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Abstract: Greywater is the most sustainable option to address the growing need for fresh water.
This study aimed to identify the optimal operation variables of an electro-coagulation filtration
(ECF) system for treating domestic greywater, using different conditions (e.g., different electrode
combinations (Al-Fe-Al-Fe), initial pH (6.8–8.4), operating time (10–60 min), and voltage (6–24 volts)).
A statistical data analysis was performed to evaluate the experimental conditions for modeling the
chemical oxygen demand (COD), the total dissolved solids (TDSs), turbidity, and chloride removal
effectiveness, almost ranging from (85 to 94%), respectively, with energy consumption using the
response surface methodology (RSM) and the ANOVA test. When comparing the experimental and
predicted model values, it was proved that the model fairly describes the experimental values with the
R2 values determined >0.99 for COD, TDSs, turbidity, chloride, and energy consumption, suggesting
a regression sustainability of the model. The sludge properties were characterized using scanning
electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and FTIR spectroscopy,
which indicated the removal of organic matter during the ECF, similar in composition, independently
of the different applied voltage values used. The results of this study suggest the ECF significantly
reduces the pollutants load in greywater, showing the aluminum-iron-based electrodes as a viable
option to treat greywater with optimal operational costs ranging from (0.12 to 0.4) US$ m−3 under
different voltage conditions and parameters. This study establishes a path for greywater treatment
technology that is economical and environmentally responsible for wastewater management that
leads to sustainability.

Keywords: electrocoagulation; greywater; filtration; operational cost; ANOVA test; optimization

1. Introduction

Growing freshwater stress, caused by the population rising has put attention to simple,
cost-effective, and reliable treatment technologies [1] to address the water management
challenges. In developing countries, population and economic development demands [2]
have led to the search for alternate water resources and strengthening water reuse and
recycling. Domestic greywater recycling has been identified with the potential to overcome
the consumption pattern and reduce human health risks and environmental pollution [3]
because of its lower concentration of pollutants [4] from different sources. Greywater
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contributes 50–80% of the household wastewater volume [5], depending on lifestyle, age,
residential types, consumption patterns, religious traditions, and washing habits [5,6].
Greywater from households includes a high concentration of organic matter, which is
primarily caused by using soap or soap products for body washing; its quality varies,
according to the source, the geographical region, demographics, and degree of occupancy.
Certain types of greywater have low suspended particles, and turbidity levels, indicating
that a greater proportion of the pollutants are dissolved [7,8]. Its generation and character-
istics show different loads of organic matter, fats and surfactants, salts, solids, nutrients,
and pathogens, requiring treatment before reusing [8]. Greywater treatment procedures
are primarily determined by their volume, physicochemical and biological properties, the
amount of energy required, and the purposes for which treated water will be utilized [9].

Studies from the last five decades have shown different approaches to greywater
treatment, including physical, chemical, biological, and hybrid methods [7,10]. Processes,
such as soil filters, ultra-filtration (UF) membranes, membranes bioreactors [9], up-flow
anaerobic sludge blankets (UASB) [10], rotating biological contractors (RBC) [11], sequenc-
ing batch reactors (SBR), ion exchange, and constructed wetlands [12], have been tested
for greywater treatment, and all of them require either a large space and/or a highly
skilled operation and maintenance. In the last few years, the use of hybrid physicochemical
technologies, such as electrocoagulation followed by a sand filtration process, has gained
attention as an efficient and effective alternative technology with a simple arrangement,
minimum chemical addition, decreased sludge production, and low energy consumption
to remove pollutants [13]. Hybrid processes using ECF processes have been tested in the
past [14,15] generating significantly less membrane fouling and a greater COD, turbidity,
and color removal, compared to the process alone. Based on the researcher’s background,
electrocoagulation (EC) proves to be a leading technology for water and wastewater treat-
ment, combining coagulation, flotation, adsorption, and electrochemistry [16,17], as shown
in Figure 1, with the dissolution mechanism of anode metals producing metal hydroxides
with water molecules, which act as coagulants and in cathodic, the reactions cause the
coagulants to rise to the surface by the release of hydrogen gas [16], with the phenomenon
of the neutralization of charges, resulting in efficiently filtering out contaminants, such as
dyes, metals, solids in suspension, organic matter, etc. [17–20].

