
Citation: Adewuyi, O.B.; Folly, K.A.;

Oyedokun, D.T.O.; Ogunwole, E.I.

Power System Voltage Stability

Margin Estimation Using Adaptive

Neuro-Fuzzy Inference System

Enhanced with Particle Swarm

Optimization. Sustainability 2022, 14,

15448. https://doi.org/10.3390/

su142215448

Academic Editor: Nicu Bizon

Received: 3 October 2022

Accepted: 18 November 2022

Published: 21 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Power System Voltage Stability Margin Estimation Using
Adaptive Neuro-Fuzzy Inference System Enhanced with
Particle Swarm Optimization
Oludamilare Bode Adewuyi 1,* , Komla A. Folly 1 , David T. O. Oyedokun 1

and Emmanuel Idowu Ogunwole 2

1 Department of Electrical Engineering, University of Cape Town, Cape Town 7701, South Africa
2 Department of Electrical, Electronic and Computer Engineering, Cape Peninsula University of Technology,

Bellville Campus, Cape Town 7535, South Africa
* Correspondence: adewuyiobode@gmail.com

Abstract: In the current era of e-mobility and for the planning of sustainable grid infrastructures,
developing new efficient tools for real-time grid performance monitoring is essential. Thus, this pa-
per presents the prediction of the voltage stability margin (VSM) of power systems by the critical
boundary index (CBI) approach using the machine learning technique. Prediction models are based
on an adaptive neuro-fuzzy inference system (ANFIS) and its enhanced model with particle swarm
optimization (PSO). Standalone ANFIS and PSO-ANFIS models are implemented using the fuzzy
‘c-means’ clustering method (FCM) to predict the expected values of CBI as a veritable tool for measur-
ing the VSM of power systems under different loading conditions. Six vital power system parameters,
including the transmission line and bus parameters, the power injection, and the system voltage de-
rived from load flow analysis, are used as the ANFIS model implementation input. The performances
of the two ANFIS models on the standard IEEE 30-bus and the Nigerian 28-bus systems are evaluated
using error and regression analysis metrics. The performance metrics are the root mean square error
(RMSE), mean absolute percentage error (MAPE), and Pearson correlation coefficient (R) analyses.
For the IEEE 30-bus system, RMSE is estimated to be 0.5833 for standalone ANFIS and 0.1795 for
PSO-ANFIS; MAPE is estimated to be 13.6002% for ANFIS and 5.5876% for PSO-ANFIS; and R is
estimated to be 0.9518 and 0.9829 for ANFIS and PSO-ANFIS, respectively. For the NIGERIAN 28-bus
system, the RMSE values for ANFIS and PSO-ANFIS are 5.5024 and 2.3247, respectively; MAPE is
19.9504% and 8.1705% for both ANFIS and PSO-ANFIS variants, respectively, and the R is estimated
to be 0.9277 for ANFIS and 0.9519 for ANFIS-PSO, respectively. Thus, the PSO-ANFIS model shows a
superior performance for both test cases, as indicated by the percentage reduction in prediction error,
although at the cost of a higher simulation time.

Keywords: power system stability; voltage stability margin; critical boundary index; adaptive
neuro-fuzzy inference system; fuzzy clustering; particle swarm optimization

1. Introduction

Challenges of voltage instability are majorly responsible for blackouts and techno-
economic depletions in the power systems of many nations [1]. Thus, a vital yardstick for
evaluating the viability of a power system network (grid infrastructures) is the amount
of available voltage stability margin (VSM). VSM is often considered to measure how
long a particular power system can operate before suffering voltage instability in the face
of continuously changing load demand, and generation dynamics [2,3]. Theoretically,
it can be estimated as the distance between a current operating point and the nearest
point of voltage collapse as the real and reactive loading is continuously increased [4].
Generally, the capacity of existing grid infrastructures to accommodate increased load and
sometimes increased generation, especially from renewable energy sources, is very limited.
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However, with the load flow analysis, the VSM of a grid can be sufficiently monitored
towards setting up appropriate control for secure operation. Remarkably, significant efforts
were devoted to power system security analysis over the years [5,6]. However, most
approaches for investigating voltage instabilities in power systems are based on static
analysis using the power transfer concept and load flow calculations. Consequently, several
voltage stability indices (VSIs) were available in works of literature as products of rigorous
research activities for monitoring power system security [7,8]. However, most of these tools,
i.e., VSIs, have limited performance capacity for accuracy and precision regarding real
networks and large/complex power systems. This underperformance of conventional VSIs
is attributed to the fact that these tools are derived approximately considering few power
system parameters [4]. Moreover, a vital consideration for the real-time implementation
of the conventional VSI procedures, which is the computation time, is considerably large,
especially for complex networks [9]. Thus, it is necessary to research the development of
better performing intelligent-based techniques for effectively managing voltage stability
issues in power systems.

