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Abstract: Carbon fiber-reinforced polymer (CFRP) has been used widely in the strengthening of
steel structures. Steel/CFRP systems being subjected to elevated temperatures is realistic in summer
climate events in many countries, which leads to the degradation of the bond performance between
CFRP and steel. Therefore, it is critical to study the bond behavior of the CFRP/steel system under
elevated temperature. This paper investigates the mechanical performance of CFRP/steel adhesively
bonded double strap joints under different temperatures. Thirty CFRP/steel double strap joints were
tested to failure under temperatures between 10 ◦C and 90 ◦C. It was found that the joint failure
mode changed from adherend failure to debonding failure as the temperature was approaching glass
transition temperatures. In addition, the ultimate load and joint stiffness decreased significantly
under temperatures near to and higher than glass transition temperatures. Based on the experimental
results, a model is proposed to predict the bond stress of the CFRP/steel under different temperatures.

Keywords: CFRP/steel composites; bond behavior; elevated temperatures; bond stress

1. Introduction

The use of externally bonded fiber-reinforced polymer (FRP) composites in strength-
ening and retrofitting of existing steel structures has received considerable attention due
to their excellent properties, such as high strength-to-weight ratio, excellent durability
performance, and flexibility in adapting to field configurations [1]. Existing research has
shown that the bond behavior between FRP and steel is critical for the effectiveness of
strengthening [2–6].

Steel/FRP systems are inevitably subjected to elevated temperatures in summer cli-
mate events in many countries [7]. The adhesive generally has glass transition temperatures
(Tg) of between 40 ◦C and 70 ◦C [8]. The glass transition displays “softening” of the ad-
hesive as it changes from a glassy to a rubbery state, but this does not occur at a single
temperature, and the stiffness and strength of the adhesive may decrease considerably
before Tg is reached [9,10]. Thus, for a steel structure strengthened with FRP composites
under elevated temperatures, not only do the FRP composites in such structures degrade
at elevated temperatures, but also the adhesive layer between FRP composites and steel is
at risk.

Research on the elevated temperature performance of FRP strengthening has been
conducted at the “hot” temperatures that occur during fire [11] and at “warm” tempera-
tures [12–19]. Al-Shawaf et al. [7] reported that when the temperature exceeds 60 ◦C, the
residual strength of adhesively bonded steel/CFRP double strap joints was about 22% of
their initial strength measured under ambient conditions. Nguyen et al. [20] investigated
the mechanical performance of steel/CFRP adhesively bonded double strap joints at el-
evated temperatures around the glass transition temperature (Tg, 42 ◦C) of the adhesive.
The results showed that the joint failure mode changed from adherend failure to debonding
failure as the temperature was approaching Tg. In addition, the ultimate load and joint
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stiffness decreased significantly at temperatures near to and higher than Tg. It can be
concluded that the mechanical performance of steel/CFRP double strap joints subjected to
elevated temperatures may be largely dominated by that of the adhesive. Chandrathilaka
et al. [21] tested eighty-two CFRP/steel double strap joints under elevated temperature.
The test results showed a similar trend of reductions in the bond strength, Poisson’s ratio,
and elastic modulus of CFRP/steel joints with exposure to elevated temperatures. Reduc-
tions of more than 50% in the Poisson’s ratio, elastic modulus, and bond strength were
noted when the bond line temperature exceeded Tg + 15 ◦C.

In this paper, steel/CFRP double strap joints are examined under temperatures be-
tween 10 ◦C and 90 ◦C. The effective bond length at different temperatures was identified
by testing specimens with varying bond lengths. The temperature dependence of joint
stiffness and strength was evaluated by comparing those properties with the values at room
temperature. Based on kinetic modeling of the glass transition of the structural adhesive,
its temperature-dependent mechanical properties are described. By incorporating them
into the Hart-Smith model, a mechanism-based model was developed to characterize the
mechanical behavior of steel/CFRP joints subjected to elevated temperatures, including
the effective bond length, joint strength, and stiffness. The modeling results compare well
with the experimental data presented in this paper. In addition, this paper also examines
the change of failure mode for steel/CFRP joints at elevated temperatures.