Hence, researchers focused on the numerous advantages of using the electrocoagula-
tion process in large-scale applications, and the ability to handle a wide range of reaction
conditions with effluent types, with a better ability to reduce retention time, and rapidly
sediment the electrogenerated flocculants during the sedimentation, with a reduction in
sludge production, and the reduction in space and capital costs [21,22].

According to Rakhmania et al., [21], the electrode material used is a critical factor
influencing the efficiency of the EC process. Aluminium (Al) and iron (Fe) are the most often
utilized electrodes in EC experiments, for eliminating pollutants, because they undergo
dissolution to form amorphous metal hydroxides, such as Al3+ and Fe2+, respectively, and
are easily available at a cheap cost with the multivalent coagulant characteristic. Very
few studies related to greywater, have been carried out with the application of EC and
the results showed a remarkable increase in the removal efficiencies with Al-Fe-Al-Fe
at pH 7.62, 98% turbidity (NTU), 98% COD (mg/L), 92% total phosphorus (mg/L), 84%
total nitrogen (mg/L), and 99% total suspended solids (mg/L) [10]. According to Bote
M., [13], the Al-Fe combination again showed the 87.5% COD removal at pH (9), with a
current density of 45 (A/m2). Several studies [17–21], have reported a high EC efficiency
in COD, BOD, and O&G [22] removal, using different electrode arrangements, mainly Al
and Fe, with advantages in the low operational cost and a high bubble production [22].
The key reactions that rely on the characteristics of the solution are briefly presented in
Equations (1) and (2) (which occur at the anode), Equations (3)–(5) (which occur at the
cathode), [15].
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Aluminium at anode: Al→ Al3+ + 3e− (1)

Aluminium in solution: Al3+ + 2OH− → Al (OH)3 (2)

Iron at cathode: Fe(s)→ Fe2+ + 2e− (3)

2Fe2+ + 5H2O + 1/2 O2 → 2Fe(OH3) + 4H+ (4)

Iron in solution: Fe2+ + 2OH− → Fe (OH)2 (5)

Based on the reaction analysis, H2 gas and bubbles of O2 gas simultaneously occur
at the cathode and anode of the water electrolysis, resulting in a floc formation. Despite
the evidence of EC improvement in the treatment efficiency, the major concern is identify-
ing the best treatment conditions (e.g., electrode materials/arrangement, current density,
power supply type, and operating time) for the specific applications [21,22]. According to
Bote M et al., [15], the optimization techniques for any process, such as the central compos-
ite design (CCD) was used to optimize the experimental condition by the response surface
method (RSM), which is a reliable way to estimate the analytical statistical links between
the independent factors and the response variables [23–29], helping to identify the optimal
conditions and settings with relatively fewer trial experimental results [30–34], reducing
the overall cost and time required for the procedure [35–38].

Furthermore, to the best of the author’s knowledge, no information is available that
addresses the hybrid mechanism of the ECF on greywater treatment, and only very few
studies [10–20] target the estimation of the operational cost and sludge consumption
to ascertain the effectiveness conditions, which helps to understand the novelty of this
study. Therefore, the objective of this study is to investigate the treatment feasibility and
characteristics of domestic greywater, using a hybrid ECF process, and optimized the
process by RSM, to examine the overall efficiencies through the model simulation of the
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electrocoagulation filtration method, followed by an operational cost-enhancement with
the application of recycling and reuse feasibility options for sustainable water management.

2. Materials and Methods
2.1. Samples

Twenty Greywater samples were collected from the bathtub or shower, hand basin,
kitchen sinks, and laundry room sinks in residential areas in Nagpur, Maharashtra, India,
in plastic buckets. The samples were shipped in polypropylene containers and maintained
at 4 ◦C until characterization, as shown in Table 1 [22].

Table 1. Influents of the greywater characteristics.

Parameters Minimum Maximum Average Standard Deviation

pH 6.4 8.9 7.7 1.4

Turbidity (NTU) 36 88 36 12.6

TDSs (mg/L) 200 510 205 125

TSSs (mg/L) 39 190 88 56

COD (mg/L) 120 380 259 126

Chloride (mg/L) 10.9 56 32.6 8.9

2.2. Experimental Set-Up

Figure 2 shows the laboratory-scale setup used, including the EC reactors and filter
media. The EC reactor [24 cm (height)× 20 cm (length)× 10 cm (width)], total volume 5.0 L,
was made in 0.4 cm acrylic and used aluminium and iron sheets (18 cm (height) × 4.5 cm
(width) × 0.02 cm (thickness)) as the electrode material separated by 3 cm. An auxiliary
tank of identical proportions was compiled on either side of the reactors to eliminate the
suspended stuff. The electrode configuration was in a monopolar parallel mode using a
direct current (DC) power supply (model RPS 3005) with different operating conditions.
In each run, 4.5 L of greywater were gently agitated at 130 rpm with four plates arranged
vertically, immersed and covering an effective surface area of 82.5 cm2 [22].
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2.3. Filtration Media