Due to the advent of artificial intelligence (AI), intelligent predictions of future events
are taking the prominent stage for critical infrastructure planning and operations in recent
time [10]. Different AI-based mechanisms were successfully implemented in various ar-
eas of intelligent infrastructure management, such as transportation, water supply, food
processing, chemical processing, building design and construction, etc. Common AI-
based prediction models include artificial intelligence-based algorithms such as regression
analysis, artificial neural networks (ANNs), support vector machines, K-means, Bayesian
methods, fuzzy logic, expert systems, etc., [11]. Power system networks are expensive,
complex to operate, and significantly critical public infrastructures, and voltage stability
monitoring is a significant aspect of its reliable operation and protection [12]. Several
predictive analytics tools have been applied in the literature for solving critical power
systems problems, such as load flow analysis, contingency planning, transmission conges-
tion management, grid reinforcement planning, etc. [13–15]. Thus, one of the imminent
prospects for the effective operation of grid infrastructures is the intelligent monitoring of
the voltage stability condition of the power systems under a continuously changing loading
condition. Thus, in this study, the intelligent monitoring of VSM for the effective control of
voltage stability conditions is viewed as an essential tool for real-life and complex power
system infrastructure management. Thus, hybridized ANFIS-based intelligent predictive
models are implemented for measuring the VSM of power systems based on the concept of
a critical boundary index (CBI). Credible information on vital power system parameters
for ANFIS training and validation is determined from the line and bus parameters and
the load flow analysis solution. The developed ANFIS and PSO-ANFIS models for VSM
prediction are tested on the standard IEEE 30-bus and the Nigerian 28-bus networks. Their
relative performances are evaluated and compared using adequate statistical analysis.

This work aimed to establish the idea of the critical boundary index (CBI) as a veritable
tool for the direct estimation of VSM and using machine learning techniques (ANFIS and
its hybrid with PSO) to verify CBI’s capacity for different loading conditions. Specifically,
this work adopted ANFIS and its hybridization with PSO to monitor the power systems’
adequate voltage stability margin under different loading conditions. Generally, the first
step to voltage collapse mitigation is to achieve efficient estimations of the power system’s
closeness to the voltage stability limit; and this can be achieved using veritable machine
learning approaches. However, the main challenge in implementing machine learning
algorithms is the optimal tuning of the training parameters; thus, the PSO algorithm
is combined with the ANFIS in this study to improve the training performance of the
predictive analysis. The remaining contents of this paper are structured as follows: Section 2
gives an overview of the application of AI and machine learning to voltage stability analysis;
Section 3 discusses the conceptualization of the mathematical models and methods adopted
for this study. The simulation results are presented and discussed in Section 4, and the
conclusion is presented in Section 5.
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2. Artificial Intelligence/Machine Learning Approaches to Voltage Stability Analysis

Voltage stability problems are highly dynamic; however, the evaluation of voltage sta-
bility conditions of power systems can be approximated using steady-state analysis with dif-
ferent voltage stability indices (VSIs). Some of the notable VSIs are as; P–V and Q–V curves,
line stability index (Lmn), fast voltage stability index (FVSI), voltage collapse prediction
index (VCPI), novel line stability index (NLSI), line stability factor (LQP), L-index, etc., [7].
However, steady-state VSIs are approximated and relatively time-consuming; thus, they are
often unreliable for the accurate and precise determination of the voltage stability condition
of power systems [4]. One of the prominent attributes of AI models is the ability to work
through data and establish a precise pattern for producing reliable output information
within the shortest possible time. Thus, a number of research studies have applied AI
vis-à-vis machine learning and deep learning techniques for voltage stability analysis,
and for the efficient implementation of AI-based voltage stability analysis, the structure of
the input data matters significantly. Some existing works on machine learning applications
to voltage stability analysis are discussed below.

