factors in the Mentougou District

Climate change has a direct impact on the type, structure, distribution, and function of
vegetation [2]. In this paper, the correlation coefficients between the vegetation NPP and the
air temperature, precipitation, and solar radiation in the 9 years were calculated from the
pixel scale (Figure 11). The results show that the annual vegetation NPP change had little
relationship with the fluctuation of the annual average temperature and solar radiation and
overall insignificant positive and negative correlations, respectively. However, the annual
vegetation NPP change in the Mentougou District had a relatively large correlation with
the annual precipitation change, the grassland area was positively correlated with more
than 70%, and the correlation coefficient between the two was up to 0.96.

Sustainability 2022, 14, x FOR PEER REVIEW 18 of 21 
 

 
(a) 

 
(b) 

 
(c) 

Figure 11. Spatial distributions of the correlation coefficient (a) between annual NPP and annual 
cumulative precipitation; (b) between annual NPP and annual mean temperature; and (c) between 
annual NPP and solar radiation. 

4. Discussion 
There are fewer studies on the spatial and temporal characteristics of the NPP in 

Mentougou. The NPP results of the MODIS–NPP data used in the CASA model are basi-
cally consistent with the findings of this article [34,35]. Considering the NPP results in 
Beijing, some studies also provide the changing trend of the NPP, the results of which are 

Figure 11. Cont.



Sustainability 2022, 14, 15567 18 of 21

Sustainability 2022, 14, x FOR PEER REVIEW 18 of 21 
 

 
(a) 

 
(b) 

 
(c) 

Figure 11. Spatial distributions of the correlation coefficient (a) between annual NPP and annual 
cumulative precipitation; (b) between annual NPP and annual mean temperature; and (c) between 
annual NPP and solar radiation. 

4. Discussion 
There are fewer studies on the spatial and temporal characteristics of the NPP in 

Mentougou. The NPP results of the MODIS–NPP data used in the CASA model are basi-
cally consistent with the findings of this article [34,35]. Considering the NPP results in 
Beijing, some studies also provide the changing trend of the NPP, the results of which are 

Figure 11. Spatial distributions of the correlation coefficient (a) between annual NPP and annual
cumulative precipitation; (b) between annual NPP and annual mean temperature; and (c) between
annual NPP and solar radiation.

4. Discussion

There are fewer studies on the spatial and temporal characteristics of the NPP in
Mentougou. The NPP results of the MODIS–NPP data used in the CASA model are
basically consistent with the findings of this article [34,35]. Considering the NPP results
in Beijing, some studies also provide the changing trend of the NPP, the results of which
are consistent with those found in this article [36,37], which means that the NPP in the
Mentougou District displayed a trend of fluctuating rise from 2013 to 2020. Limited by the
Landsat 8 data, in this article, we only analyzed the NPP spatiotemporal characteristics
of high-precision remote sensing images since 2013. Whether the ecological restoration
project of the coal mine will lead to a significant impact of NPP on coal production, surface
subsidence and restoration projects remains to be further studied.

Moreover, an increasing number of studies are interested in the lag between climatic
elements and the NPP [38,39]. Therefore, in further research, we will select the CASA
model and combine the data from multiple sources to compare the long-term period NPP
in coal mining and analyze the time lag between the NPP and meteorological factors.

When studying the effect of climatic factors (temperature, precipitation, and solar
radiation) on the NPP, most studies have proved that the NPP changes are crucially im-
pacted by precipitation [40,41], which is consistent with this article. Some studies, however,
revealed that the NPP changes are affected by precipitation and temperature [42,43]. The
reasons for such different results are the various databases or different research cycles
considered in these studies.
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5. Conclusions

Based on the meteorological data of a mining area and the remote sensing images of
land use types, we used the improved CASA model to calculate the net primary productiv-
ity (NPP) of vegetation in the Datai Mine study area, the control area, and the Mentougou
District from 2013 to 2021. The spatial variation in the NPP was analyzed through a hierar-
chical process, and the relationship between the NPP on meteorological factors and mining
area factors was discussed.

(1) We analyzed the data and found that the vegetation carbon sequestration capacity
in the research area of the Datai Mine changed at a consistent and gradual annual
rate; in addition, it was revealed that the NPP of vegetation in the Datai Mine study
area covered an annual cycle and gradually increased first, then rapidly increased,
reaching a peak value, and then sharply to slowly decreased.

(2) The results showed that the changing trend of the NPP value of vegetation in the study
area and the comparison area of the Datai Mine was consistent, which confirmed
that under the low-intensity mining conditions of the Datai Mine, mining operations
had no significant impact on the carbon sequestration of vegetation. This conclusion
is applicable to low-intensity mining areas with a similar topographic environment,
vegetation characteristics, and climatic conditions.

(3) Based on the observation data of the Datai Meteorological Station, the fitting rela-
tionship and variation gradient of the temperature, precipitation, solar radiation,
and vegetation NPP in the study area were analyzed and obtained. When the tem-
perature was 17.6 ◦C, the precipitation was 101.08 mm, and the solar radiation was
509.8 MJ/m2, the vegetation NPP reached its maximum value. Further studies are
needed to analyze the comprehensive impact of these multiple factors on the NPP.

(4) Among the meteorological factors that affect the change of NPP in Mentougou area,
the correlation with NPP is from large to small for precipitation, temperature and
solar radiation. Precipitation was the main meteorological factor that affected the
change in the NPP.

(5) There are still some deficiencies in this study that need to be improved. First, when
acquiring the data from the meteorological station, a few meteorological observation
stations had missing data for some daily periods. Therefore, we used the data from
the adjacent meteorological stations to supplement (such as the daily temperature
or precipitation). Second, the factors influencing the vegetation NPP are not only
environmental factors but also vegetation characteristics and human activities, which
affect the changes in the vegetation NPP. Additionally, further studies should also
combine the coal output, ground surface settlement, and some mining elements in
their analysis. Moreover, the fluctuation of NPP in coal mines is affected by climate
change, the results of recovery projects and mining factors. Meanwhile, the process of
restoration projects and the influence of mining factors have no obvious regularity.
Thus, combined with climatic factors, it is hard to distinguish which area is dominated
by these different impact factors. In future research, we will build an integrated
computational model of the coal mining NPP based on meteorological and mining
elements to analyze the impact of these various factors on the NPP.
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