A sand filter bed (60 cm in height, 10 cm wide, and 1.5 cm diameter) was also built
with acrylic. In prior experiments, the sand and coconut shell activated carbon was washed,
dried at 105 ◦C, sieved, and arranged with finer sand (effective size 0.2 to 0.5 mm) at the
top, followed by granular activated carbon (effective size 0.2 to 0.6 mm) and gravel support
(effective size 5 mm) at the bottom. The tests were carried out at room temperature. The
effluents after the EC treatment were sent to filtering media (0.18 L/min) after removing
the precipitated flocs from the EC reactors, every 10 min for 60 min. The effluents were
taken away so that the EC and filter could be tested while they were in use. The EC reactor
and filter were cleaned after each run [22].

2.4. Analytical Studies

The performance of the hybrid EC reactor and filter bed was examined using the initial
and final samples to emphasize the physiochemical characteristics of greywater, such as the
chemical oxygen demand (COD), according to cuvette tests with a Hach Spectrophotometer
(Hach, DR 2000, USA), total suspended solids (TSSs), total dissolved solids (TDSs), pH,
turbidity, and chloride, according to the standard methods [23]. In this study, a JSM6380 LV
scanning electron microscope (JEOL, Japan) with an accelerating voltage of 30.0 kV was
utilized. To undertake the energy dispersive spectroscopy (EDS) study, the materials were
gold-plated. The Fourier-transform infrared spectroscopy (FTIR) was used in a Bruker
Vertex 70 spectrometer with OPUS 6.5 data handling and statistical analysis software was
used to identify FTIR spectra (ATR).

2.5. Experiment Design Using the Response Surface Methodology (RSM)

The RSM was used to examine the connection between the removal efficiency and
optimal process conditions [17–19]. The Design-Expert (version 13.0.5.0, Stat-Ease) software
with the central composite design (CCD) application was used to determine the link
between the variables and the response function [19]. Table 2 shows the three independent
variables examined. The statistical tools were used to conduct the experimental design:
analysis of variance (ANOVA), computational analysis, and three-dimensional response
surface [27]. Three essential required input independent variables (a) voltage (6 to 24 volts),
(b) reaction time (10–60 min), and (c) pH (6.8–8.4) for the Al-Fe-Al-Fe electrode combinations
were tested and analyzed to calculate the most significant COD, TDSs, turbidity, and
chloride removal effectiveness as a function of energy consumption. The input variables of
the coded and real values for the selected variables were indicated using the RSM technique
to operate the characteristics as the statistical significance and better evaluated through the
ANOVA test [27].

Table 2. The levels and range of the independent variables.

Symbols Independent Variables Units −1 0 +1

A Voltage Volts 6 12 24

B Time Min 10 30 60

C pH Unitless 6.8 7.6 8.4

To express the quality of the fitted models, the residual plots and coefficients of
determination (R2, adjusted R2, and predicted R2) were estimated [22,23]. To optimize the
experiments, a software-based response surface prototype was used. Different versions
(linear, quadratic, third-order polynomials, and two-factor interactions (2FI) were applied
to fit the experimental data. The different algorithms obtained were then statistically
examined to find the optimal model with the best actual, predicted, and adjusted R2,
low-predicted residual sum of squares, and no significant fit. Furthermore, the model’s
factors were evaluated using p < 0.05 value (probability) and F for (consistency) values
using a 95% confidence level [20–22]. The lab tests were undertaken and compared to the
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model predictions to validate the model’s outcomes, using different RSM conditions, using
Equation (6) to express the system response as a percentage of the removal pollutants.

Yi = β0 + ∑βiXi + ∑βiiXii2 + ∑βijXiXj (6)

where Yi is the relative removal efficiency, 0 for the model coefficient, i, ii, and ij for the
model coefficients, and Xi and Xj for the independent variables [20,21]. The RSM algorithm
determines the coded values for the anticipated processes, such as Y1 (COD), Y2 (TDS), Y3
(chloride), Y4 (turbidity), and Y5 (electrode consumption).