2.1. Artificial Neural Network (ANN) for Voltage Stability Margin Estimation

In reference [16], a multilayer feedforward ANN model for VSM estimation was
developed using the error backpropagation learning algorithm. The power system loading
conditions and the corresponding voltage stability margin were correlated using sensitivity
for performance analysis. ANN models are deployed for verifying the voltage stability
condition with different VSIs using the pre-estimated results from Newton Rapson load
flow analysis for training an ANN model in [17,18]. In [19], a three-layer feedforward
neural network was trained with calculated VSI values for detecting applicable VSM
limits for power systems susceptible to voltage collapse. Online ANN models in real-time
are developed for voltage stability margin estimation, adopting the data augmentation
method and supervised learning based on node voltage magnitudes, and the phase angle
information was presented [20–23]. For effective implementation, especially for complex
multi-area power networks, handling the training data is very significant. Thus, the authors
in [24] proposed an ANN model for VSI estimation that was implemented based on network
data reduction and exploring the adaptive training capabilities of ANNs. The authors
in [25] discussed the real-time voltage stability monitoring technique that considers the VSM
as the nearest power system loading distance before the occurrence of voltage collapse.
Short-term voltage stability assessment using the machine learning and deep learning
techniques requires a sufficient amount of the dataset. The authors in [26] adopted a novel
data technique referred to as the conditional least squares generative adversarial network
(LSGAN)-based data augmentation to artificially generate a sufficient amount of required
data set for the implementation of the predictive analytic model. The approach was found
to be efficient for proliferating the representative and diversified training datasets while
preserving the data label.

Due to the complexities of the considered procedure, which involves a continuously
loading condition, researchers often deploy the orthogonalization process based on sen-
sitivity analysis for the input data set to achieve adequate feature reduction. Another
notable adaptation of AI vis-à-vis ANN and other hybridization of ML and deep learning
techniques for voltage stability analysis are reported in the following literature: PSO-
based recurrent neural network (PSO-RNN) [27], Salp swarm algorithm-tuned ANN (SSA-
ANN) [28], ANN and Ward-type equivalent approach [29], self-organizing Kohonen-neural
network (SKNN) [30], parallel self-organizing hierarchical neural network with static VAR
compensator (SHNN-SVC) [31], self-organizing feature map with radial basis function
(SOFM-RBF) [32], extreme learning machine (ELM) [33,34], hybrid kernel extreme learning
machine approach [35], deep recurrent neural network [36], genetic algorithm-based sup-
port vector machine (GA-SVM) [37], weighted least square support vector machine (WLS-
SVM) [38,39], particle swarm optimization-based support vector machine (PSO-SVM) [40],
dragonfly optimization algorithm and support vector regression (DFO–SVR) [41], random
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forest algorithms [42–45], deep learning, and convolution neural networks [26,46,47] and
more. The authors in [48] developed a deep learning model for short-term voltage stability
(STVS) assessment in real-time using a long short-term memory (LSTM) model based on
the understanding of the latent temporal dependencies of power systems’ behavior on
the post-disturbance system dynamics. The authors deployed a semi-supervised cluster
algorithm for label classification for different STVS instances in order to obtain relevant
quantitative criteria.