2. Experimental Program

There were two series of tests in the experimental program, namely, material tests and
CFRP/steel double strap joint tests. Tensile tests were conducted to explore the effects of
temperature on the material properties of CFRP plates and epoxy adhesive. CFRP/steel
double strap joint tests were carried out to study the interface bond behavior between
CFRP plates and steel plates under elevated temperatures. Both tests were conducted under
elevated temperatures from 10 ◦C to 90 ◦C.

2.1. Material Properties

Three materials were involved in the test program: carbon fiber-reinforced polymer
(CFRP) plates, epoxy adhesive, and steel plates. Pultruded unidirectional CFRP plates
with a nominal thickness of 1.20 mm were used in the present study. The tensile strength
and tensile modulus were 2540 MPa and 170 GPa, respectively, measured according to
Chinese code GB/T 3354-1999 [22]. The two-part epoxy adhesive had a nominal tensile
strength of 42 MPa and a tensile modulus of 4900 MPa according to the manufacturer; the
adhesive shear modulus and the shear strength were 1000 MPa and 25 MPa, respectively,
also provided by the manufacturer. The glass transition temperature was found to be 45 ◦C
for the same adhesive used in [23]. The steel plate had a thickness of 4.5 mm. The steel
elastic modulus was 205 GPa, and the yield stress and ultimate stress were determined as
281 MPa and 422 MPa, respectively, from standard tension coupon tests in accordance with
Chinese code GB/T 228-2002 [24].

2.2. Material Testing of CFRP Plates under Elevated Temperatures

A schematic view of the CFRP plates coupon adopted in this study is shown in
Figure 1. A total of 30 specimens were fabricated, as shown in Figure 2a, and cured at
ambient temperature for 2 weeks. Aluminum tabs were glued at both ends of the specimen
to reduce the stress concentration and distribute the force uniformly to the CFRP specimens.
These tabs were sand-blasted and cleaned with acetone, a thin layer of adhesive was applied
on their surface, and then they were attached at both ends of the CFRP plates on both sides.
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Figure 2. Photographs of the coupons: (a) CFRP plate coupon; (b) location of strain gauge. 

Strain gauges with a working temperature of −30~120 °C were mounted at the middle of 

the CFRP plate specimens to measure the strain, as shown in Figure 2b. These specimens were 

divided into five equal groups and tested under different temperatures (see Table 1). 
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Specimen 

ID 

Number of  

Specimens 

Temperature  

(°C) 

Ultimate 

Load (kN) 

Tensile Strength  

(MPa) 

Elastic 

Modulus 

(GPa) 

Elongation 

(%) 

C-T10 6 10 49.48 2748 177.24 1.55 

C-T30 6 30 49.57 2754 177.45 1.54 

C-T50 6 50 46.76 2597 176.36 1.47 

C-T70 6 70 45.28 2515 176.03 1.43 

C-T90 6 90 45.02 2501 175.65 1.41 
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saturation of the entire specimen was maintained at the specified target temperature, the 

temperature chamber was fixed to the testing machine. The specimen went through the 

chamber and was then clamped (see Figure 3b). After a thermal soaking process of 20 min, 

the specimens were tested under tension to failure at a constant displacement rate of 2 

mm/min using a 300 kN universal hydraulic testing machine. 
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Figure 1. Schematic view of CFRP plate coupon: (a) front view; (b) side view (unit: mm).
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Figure 2. Photographs of the coupons: (a) CFRP plate coupon; (b) location of strain gauge.

Strain gauges with a working temperature of −30~120 ◦C were mounted at the middle
of the CFRP plate specimens to measure the strain, as shown in Figure 2b. These specimens
were divided into five equal groups and tested under different temperatures (see Table 1).