The total number of experimental runs was decided, based on Equation (7)

N = 2a + 2a + C = 20 (7)

where N: total number of experimental runs; a: number of variables; C: number replicates
to the center points.

3. Result and Discussion

The pH, operational duration, electrode type, and electrode spacing, are among the
operational elements that affect the performance of the electrocoagulation filtration in
eliminating the contaminants from greywater at different voltages. This enhances the
efficacy of the EC, followed by the filtration in certain settings and systems. Using the
following Equation (8), the effectiveness of the greywater removal was calculated [22].

{RE (%) = [(Xi − Xf)/Xi] × 100} (8)

where Xi and Xf are the initial and final concentrations.

3.1. Effect of the Applied Voltage

The most crucial operational parameter that enhances the removal efficiency during
the EC process is the applied voltage, which controls the reaction rate and the coagulant’s
production rate, resulting in the effect on the flocs formation and the operating cost of the
electrocoagulation reactors [25,26]. To examine the impact of the voltage and the operating
time of 60 min within the ECF process, the investigation was conducted at 6 V, 12 V, and
24 V, with an Al-Fe-Al-Fe electrode combination. It was observed when the voltage was
applied, i.e., from 6 to 24 volts, the results highlight the increasing trends in the removal
efficiency between 83 to 94%, for the COD, TDSs, chloride, and turbidity characteristics, due
to the formation of (OH)n, which directly targets the flocs growth and charge neutralization
of the Al3+ and Fe2+ ions during electrolysis [37–41].

3.2. Effect of the pH

Another critical factor in the greywater treatment is the pH, affecting the number of
stable hydroxide species formed during the EC processes. Different types and numbers
of electrodes and the influents’ pH affect the pH during the treatment process. The pH
properties of the hybrid electrodes at different voltages, (i.e., 6 to 24 volts), were examined
to demonstrate the extreme elimination of the COD, turbidity, and other parameters, with
the least electrode consumption [17]. From the observation, it is seen that the Al-Fe-Al-Fe
combination produces a hydroxide sol that may adsorb the negative H2PO4− anions [17,28]
and produce monomeric ions, such as Al (OH)2, Al (OH)2

−, Al (OH)3, Al (OH)4
− and

Fe (OH)2, Fe (OH)3 ions are capable for the quick assessment of hydrogen gas at the
cathode [42] and its impact on the increase in the pollution removal performance at a pH of
6.8 to 8.4, showing the best performance.

3.3. Effect of the Operating Time

The EC also relies on the operating time it takes for dissolving the metal ions, to
generate metal hydroxide species at the electrodes, which is a crucial step in the process [19].
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The results in Table 3 showed that the COD (91%), TDSs (94.5%), turbidity (94.2%), and
other parameters show appreciable removal efficiencies with the increase in the electrolysis
reaction time from 10 to 60 min, which is due to an abundant discharge of coagulation
metallic ions, such as Al3+ and Fe2+ ions at anode and cathode, were generated to destabilize
the colloidal particles in the form of bubble production, based on the Faraday Law [19–21].
Hence, more flocs generation occurs, which increased the adsorption strength, resulting in
a rise in the energy consumption over the electrolysis time [17], leading to an increase in
the removal efficiency level of the pollutant contaminants.

Table 3. Experimental and the predicted responses for the various parameter levels.

Voltage Time pH Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. Pred.