2.2. Fuzzy Expert System and ANFIS for Voltage Stability Margin Estimation

One of the robust ML techniques rapidly gaining research attention in recent times is
the fuzzy inference system (FIS). The FIS involves adopting the concept of fuzzy logic and
ANN for the nonlinear mapping of a given set of input information to meet the appropriate
output data [49]. A prominent member of the fuzzy expert systems family that was found
to be easily adaptable toward solving several power systems-related issues is the adaptive
neuro-fuzzy inference system (ANFIS) [50]. The adaptive neuro-fuzzy inference system
(ANFIS) is an FL expert system that has been augmented with the learning abilities of
ANN for supervised learning [51]. It has become one of the vital faces of contemporary
data analytics and predictive systems [52]. ANFIS was used several times for predicting
power systems parameters and determining the specific operating conditions of power
systems. The ANFIS model based on association rules and trained by the Harris hawks
optimization algorithm for monitoring effective VSM of a power system was developed
in [53]. The capacity of the proposed hybrid ANFIS model for VSM assessment is explored
in three essential parts: feature selection, model training, and data estimation. In [54],
a fusion of support vector regression (SVR) and ANFIS models was developed for online
voltage stability assessment based on synchronized phasor measurements. The SVR-ANFIS
parameters are optimally tuned using the ant lion optimizer (ALO) to achieve adequate
model training for precise performance.

In [55], the hybridization of the NN using the multi-layer perceptron (MLP) and ANFIS
was proposed, developed, and compared for monitoring the power system’s VSM based on
the power system’s information from phasor measurement units (PMUs). In the proposed
hybrid MLP–MSA and ANFIS–MSA models, the moth swarm algorithm (MSA) algorithm
is adopted to optimize the model parameters. The ANFIS model and its hybridized variants
are famous for their ability to handle information based on linguistics using fuzzy rules,
combined with the capabilities for processing numbers [56]. ANFIS is also known for its
clarity in data exploitation with limited operator involvement and its ability to be trained
faster with significantly lower computational memory requirements [57]. Thus, studies
have been repleted with different real-life engineering applications of ANFIS, ranging from
pollution management and environmental sustainability [58,59] and sport prediction [60]
to petroleum industry analysis [61], transportation [62], the field of medicine [63], social
demography [64], and so on. For power system-related predictive analysis, several ML
techniques including ANFIS and its variants have been significantly deployed for the
prediction of the closeness of power system networks to voltage collapse. However,
as observed from the literature, the input parameters are mostly limited to a few power
system parameters such as voltage magnitudes and their phases [41,53,54] etc. Thus,
the ANFIS-based voltage stability monitoring prediction model implemented in this study
considered six significant power systems analysis parameters and the voltage stability
margin is measured using the critical boundary index per unit of the system’s base power.
Moreover, the potential of the standalone ANFIS model and its hybridization with particle
swarm optimization (PSO) for effective prediction is compared as discussed below.

3. Mathematical Modeling
3.1. Voltage Stability Margin (VSM)

For a simple transmission network model shown in Figure 1, i and k indicate the
transmission network’s sending and receiving end, P and Q are the active power and
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reactive power loading at the buses, whilst V and δ are the bus voltage magnitude and
angle. The line reactance and resistance are r and x, respectively.

Figure 1. A two-node simplified transmission network [9].

Considering the line flow equations, the power transfer equation at the receiving end
of the power system is obtained as given below:

Pk + jQk = (Vk∠δk)

(
Vi∠δi −Vk∠δk

rik + jxik

)∗
(1)

The above Equation (1) is further resolved, as found in [4,65], to yield the simplified
power transfer Equations (2) and (3)) which wholly describes the voltage stability condition
of power systems:

(Pkrik + xikQk) + j(Pkxik − rikQk) = ViVk cos(δi − δk)− jViVk sin(δi − δk)−V2
k (2)

V4
k + 2V2

k

(
Pkrik + Qkxik − 0.5V2

i

)
+
(

P2
k + Q2

k

)(
r2

ik + x2
ik

)
= 0 (3)

For the given power system to be within a stable voltage stability operating limit,
Equation (3) must have unique positive solutions (stable roots). Thus, the power system is
voltage stability-proof when it fulfills the condition described by Equation (4):(

Pkrik + Qkxik − 0.5V2
i

)2
+
(

P2
k + Q2

k

)(
r2

ik + x2
ik

)
≤ 0 (4)

The critical boundary index (CBI) approach for VSM estimation was derived in [4]
as an approach for directly approximating the real and reactive power loading distance
of a power system network to the point of voltage collapse based on the criticality of
the transmission lines. As shown in Figure 2, the stability boundary that describes the
maximum real and reactive load that the power system can bear without the occurrence of
voltage collapse (i.e., the VSM) is ruled by Equation (4). Consequently, CBI is calculated as
the distance between the current operating point, K(Pk, Qk), and the critical point C(X, Y)
located on the stability boundary.