Table 1. Details of the CFRP plates and the test results.

Specimen
ID

Number of
Specimens

Temperature
(◦C)

Ultimate Load
(kN)

Tensile
Strength

(MPa)

Elastic
Modulus

(GPa)
Elongation (%)

C-T10 6 10 49.48 2748 177.24 1.55
C-T30 6 30 49.57 2754 177.45 1.54
C-T50 6 50 46.76 2597 176.36 1.47
C-T70 6 70 45.28 2515 176.03 1.43
C-T90 6 90 45.02 2501 175.65 1.41

Note: The specimens were named C(CFRP)-working temperature.

The specimens were tested in a temperature chamber (see Figure 3a). To ensure the
saturation of the entire specimen was maintained at the specified target temperature, the
temperature chamber was fixed to the testing machine. The specimen went through the
chamber and was then clamped (see Figure 3b). After a thermal soaking process of 20 min,
the specimens were tested under tension to failure at a constant displacement rate of
2 mm/min using a 300 kN universal hydraulic testing machine.
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2.3. Material Testing of Epoxy Adhesive under Elevated Temperatures

A schematic view of the epoxy adhesive adopted in this study is shown in Figure 4,
where the geometry is defined according to GB/T 2567-2008 [25]. All adhesive coupons
used for tensile tests were made by pouring a homogeneous mixture into plexiglass molds
and curing for 1 week at ambient temperature, as shown in Figure 5. These coupons were
divided into five groups and tested under different temperatures (see Table 2).
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Table 2. Details of the adhesive coupons and the test results.

Specimen
ID

Number of
Specimens

Temperature
(◦C)

Ultimate Load
(N)

Tensile Strength
(MPa)

Elastic Modulus
(MPa)

Elongation
(%)

A-T10 6 10 1354 33.85 4788 2.4
A-T30 6 30 1669 41.72 5052 5.2
A-T50 6 50 474 11.85 — 26.6
A-T70 6 70 89 2.23 — 38.4
A-T90 6 90 38 0.95 — 43.3

Note: The specimens were named A(adhesive)-working temperature.

2.4. Bond Testing of CFRP/Steel Double Strap Joint under Elevated Temperatures

Figure 6 shows the details of the CFRP/steel double strap joint, which includes the
internal steel plate, the external CFRP plate, and the adhesive layer in between. The
surfaces of the steel plates were sand-blasted and cleaned with acetone to remove grease,
oil, and rust. Each steel/CFRP double strap joint was fabricated from two steel plates
joined together by CFRP plates. The joints were formed using a wet lay-up method with
an adhesive layer thickness ranging from 0.5 to 0.6 mm. All coupons were cured for two
weeks under room temperature. A total of 30 coupons were divided into five groups and
tested with exposure to 10, 30, 50, 70, and 90 ◦C, as shown in Table 3.
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Table 3. Details of CFRP/steel double strap joint and test results.

Specimen
ID

Temperature
(◦C)

Ultimate Load (kN) Average
Value
(kN)1 2 3 4 5 6

C/S-T10 10 24.0 23.2 22.9 15.9 25.2 22.7 22.35
C/S-T30 30 24.3 42.5 34.6 40.6 38.6 34.7 35.92
C/S-T50 50 20.5 15.7 24.9 16.4 10.1 15.2 17.13
C/S-T70 70 10.2 11. 9.8 10.1 6.8 8.5 9.58
C/S-T90 90 2.4 3.8 4.7 6.2 3.0 5.5 4.28

Note: The specimens were named C/S (CFRP/steel double strap joint)-working temperature.