Run Volts min COD% TDS% Chloride% Turbidity% Electrode
Consumption mg/Lit

1 24 60 8.3 94.2 93.15 94.1 94.15 89.3 89.35 85.1 85.14 6.8 6.8

2 12 30 7.6 88.2 88.42 94.5 94.34 93.4 93.52 93.6 93.39 6.3 6.32

3 24 10 6.8 92.5 92.51 92.7 92.64 92.5 92.55 88.3 88.32 1.8 1.79

4 12 30 7.6 88.6 88.42 94.5 94.34 93.5 93.52 93.4 93.39 6.3 6.32

5 24 60 6.8 91.2 91.21 94.2 94.24 94.8 94.75 93.3 93.25 1.8 1.8

6 12 60 7.6 88.3 88.42 94.3 94.34 93.2 93.14 94.2 94.18 6.3 6.29

7 24 10 8.4 85.3 85.27 87.2 87.25 88.2 88.15 88.1 88.07 2.8 2.8

8 12 30 7.6 88.4 88.42 94.5 94.34 93.5 93.52 93.8 93.39 6.3 6.32

9 6 60 8.4 86.3 86.23 87.9 87.94 87.1 87.08 85.9 85.89 2.8 2.81

10 6 60 6.8 83.7 83.69 88.9 88.84 93.3 93.38 93.4 93.43 1.7 1.7

11 12 30 7.6 88.7 88.42 94.2 94.34 93.6 93.52 93.6 93.39 2.4 6.32

12 6 10 8.4 85.3 85.2 86.9 86.86 86.9 87 85.9 85.97 6.8 2.81

13 6 30 7.6 87.6 87.74 90.6 90.62 92.4 92.24 92.4 92.36 2.4 2.37

14 6 10 6.8 93.8 93.84 86.02 86.06 92.3 92.3 85.7 85.65 1.7 1.7

15 12 10 7.6 88.3 88.37 92.8 92.80 92.3 92.19 91.3 91.28 6.3 2.29

16 12 30 7.6 88.4 88.42 93.6 94.34 93.4 93.52 93.3 93.39 6.3 2.32

17 12 30 8.4 86.3 86.55 90.9 90.90 89.5 89.42 87.9 87.83 6.8 2.78

18 12 30 7.6 88.6 88.42 94.8 94.34 93.4 93.52 92.6 93.39 2.3 2.32

19 12 30 6.8 94.3 94.25 92.8 92.84 94.9 94.82 90.8 90.84 5.7 1.7

20 24 30 7.6 86.6 86.65 93.6 93.63 93.4 93.39 93.6 93.61 2.4 6.41

3.4. Effect of the Filter Media

In this ECF process, the physiochemical parameters, such as color, turbidity, heavy
metal, pesticides, organic chemicals, TSSs, etc., were eliminated using a sand filter followed
by activated carbon with staining and sedimentation capabilities to enhance the electroco-
agulation process, based on the capacity of adsorbent surface area, porosity, and functional
groups [42,43]. The sand filter is crucial for the solids removal and pH balance mainte-
nance [42] and the activated carbon statute as catalyst media in the chemical reduction of
the strong oxidants to innocuous byproducts, The purpose of the filter media is to overall
increase the removal efficiency level for a sustainable onsite greywater treatment.

3.5. Experimental Results of the ANOVA Statistics

To summarize the 20 sets of runs, the actual (experimental) responses, and predicted
responses, as shown in Figure 3 for the coded central composite design, fused in the
greywater treatment by the electrocoagulation- filtration method, the following Tables 3–5
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have been created. Y1 (COD), Y2 (TDSs), Y3 (chloride), Y4 (turbidity), and Y5 (electrode
consumption), are all determined by three variables, as voltage (A), time (B), and pH (C).
The Design-Expert software created the model quadratic regression Equations (9)–(13) [27].

Table 4. Statistical regression equation for the various parameter levels.

Responses Regression Model Equation

% Removal
(COD) (Y1)

+308.52650 + 0.041138 × A − 0.092807 × B − 52.85575 × C − 0.001271(A × B) +
0.048605(A × C) + 0.014749(B × C)

− 0.014429A2 − 0.000043B2 + 3.09322C2
(9)

% Removal
(TDSs) (Y2)

−156.71153 + 2.97382 × A + 0.314483 × B + 60.53911 × C
− 0.001313(A × B) − 0.21517(A × C) − 0.021178(B × C)

− 0.037728A2 − 0.001530B2 − 3.85102C2
(10)

% Removal
(Chloride) (Y3)

−13.27855 + 0.163546 × A + 0.210164 × B + 30.03592 × C + 0.001242(A × B) + 0.031250(A
× C) − 0.012500(B × C)

− 0.012480 × A2 − 0.001586 × B2 − 2.19809 × C2
(11)

% Removal
(Turbidity) (Y4)

−290.37256 + 0.571890 × A + 0.953617 × B + 97.72627 × C
− 0.003163(A × B) − 0.019764(A × C) − 0.098269(B × C)
− 0.008583 × A2 − 0.001583 × B2 − 6.34378 × C2

(12)

Electrode
Consumption (Y5)

−10.40679 + 0.003984 × A +0.003903 × B +2.65941 × C + 3.65956(A × B) − 0.003622(A ×
C) − 0.000032 B × C) + 0.000855 × A2 − 0.000053 × B2 − 0.127872 × C2 (13)

Table 5. ANOVA quadratic model on the various parameter levels.