To obtain the solution to the critical operating point C(X, Y), a constrained function
(Equation (5) is formed and solved using the Lagrange multiplier approach. The CBI values,
obtained from Equation (6), give information about the VSM of the power system in per
unit (pu) equivalent of the base MVA power. The susceptibility of the power network
to voltage collapse due to transmission line failure is reflected by a low CBI value which
indicates poor VSM.

F(X, Y, λ) =
[
(X− Pk)

2 + (Y−Qk)
2
] 1

2 − λ

[(
rikX + xikY− 0.5V2

i

)2
+
(

X2 + Y2
)(

r2
ik + x2

ik

)]
(5)



Sustainability 2022, 14, 15448 6 of 17

CBI =
[
(X− Pk)

2 + (Y−Qk)
2
] 1

2 (6)

Figure 2. P–Q curve showing the voltage stability margin as a function to load increase [4].

3.2. ANFIS and PSO-ANFIS Implementation Procedures

The fundamental ANFIS model uses the ’if–then’ probabilistic rules based on either
Mamdani-type or Sugeno-type implementation qualitative decision-making purposes
with no distinctive quantitative information [66]. The Takagi–Sugeno ANFIS model was
implemented in this work using the hybrid rule of learning and backpropagation gradient
descent with least square methods for pre-processing, and the optimal estimation of output
parameters [67]. The five crucial parts of the ANFIS model are fuzzification, multiplication,
normalization, de-fuzzification, and the summation final output by summation, as shown in
Figure 3 [68]. The clustering technique used in implementing the ANFIS models discussed
in this work is the fuzzy ’c-Means’ clustering algorithm using fifteen (15) clusters [69].

Figure 3. The five-layer architecture of the ANFIS model [69].
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The implementation procedure for the ANFIS model is as described: for an ANFIS
model with two inputs (x,y) and one output (f), two ‘if–then’ probabilistic rules are defined
based on the first-order Takagi–Sugeno model given below:

Rule 1: if x is A1 and y is B1, then:

f
1
= p

1
x + q

1
y + r

1

Rule 2: if x is A2 and y is B2, then:

f
2
= p

2
x + q

2
y + r

2

where x and y are the inputs, Ak and Bk are the fuzzy sets, fi are the outputs within a fuzzy
rule, and pk, qk and rk are the consequent parameters as obtained from the training process.
Layer 1 : The fuzzification layer contains square adaptive nodes with fuzzy membership
functions described by a set of inference rules as given below:

O1
k = µAk (x), k = 1, 2 (7)

O1
k = µBk (y), k = 1, 2 (8)

where O1
k is the membership grade of the fuzzy sets, which specifies the degree of agreement

between the input (x,y). The fuzzy sets Ak and Bk, µ are the Gaussian membership functions
that handle the degree of membership and quantify the grade of membership of the element
within the fuzzy set.
Layer 2: At the next layer, i.e., the multiplication/product layer, the input values from
the fuzzification layer are weighted based on the strength of each membership function
and processed according to the pre-specified product rule. The node at this layer is fixed
and non-adaptive; all the input values reaching this node are multiplied to determine the
output at each node. The output is called the firing strength of a fuzzy rule and is estimated
according to the equation below.

O2
k = wk = µAk (x) · µBk (y), k = 1, 2 (9)

Layer 3: This layer also consists of fixed and non-adaptive nodes. At this layer, all the
calculated firing strengths are normalized by calculating the ratio of the firing strength
of each rule to the total firing strength of all rules combined; i.e., the normalized firing
strength of the k-th rule is obtained as shown below.