Strain gauges with a working temperature of −30~120 ◦C were mounted on the top
surface of the CFRP plates, as shown in Figure 7. The strain gauges at the extreme locations
were bonded at 5 mm from the CFRP loaded end and 15 mm from the CFRP free end.
The remaining intermediate gauges were spaced 20 mm apart. A data logger was used
to collect the axial strains developed throughout the CFRP plates during the test. As
shown in Figure 8, a brass rod was adopted due to its low linear expansion coefficient
(1.65 × 10−5/◦C), and the difference between the displacement of the CFRP at the loaded
end and the displacement of the steel plate at the point where the brass rod was fixed was
calculated. Then, the slip between the loaded end of the CFRP and the steel plates was
determined by subtracting the deformation of the steel plates from the measured values.
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3. Experimental Results and Discussion
3.1. Effect of Elevated Temperatures on the Properties of CFRP Plates

The test observations and the failure mode changed with different temperatures. For
the coupons at 10 ◦C and 30 ◦C, several sounds due to the rupture of carbon fibers could
be heard when the coupons were very close to failure. When the temperature was 50 ◦C,
more sounds could be heard before failure. As for the coupons exposed to 70 ◦C and 90 ◦C,
sounds could be heard when the load reached 80~85% of the ultimate load.

Figure 9 shows the failure modes of the CFRP plate coupons at different temperatures.
From Figure 9a,b, it can be seen that the CFRP plates at 10 ◦C and 30 ◦C ruptured with
several hanks. When the temperatures were 70 ◦C and 90 ◦C, the CFRP plates seemed
to be separated into a number of CFRP bundles and ruptured explosively, as shown in
Figure 9d,e, respectively. These different phenomena can be explained as follows: With
the increase in temperature, the epoxy adhesive gradually softened and the shear strength
decreased. Consequently, the epoxy adhesive gradually failed to transfer the load between
the carbon fibers, and the carbon fibers were stretched until they ruptured and separated.
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Figure 9. Failure mode of CFRP plate under different temperatures: (a) C-T10; (b) C-T30; (c) C-T50;
(d) C-T70; (e) C-T90.

The test results of CFRP plate coupons are summarized in Table 1. Figure 10 shows the
effect of elevated temperature on the properties of CFRP plates in terms of tensile strength.
When the temperature increased from 10 ◦C to 30 ◦C, the tensile strength and modulus had



Sustainability 2022, 14, 15537 7 of 14

no change. However, compared with the tensile strength at 30 ◦C, the ultimate strength of
the coupons at 50 ◦C, 70 ◦C, and 90 ◦C decreased by 5.50%, 8.68%, and 9.01%, respectively.
The modulus of the CFRP plates experienced a very slight decrease when the temperature
increased from 10 ◦C to 90 ◦C.
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3.2. Effect of Elevated Temperatures on the Properties of Epoxy Adhesive

The epoxy adhesive coupons under different temperatures all ruptured in the middle
range, as shown in Figure 11. The difference was that the coupons at higher temperatures
experienced a much larger deformation due to softening.
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Figure 11. Failure mode of the epoxy adhesive coupon under tension.

The test results are summarized in Table 2. When the temperature exceeded 50 ◦C, the
modulus of the epoxy adhesive was not measured due to softening and creep. The effects
of temperature on the tensile strength and elongation of the epoxy adhesive are shown in
Figure 12.
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Figure 12. The effect of elevated temperature on the properties of epoxy adhesive: (a) tensile strength;
(b) elongation.

When the temperature increased from 10 ◦C to 30 ◦C, there was an obvious increase in
the tensile strength. However, with a further increase in temperature, the tensile strength
had a sharp decrease, being close to 0 MPa at 90 ◦C. As for the elongation, there was a slight
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increase when the temperature was below 30 ◦C, beyond which the elongation increased
significantly. This indicated that the glass transition temperature of the epoxy adhesive
was lower than 50 ◦C.