COD TDSs Chloride Turbidity Electrode Consumption

Source Sum of
Squares p-Value Sum of

Squares p-Value Sum of
Squares p-Value Sum of

Squares p-Value Sum of
Squares p-Value Remark

Model 155.89 <0.0001 181.91 <0.0001 112.7 <0.0001 203.71 <0.0001 2.85 <0.000 Significant

A-Voltage 3.61 <0.0001 20.87 <0.0001 3.98 <0.0001 2.31 0.0005 0.004 0.0795

B-Time 0.0474 0.2523 4.44 <0.0001 3.22 <0.0001 14.62 <0.0001 3.00 × 10−8 0.9958

C-pH 134.06 <0.0001 24.54 <0.0001 71.04 <0.0001 37.67 <0.0001 2.77 <0.0001

AB 0.6738 0.001 0.7198 0.0169 0.6439 <0.0001 4.17 <0.0001 5.59 × 10−6 0.9433

AC 1 0.0002 19.62 <0.0001 0.4139 0.0002 0.1656 0.2076 0.0056 0.0443

BC 0.7015 0.0009 1.45 0.0023 0.5039 0.0001 31.14 <0.0001 3.38 × 10−6 0.9559

A2 2.88 <0.0001 19.68 <0.0001 2.15 <0.0001 1.02 0.0075 0.0101 0.0113

B2 0.0018 0.8187 2.29 0.0005 2.46 <0.0001 2.45 0.0004 0.0027 0.137

C2 10.78 <0.0001 16.7 <0.0001 5.44 <0.0001 45.32 <0.0001 0.0184 0.0019

Residual 0.3214 0.8791 0.1341 0.9119 0.0105

Lack of Fit 0.1531 0.9402 0.0241 0.9993 0.1007 0.1251 0.0236 0.9994 0.0022 0.9161 Not
Significant

Pure Error 0.1683 0.855 0.0333 0.8883 0.0083

Cor Total 156.21 182.79 112.83 204.62 2.86
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3.6. Validation of the Design

An investigation using the RSM technique was conducted to determine the best fit for
the response function, to analyze the results of the EC and filtration processes regarding
the error reduction and discover the best fit for the response function. Following the
results shown in Table 6, the ANOVA (analysis of variance) was applied to decide the
validity of the predicted model, as well as the multiple responses, which were tested
for the COD, total dissolved solids (TDSs), turbidity, chloride, energy consumption, and
operating cost reduction. The F-test was performed to determine whether the model
was statistically significant. To obtain the correct result, the F-value of a model must be
more important than the p-value of the model [27]. Statistically significant differences
were found between the treatments for the COD, total dissolved solids (TDSs), chloride,
turbidity, energy consumption, and operating cost, with the model F-values of 538.86,
229.91, 934, 248.21, 301.35, and 503.27, respectively. It was also found that for all five
responses, the p-value was less than 0.0001, pointing out that the model is more correct
and highly significant. The estimated lack of fit value for the model was shown to be
not significant for all five responses, namely the COD, TDSs, turbidity, chloride, energy
consumption, (p-value = 0.9402, 0.9993, 0.1251, 0.9994, and 0.9161, >0.05), indicating that
the model is accepted, suitable, and considerable for the pollutant removal via the ECF
processes [21,22]. The correlation between R2, adjusted R2, and predicted R2 comes to 0.99,
which again proves that the model is acceptable, as shown in Figure 4.

Table 6. The model’s fit statistics and the ANOVA findings.

Parameter COD Removal TDS Removal Chloride Removal Turbidity Removal Electrode Consumption

Model F-value 538.86 222.91 934 248.21 301.35

Adequate
precision 71.75 39.47 95.45 42.33 48.41

C.V. % 0.2019 0.3237 0.1258 0.3325 1.41
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3.7. Three Dimension Surface Plot

Figure 5 depicts, with the help of a three-dimensional surface plot, the matrix of the
effect that applied voltage and operating duration have on the removal efficiency of the
COD, TDSs, turbidity, chloride, energy consumption, and operating cost. The flag on the
graph indicates the highest percentage of pollutants removed (94.3% COD, 94.8% TDSs,
94.9% chloride, and 94.2% turbidity), with an electrode consumption of 6.8 mg/L, is under
ideal conditions. The graph’s colour scheme alternates between blue and red, with blue
representing the lowest value and red representing the highest [21,27].
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3.8. Optimization and Verification of the Model

The optimization and validation of the model demonstrated in Table 7, show that
the efficiency of the electrocoagulation and the filtration processes using an Al-Fe-Al-Fe
electrode combination with a different applied voltage, ranging from 6 to 24 volts, which
results in the removal of organic matter and contaminants from greywater, is influenced by
several factors, counting with the electrode materials type, applied voltage, pH, electroco-
agulation time, and sludge produced in the cathode and anode. Hence, in the optimization
process, the effect of applied voltage, electrocoagulation time, and pH were studied using
the Al-Fe-Al-Fe electrode combinations.
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Table 7. Optimization conditions for 6 to 24 volts.