O3
k = wk =

wk
w1 + w2

; k = 1, 2 (10)

Layer 4: This layer is the defuzzification layer, and it consists of adaptive nodes whose
results are decoded from the set of inference rules used to code the input in layer 2. At this
layer, a nodal first-order polynomial function is obtained by calculating the effect of the k-th
rule on the output of the model; this is achieved by finding the product of the normalized
firing strengths of the rule obtained from the third layer and expressed as a function of the
consequent parameters as illustrated below:

O4
k = wk(p

k
x + q

k
y + r

k
) = wk f

k
, k = 1, 2 (11)

where wk is the normalized firing strengths of the rule, pk, qk and rk are the consequent
parameters, and fi is a function of the output.
Layer 5: the last layer of the ANFIS architecture consists of a single non-adaptive node for
summation. At this node, the final output is obtained by summing up all the incoming
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values from layer 4. After that, all the results of the fuzzy classification processes are
translated into appropriate concrete values.

O5
k = ∑

k
wk f

k
=

∑k wk f
k

∑k wk
(12)

In this study, the performance of the ANFIS model implementation was enhanced
by modifying the parameters and finetuning the prediction process using the particle
swarm optimization (PSO) algorithm. PSO is an evolutionary optimization algorithm
that was found to be effective for diverse optimization problems with various levels of
intricacies [70]. PSO implementations involve two steps which are the estimation of the
modification size/value, which is often called the velocity, and the update of the specific
target function, which is referred to as ‘the position’; in this case, ‘the position’ will be the
ANFIS parameters. The modification of the particle’s velocity is calculated as:

Vk+1
i = w ·Vk

i + c1 · r1 · (Pbestk
i − Xk

i ) + c2 · r2 · (Gbestk − Xk
i ) (13)

The particle’s position is then updated using the calculated particle’s velocity as given:

Xk+1
i = Xk

i + Vk+1
i (14)

where w is the weighting function, c1 and c2, are the acceleration coefficients, r1 and r2,
are random numbers between 0 and 1, Vk

i and Xk
i are the current velocity and position of

particle i at iteration k, Vk+1
i and Xk+1

i are the modified velocity and position of particle i,
Pk

besti and Gk
besti are the personal and global bests of particle i. The dynamically changing

inertia weight or weighting factor is employed because it guides the exploration and
utilization of the search space, and it is expressed as [71].

w = wmax −
(

wmax − wmin
maxit

)
× It (15)

where wmax and wmin are the inertia weight’s final and initial values, respectively,
It and maxit are current and maximum iteration numbers, respectively, whilst wmax and
wmin are taken to be 0.4 and 0.9, respectively. The fitness function of the PSO-ANFIS param-
eters optimization procedure is the minimization of the root mean square error (RMSE)
which is a measure of the deviation between the target values and the predicted outputs.
The simplified illustration for the implementation of the PSO-ANFIS model is shown
in Figure 4 and the PSO implementation parameters, as shown in Table 1, are selected
considering their previous implementation in the literature [68].

Table 1. PSO parameters.

Parameter Values

Population size 50

Number of iterations 200

Cognitive factor, C1 2.0

Social factor, C2 2.0

Inertia weight, w 0.9–0.4
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Figure 4. The simplified illustration for PSO-ANFIS training and testing.

3.3. FIS Model Performance Analysis

Based on the prediction errors, the performance of the developed ANFIS models is
evaluated by the application of following performance-based statistical tools [69]:

• Root mean square error (RMSE):

RMSE =

√
∑N

n=1[yn − ŷn]
2

N
(16)

• Mean absolute percentage error (MAPE):

MAPE =
1
N

N

∑
n=1

∣∣∣∣yn − ŷn

yn

∣∣∣∣× 100% (17)

• Coefficient of correlation (R):

R =

√√√√1−
{

∑N
n=1(yn − ŷn)

2

∑N
i=1(yn − ȳ)2

}
(18)

where N is the data length, yn, ŷn and ȳ are the calculated VSM values (targets), predicted
VSM values (outputs) using the FIS models, and the mean of the calculated VSM values.
The values of RMSE and MAPE show the model accuracy regarding the deviation of
outputs from the true values (targets). Thus, the lower the values of RMSE and MAPE,
the better the performance of the FIS model. Pearson’s correlation shows the agreement
of the predicted data with the target using regression analysis, and R should have a value
close to 1.0 to indicate the effectiveness of the prediction model.
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3.4. PSO-ANFIS Optimization Procedure for CBI Prediction