3.3. Effect of Elevated Temperatures on the Properties of CFRP/Steel Double Strap Joint
3.3.1. Failure Mode

The failure mode of the steel/CFRP double strap joints was categorized into six modes:
(a) steel and adhesive interface debonding, (b) adhesive layer failure (cohesive failure), (c)
CFRP and adhesive interface debonding, (d) CFRP delamination, (e) CFRP tensile rupture,
and (f) steel yielding. Failure modes are shown in Figure 13. At 10 ◦C, the CFRP plate
was entirely separated from the steel plate and there were small amounts of carbon fibers
attached to the steel surface, as seen in Figure 13a, i.e., joints failed mainly in mode (c).
When temperature increased to 30 ◦C, the failure of these joints can be defined as mode
(d)—CFRP delamination, as shown in Figure 13b. When temperature increased to 50 ◦C,
the joints failed in mode (b), with part of the adhesive attached to the steel plate and part
of the adhesive attached to the CFRP plate, as shown in Figure 13c. For the joints at 70 ◦C
and 90 ◦C, they failed due to debonding between the steel and adhesive, as shown in
Figure 13d,e.
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T10-5; (b) C/S–T30-2; (c) C/S–T50-2; (d) C/S–T70-5; (e) C/S–T90-6.

3.3.2. Joint Stiffness

Figure 14 shows the relationship between tensile load and joint displacement for the
specimens at different temperatures. Apparently, these curves include two linear stages,
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and the slope of the first stage is much steeper than that of the second one, after which the
load suddenly reduces to zero. In Figure 14, the slope of the curves is found to increase
slightly when the temperature increases from 10 ◦C to 30 ◦C, and then decrease when the
temperature increases from 30 ◦C to 50 ◦C and higher values. This indicates that joint
stiffness increased first and then decreased with temperature. This stiffness reduction was
caused by the stiffness degradation of the adhesive layer, being the weakest link under
temperature effects. The values of slip at the ultimate load increase with the increase
in temperature.
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The stiffness of each joint at different temperatures was normalized to that at 30 ◦C, i.e.,
dividing the slope of the load displacement curve at different temperatures by that at 30 ◦C,
as shown in Figure 15. A much faster decrease can be observed when the temperature
increases from 30 ◦C to 50 ◦C. The joint stiffness is reduced by 57% when the temperature
increases from 30 ◦C to 50 ◦C. This is because when the temperature is around or above
the glass transition, the shear modulus and the elastic modulus both degrade with the
same trend. The degradation of stiffness shown in Figure 15 is mainly caused by the shear
deformation of the adhesive layer.
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The ultimate tensile load of the joint under different temperatures is shown in Figure 16,
in which the values are given as an average load of the six specimens in each group.
Apparently, the ultimate tensile load increased first and then decreased sharply with the
increase in temperature. The CFRP/steel double strap joints at 30 ◦C obtained the highest
value (36 kN). When the temperature increased to 50 ◦C, the ultimate load experienced
a 52.1% reduction compared with that at 30 ◦C. At 70 ◦C and 90 ◦C, the ultimate load
dropped by 71% and 88%, respectively.
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3.3.3. Strain Distribution

The strain distribution of the CFRP plate at different load levels is presented in
Figure 17. The strain of the CFRP plate decreased with the increase in distance from the
loaded end. With the increase in tensile load, the load was gradually transferred towards
the free end. For the specimens at 10 and 30 ◦C, the strains at the ultimate load were still
zero; this means that the effective bond length was less than 115 mm and more than 85 mm.
However, for the specimens at 70 and 90 ◦C, the strains at the ultimate load were higher
than zero, which indicates that the effective bond length was more than 115 mm. Thus, it
can be concluded that the effective bond length increased with temperature. In addition,
the strain in the CFRP plate decreased significantly with elevated temperature.
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Figure 17. CFRP strain distribution at different loads: (a) C/S–T10-2; (b) C/S–T30-3; (c) C/S–T50-4;
(d) C/S–T70-1; (e) C/S–T90-3.