Number Voltage Time pH Removal
(%COD)

Removal
(%TDS)

Removal
(%Chloride)

Removal
(%Turbidity)

Electrode
Consumption Desirability

1 6.00 55.00 7.800 87.119 90.761 91.07 92.592 1.484 0.644
2 12.000 57.45 7.7 92.000 94.260 94.796 94.651 1.875 0.859
3 24.0 54.50 7.900 94.351 94.421 94.888 93.118 4.5 0.495

4. Operational Cost

As per the researchers’ output, the performance of the electrocoagulation filtration
process is determined by the operational costs of the treatments, which is a disadvanta-
geous approach, particularly in large-scale industrial applications [10,32]. Despite this, the
technology has received little attention, with only a few studies published on the analysis
of the operational costs. In the ECF process, the operating rate (OPc) includes the electrical
energy consumed, the cost of the electrode uses, and the protectorate cost for the sludge
disposal in landfills, filtration medium, and other fixed charges, which are projected to
be 0.03 USD kg/m3 on average (USD 1 = INR 78.90) [33]. The cost of the electrical energy
and electrode material and the cost of maintenance are used to calculate the operating
cost, which is represented by Equations (14) and (15) shown below and expressed in
Figure 6 [6,10,34,43]

OPc = Cost Energy + Cost Electrode + Cost Maintenance

Cost of energy, Cost Energy (kWh/m3) = {(U*i*to)/V} (14)

Cost of Electrode, Cost Electrode (kg/m3) = {(i*to*Mw}/(z*F*V)} (15)

where U = cell voltages (V); I = current (Amp); to = operating time (h); V = wetted volume
of the reactor (m3); Mw = molecular wt. of Fe/Al (g/mol); z = amount of electrons involved
in the EC process (2 for Fe and 3 for Al); F = faradays constant (96,485 C/mol); CD = current
density (A), electrical consumption unit pricing for the Nagpur area (India) was set at USD
0.05/kWh, while the price of the electrode material was set at USD 0.51/kg for Fe and
1.39/kg for Al.

Sustainability 2022, 14, x FOR PEER REVIEW 13 of 18 
 

Table 7. Optimization conditions for 6 to 24 volts. 

Number Voltage Time pH Removal 
(%COD) 

Removal 
(%TDS) 

Removal 
(%Chloride) 

Removal 
(%Turbidity) 

Electrode 
Consumption Desirability 

1 6.00 55.00 7.800 87.119 90.761 91.07 92.592 1.484 0.644 
2 12.000 57.45 7.7 92.000 94.260 94.796 94.651 1.875 0.859 
3 24.0 54.50 7.900 94.351 94.421 94.888 93.118 4.5 0.495 

4. Operational Cost 
As per the researchers’ output, the performance of the electrocoagulation filtration 

process is determined by the operational costs of the treatments, which is a disadvanta-
geous approach, particularly in large-scale industrial applications [10,32]. Despite this, the 
technology has received little attention, with only a few studies published on the analysis 
of the operational costs. In the ECF process, the operating rate (OPc) includes the electrical 
energy consumed, the cost of the electrode uses, and the protectorate cost for the sludge 
disposal in landfills, filtration medium, and other fixed charges, which are projected to be 
0.03 USD kg/m3 on average (USD 1 = INR 78.90) [33]. The cost of the electrical energy and 
electrode material and the cost of maintenance are used to calculate the operating cost, 
which is represented by Equations (14) and (15) shown below and expressed in Figure 6 
[6,10,34,43]  

OPc = Cost Energy + Cost Electrode + Cost Maintenance  

Cost of energy, Cost Energy (kWh/m3) = {(U*i*to)/V} (14)

Cost of Electrode, Cost Electrode (kg/m3) = {(i*to*Mw}/(z*F*V)} (15)

where U = cell voltages (V); I = current (Amp); to = operating time (hrs); V = wetted volume 
of the reactor (m3); Mw = molecular wt. of Fe/Al (g/mol); z = amount of electrons involved 
in the EC process (2 for Fe and 3 for Al); F = faradays constant (96,485 C/mol); CD = current 
density (A), electrical consumption unit pricing for the Nagpur area (India) was set at USD 
0.05/kWh, while the price of the electrode material was set at USD 0.51/kg for Fe and 
1.39/kg for Al. 