The primary optimization problem for ANFIS parameter tuning using the PSO algo-
rithm is described below. The considered fitness function is the minimization of the root
mean square error (RMSE):

minimize RMSE =

√
∑N

n=1[yn − ŷn]
2

N
(19)

The constraints are the load flow and critical boundary conditions as described below:

Pk −Vk

Nbus

∑
k 6=i,i=1

Vi [Gik cos δik + Bik sin δik] = 0 (20)

Qk −Vk

Nbus

∑
k 6=i,i=1

Vi [Gik sin δik − Bik cos δik] = 0 (21)

Vmin
k ≤ Vk ≤ Vmax

k ∀k; k ∈ Nbus (22)

|SLk | ≤ Smax
Lk

∀k; k ∈ Nbr. (23)

CBIk ≥ CBIlim
k . ∀k; k ∈ Nbr. (24)

Equation (24) is the stability constraint and Smax
Lk

is the line flow limit. The stability
limits on the power flow along a transmission line can be as low as 20% of the line’s thermal
limit [72,73]. Thus:

CBIlim
k = 0.2× Smax

Lk
∀k; k ∈ ntl (25)

where Nbr. is the total number of lines/branches and Nbus is the number of buses/nodes.

4. Simulation Procedure and Results’ Discussion

The model development and simulation was performed using Matlab 2022a (student
version) on a PC workstation with 64-bit data configuration and Intel(R) Core(TM), i7-8650U
processor at an average speed of 1.90GHz (2112 Mhz, 4 core(s), 8 logical processor(s)).

4.1. Description of Case Studies and Data Pre-Processing for ANFIS Model Implementation

Six important operation parameters of power systems are considered as the input data;
these are: line resistance rik, line reactance xik, active power injected at the receiving bus
Pk, reactive power injected at the receiving bus Qk, the sending end voltage magnitude
Vi and the voltage angle δik. The target output is the VSM using critical boundary index
(CBI) values. The real and reactive powers increase in small steps and from the base loads
and the Newton–Raphson (NR)-based load, flow analysis is run for the base loading and
each load step while ensuring the tractability (convergence) of the NR power flow solution.
The information obtained from the NR load flow analysis are the independent/input pa-
rameters Pk, Qk, Vi, δik and the dependent/output parameter CBI, while the line parameters
rik and xik are directly obtained from the power system line data. Alongside the base load,
five additional load levels are generated using a load incremental step of 10% of the base
load, i.e., at a base load, and [base load + (10%, 20%, 30%, 40% and 50%)], respectively.

Thus, the total length Ldata of the data for ANFIS implementation is (6× Nbr.) and the
size of the data is (6×Nbr.) by 7, where Nbr. is the number of lines/branches in the network.
For the development of the ANFIS-VSI model, 75% of the entire data length is selected
the training data and the remaining 25% are considered the testing data. The two test
cases considered in this work are the standard IEEE 30-bus system and the Nigerian 28-bus
system and the details of both systems are contained in [73]. The IEEE 30-bus system has
forty-one (41) transmission lines, Nbr.; thus, the total data length, Ldata, is 246, out of which
185 of the data length are used for training and the remaining 61 are used for testing the
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ANFIS model. For the other test case, the Nigerian 28-bus system has fifty-two transmission
lines, Nbr.; thus, the total data length, Ldata, is 312 and 234 of the total data length are used
for training while the remaining 78 were deployed for testing the developed ANFIS model.
The simple illustration of the considered ANFIS models and the input parameters and
output information link is shown in Figure 5.

Figure 5. Illustration of the developed ANFIS model architecture.

4.2. Discussion of Results

The data plots showing the trend of the predicted CBI values using ANFIS and
PSO-ANFIS against the target CBI values and the corresponding regression analysis are
presented in Figures 6 and 7 for the standard IEEE 30-bus system, respectively. Moreover,
plot of the predicted CBI values versus the target values and the regression analysis for the
Nigerian 28-bus system are illustrated in Figures 8 and 9, respectively. Finally, the detailed
analysis of the performance of the developed ANFIS models using the statistical error-based
analysis and the regression tool for both systems are summarized in Table 2 for a concise
comparison and detailed discussion of findings.