3.3.4. Bond–Slip Curves

To predict the bond stress at any point along the CFRP plate, the applied tensile load
and the slip at the loaded end are used to calculate the bond stress–slip by Dai et al. [26].
According to [26], at any location of a bond interface under the boundary condition of zero
free end slip, there exists a unique τ–s relationship and a unique relationship between the
strain of FRP sheets and interfacial slip. The relationship between the strain in the CFRP
plate at any point and the slip at this point can be expressed as follows.

ε = f (s) (1)

where ε is the strain of the CFRP plate at any point and s is the slip between CFRP plate
and steel plate at the corresponding point.

The first derivation with respect to x of Equation (1) is

dε

dx
=

d f (s)
ds

· ds
dx

=
d f (s)

ds
· f (s) (2)

For FRP–steel interfaces, the interfacial bond stress at any point is

τ = E f t f
dε

dx
= E f t f ·

d f (s)
ds

· f (s) (3)

where τ is the bond stress, and Ef and tf are the elastic modulus and the thickness of the
CFRP plate, respectively.

Figure 18 shows relationships between the strain of the CFRP plate and the interfacial
slip at the loaded end of the CFRP plate–steel plate concrete interface. It is found that
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the exponential expression (see Equation (4)) can fit the experimental results very well, as
shown in Figure 18.

ε = f (s) = A(1 − exp(1 − Bs)) (4)

where A and B are coefficients based on the experimental results, as listed in Table 4.
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Table 4. Coefficients A and B.

Specimen ID Temperature (◦C) A B (mm−1) R2

C/S-T10 10 0.002027 12.589 0.988
C/S-T30 30 0.002784 10.886 0.951
C/S-T50 50 0.001411 8.849 0.984
C/S-T70 70 0.000853 5.479 0.982
C/S-T90 90 0.000690 4.589 0.969

The bond stress–slip relationship can be obtained as follows:

τT = A2
T BTE f t f e(−BTs)(1−e−BT s) (5)

The relationship between the values of A and B and the temperature is shown in
Figure 19 and can be expressed as follows.

A2
T

A2
30

= eK(T−30) (6)

BT = −0.107T + 13.83 (7)

where τT is the bond stress considering the elevated temperatures, AT and BT are the coeffi-
cients considering the elevated temperatures based on the experimental results, K = 0.0317,
if 10 ≤ T < 30; K = 0.0643, if 30 ≤ T ≤ 90.
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4. Conclusions

This paper presents an experimental study on bonding properties between CFRP
plates and steel plates to assess the effects of temperature on the bond behavior, including
bond strength, stiffness, FRP strain distribution, and failure modes. Based on these results,
the following conclusions can be drawn:

(1) Elevated temperatures had a slight effect on the mechanical performance of CFRP
plates. The tensile strength had no change from 10 to 30 ◦C, while it decreased slightly
from 30 to 90 ◦C. The modulus of the CFRP plates experienced a very slight decrease
when the temperature increased from 10 to 90 ◦C.

(2) The mechanical properties of epoxy adhesive were sensitive to temperature. The
tensile strength increased from 10 to 30 ◦C, but had a significant decrease from 30 to
90 ◦C, while the elongation increased when the temperature was below 30 ◦C, beyond
which the elongation increased significantly.

(3) Elevated temperatures had a pronounced effect on the mechanical performance of
CFRP/steel double strap joints. Both the bond strength and stiffness increased from
10 to 30 ◦C, while they decreased from 30 to 90 ◦C.

(4) The specimens under 10 ◦C showed an adhesive/steel interface debonding, whereas
most specimens under 30 and 50 ◦C showed a mixed failure mode. When the tem-
perature increased from 70 to 90 ◦C, the failure mode changed to adhesive/steel
interface debonding.

(5) The FRP strain distributions in the overlapping area at different levels of load were
measured. The effective bond length increased with temperature. In addition, the
strains in the CFRP plate decreased significantly with elevated temperature.

(6) A predictive formula considering elevated temperatures is proposed based on the test
results, and the predictions agree well with the test results.
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