  

(a) (b) 

Figure 6. (a) Operational cost and energy consumption with respect to the voltage and (b) electrode 
consumption and sludge generation with respect to the voltage. 

5. Sludge Characterization by the SEM, EDS, and FTIR Analyses 

Figure 6. (a) Operational cost and energy consumption with respect to the voltage and (b) electrode
consumption and sludge generation with respect to the voltage.

5. Sludge Characterization by the SEM, EDS, and FTIR Analyses

Sludge characterization facilitates the greywater recovery and pollution microstruc-
tural abatement, and examines the functional group by the SEM, EDX, and FTIR spec-
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trum, after the obtained electrocoagulation treatment process at 6, 12, and 24 volts, as
shown in Figure 7a–c. The sludge produced under various voltage distribution variations
demonstrates that the scum particles created are highly agglomerated during the treat-
ment process and the EDX analysis reflects the presence of the various elements with their
atomic strength.
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(a) 6 V, (b) 12 V, and (c) 24 V.

The presence of a high level of oxygen (29.4%, 53.49%, and 61.66%) and alumina
(39.43%, 58.03%, and 61.16%) in 6, 12, and 24 volts, respectively, indicates the hydroxide
contents in greywater during the coagulants and precipitate formation, obtained during
the electrocoagulation process. Again, the presence of carbon and iron elements shows
the adsorption mechanism which highlights the significant reduction of the organic pol-
lutants from greywater with an increase in the atomic strength with an increase in the
applied voltage. The FTIR analysis indicated, as reflected in Figure 8 shows, the changes
in the wavenumber position to highlight the major peaks at 3639.6, 2409.5, 1484.7, and
691.5 (cm−1), reflecting the functional group of Hydroxy, due to the O-H stretching, alkenyl
C=C stretching, C-H methylene and C-O bending stretching, indicating the elimination
of greywater organic pollutants through the process of electrocoagulation [19,36,37,43].
The observed FTIR reflects that some slight changes in the amorphous nature were found
with the different applied voltages. The sludge formed by the EC process, increases the
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operational costs and creates environmental issues with the disposal solutions, such as the
electron metal ions, the operating treatment duration, the flow rate, the chemical compo-
sition, and so on, which are eliminated during the water purification. There hasn’t been
much research on the potential applications of EC sludge, nor has there been much research
on its use in specific industries. However, there are a few studies that have been carried out
on the use of sludge as fertilizers, pigments, building materials, absorbents, and catalysts,
as well as a few studies on EC sludge valorization [44–46].
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6. Conclusions

The study examines the removal of the pollutant parameters of greywater, using the
electrocoagulation filtration ECF technology of Al-Fe-Al-Fe electrode combination, at the
varying applied voltages of 6, 12, and 24 volts. The results showed that the experimental
removal efficiency, concerning initial pH, current density, and operating time, reaches
(85 to 94)%. The statistical data analysis was utilized to check the experimental accuracy
by using a central composite design to consider the values of the operating parameters
at various factor intervals such as (voltage, time, and pH), on the elimination of the
COD, TDSs, turbidity, chloride, with the utility of energy consumption with 20 sets of
experimental run values provided by the RSM techniques. The findings show that the R2

value (i.e., R2 > 0.97~0.99) acquired from the ANOVA for all five responses consent that the
suggested model is reliable and sustainable with strong evidence that the actual values and
predicted values acquired are below 5% of the expected values. It was observed that the
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operating cost for the different voltages, was between (0.12 to 0.40) USD/m3. This concludes
that the response surface method can optimize the greywater’s long-term electrocoagulation
filtration treatment. Finally, based on the experimental results and the optimization model,
the ECF discharge greywater can be recycled and reused for non-potable consumption,
such as gardening, the automobile sector, and lavatory flushing, applicable in rural, urban
areas, and industries sectors with proper disinfected arrangements to remove the pollutant
contaminants, in order to achieve a sustainable water management.
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