Figure 6. Plot of target (calculated) and output (predicted) VSM values for IEEE 30-bus system.
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Figure 7. Regression plots for IEEE 30-bus system.

Figure 8. Plot of target (calculated) and output (predicted) VSM values for NIGERIAN 28-bus system.

Considering the standard IEEE 30-bus system with 41 transmission lines correspond-
ing to 246 data points for six different load levels, with the values of RMSE = 0.1795 and
RMSE = 0.5833 for PSO-ANFIS and ANFIS models, respectively, the developed models
performed considerably. However, PSO-ANFIS performs better than the ANFIS prediction
model in terms of deviation between the expected output and the predicted output as
validated by the mean absolute percentage error at MAPE = 5.5876% for PSO-ANFIS
against MAPE = 13.6002% for the standalone ANFIS model. The regression analysis using
the R values shows that the correlation between the target and the predicted outcomes for
both FIS models shows positive results, as indicated by values significantly close to the
ideal value, which is R = 1.0. With R = 0.9829 and R = 0.9518, for PSO-ANFIS and ANFIS
models, respectively; with the hybrid, PSO-ANFIS performs slightly better. However,
the simulation time of 182.5 min for PSO-ANFIS (in 200 iterations) against 24.5 min for
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standalone ANFIS, which indicates the need to prioritize either accuracy or time when
deciding which of the models to deploy for real-time voltage stability condition monitoring.

Figure 9. Regression plots for NIGERIAN 28-bus system.

The Nigerian 28-bus system has 52 transmission lines (branches), corresponding
to 312 sampling points considering the six loading conditions. The performance of the
developed ANFIS and PSO-ANFIS models for effectively predicting the power systems
VSM is observed to be substantially accurate. The two statistical error analysis and the
regression analysis allude to the effectiveness of both models, with the hybrid ANFIS
model performing comparatively better. The lower estimated value of RMSE = 2.3247 and
MAPE = 8.1705% for PSO-ANFIS as against RMSE = 5.5024 and MAPE = 8.1705 for ANFIS
shows the superiority of the PSO-ANFIS. The regression analysis shows the R values
for both ANFIS models to be within the extremely strong positive correlation range of
0.9 ≤ R ≤ 1.0; and PSO-ANFIS shows better performance at R = 0.9519 against the ANFIS
model with R = 0.9277. The time for PSO-ANFIS implementation is significantly higher
than that of PSO due to the optimization process involved in achieving the FIS initial
parameters. The computational time can increase with the number of iterations required to
achieve the optimal performance of the PSO-ANFIS model.

Table 2. Model performance comparison for both test cases.

Test
Systems

FIS
Models

Performance Analysis Comp. Time
(mins)RMSE MAPE (%) R

IEEE 30-BUS
ANFIS 0.5833 13.6002 0.9518 24.5

PSO-ANFIS 0.1795 5.5876 0.9829 182.5

NIGERIAN 28-BUS
ANFIS 5.5024 19.9504 0.9277 57.2

PSO-ANFIS 2.3247 8.1705 0.9519 212.7
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5. Conclusions

Developing efficient techniques for predicting the voltage instability levels of power
systems using artificial intelligence and machine learning is one of the exciting areas of
power system research in recent times. Based on the existing works on voltage stability
analysis in the steady-state, stability level of power systems mainly depends on some volt-
age and power injection parameters. Based on these parameters, this study developed and
evaluated the performance of the standalone ANFIS model and PSO-ANFIS hybrid model
for predicting the voltage stability margin of power systems using the critical boundary
index (CBI) approach. Both models are tested on the standard IEEE 30-bus network and the
Nigerian 28-bus system using six different load levels. Error-based performance metrics,
such as RMSE, MAPE, and R are considered to compare the effectiveness of the ANFIS
and PSO-ANFIS variants for VSM monitoring. Consequently, the performance of the PSO-
ANFIS model is found to be superior in terms of the percentage reduction in prediction
error and the results obtained from the regression analysis. Finally, the performance of the
PSO-ANFIS model in terms of simulation time and memory consumption can be enhanced
using supercomputer workstations and parallel computing techniques, which opens this
work to further research.
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