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Abstract: In recent years, owing to the effect of fossil fuels on global warming, the exhaustion
of oil fields, and the lucrative impacts of renewable energy resources (RESs), the penetration of
RESs has been increasing significantly in power systems. An effective way to benefit from all RESs
advantages is by applying them in microgrid systems (MGS). Furthermore, MGS can ease the way
for utilizing a large amount of RESs, if its economic-environmental-technical aspects of it are taken
into account. In this regard, this paper proposes an optimal solution for the energy management of a
microgrid by considering a comprehensive study. In the proposed methodology, different distributed
energy resources such as wind turbines generator (WTG), energy storage (ES), combined heat and
power (CHP), rubbish burning agent (RBA), and diesel generators (DG) are modeled. In addition,
electric vehicles (EVs) are considered a load with uncertainty. The objective function of the proposed
method is to minimize the microgrid’s total cost by considering the microgrid’s emission cost and
technical constraints. In this study, the microgrid’s technical, environmental, and economic aspects
are investigated. In addition, the optimization problem is converted into a mixed-integer linear
programming method by using the proper linearization method. In this paper, the increasing effect
of wind energy penetration rate on the total price also has been studied. The simulation results show
that by increasing the wind energy penetration rate by up to 30% of total power, the total cost will
decrease by up to 30.9%.

Keywords: microgrid; energy management; wind turbines; renewable energy resources

1. Introduction

Due to the increasing electrical energy consumption worldwide, it is necessary to
expand electrical energy production centers. There are two main approaches to generating
electrical power: The first approach is to produce electrical energy at limited points such as
a central network and transfer it throughout the network. Most of such power plants use
fossil fuels for energy conversion. The second approach is to use renewable energy. The
main problem of fossil fuel power plants is environmental pollution and the emission of
greenhouse gases, which causes global warming; furthermore, centralized transmission
by large power plants increases loss [1]. Renewable energies such as wind and solar
energy significantly mitigate environmental issues. However, due to the intermittent
and fluctuating nature of renewable sources, the stability and security of the system are
affected [2]. One of the practical ways to make better use of renewable energy sources is
microgrid technology. The microgrid can be used in grid-connected or island mode. Energy
management will help islanded microgrids achieve sustainability. In addition, when the
microgrid connects to the network, it provides exchanging possibility with the distribution
network. One of the challenges facing microgrid energy management systems (MG-EMS)
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is finding an optimal schedule to use the available resources. In the literature, two methods
have been implemented for EM in MGs. The first method includes the use of meta-heuristic
methods, and the second method is based on mathematical programming (MP) methods
such as mixed integer linear programing (MILP) and mixed integer non-linear programing
(MINLP) [3]. In meta-heuristic methods (such as QTLBO in [4] and GA in [5]), there is no
guarantee of reaching the global point, and it is possible to stock in local optimal points.
In addition, different results may be obtained based on the initial conditions and various
iterations. In methods based on MP, it is possible to reach the global optimal point. To
find the global optimal point in a non-linear system, the model must be converted to
linear by approximation. Then the optimal point is obtained from linear optimization
methods (such as [6]). Of course, it is possible to obtain the optimal point in non-linear
systems using MP methods, and many non-linear techniques have been presented in the
literature from the classic genetics algorithms to its novel Mendelian variants [7]. Recently,
heuristic nature-inspired nonlinear techniques have been successfully used in a wide range
of applications from AI model design [8] to self-organized control [9]. However, there is
no guarantee that the optimal point will be global (such as MINLP in [10]). In [11], an
EMS issue with MATLAB’s Fmincon function has been studied; due to the nonlinearity of
the fuel consumption cost, there is no possibility of reaching the global point. In [12], the
focus is on reducing the degradation cost of energy storage. In addition, to make better
decisions based on the predicted data, the CCP method has been used. Ref [13] reports
a practical approach for optimal management of a MEMG performance by considering
the uncertainties associated with demand prediction. In this article, the connection with
an upstream network is considered; however, the supposed model for linearization is not
accurate. Ref [14] has been regarded as a multi-objective optimal scheduling model that
includes operational economy and satisfaction of electricity consumption on the demand
side. The sparrow search algorithm is used to solve the MINLP problem. In [15], the impact
of EVs in isolated hybrid microgrids with WT, PV, ES, and DG has been studied. In this
article, there is no connection with the upstream network, and the constraints related to the
network elements are very few, which makes the optimization far from reality. Ref [15] has
used a virtual power plant (VPP), considering a pumped storage plant (PSP) and electrical
vehicles (EVs) as energy storage. The presence of EVs in the network has been considered
through a parking lot, but the variety and numbers of energy production sources in this
article are few. Ref [16] provides an optimal energy consumption for apartments; in this
article, there is a possibility of energy exchange between apartments. However, this study
has not considered renewable energy sources, and in addition, the microgrid’s uncertainties
are not discussed. Ref [17] examines the efficient power exchange by Cuckoo Search
Algorithm (CSA). This paper proves that CSA enables flexible and compatible electricity
exchange between microgrids and the commercial grid. Nevertheless, CHP, EVs, and
uncertainties related to the network are not considered, and there is no connection with
the upstream network. Ref [18] surveys the methods of microgrid element selection, such
as a diesel generator and energy storage, using a hybrid optimization model for electric
renewables (HOMER) software. This article investigated the network in island mode and
only used solar cells as a source of renewable energy production. The type of cost function,
methodology, and type of energy production resources considered for each article are
shown in Table 1.

Most of the studies have focused on minimizing the cost of energy production and
have not paid attention to the resource constraints and complexities of the microgrid. In
addition, several articles have considered the simultaneous investigation of environmental
effects and uncertainties related to load, weather conditions, and the presence of electric
vehicles. In addition, reaching the global optimal point requires linearization of the system,
and some articles use non-linear models to achieve the optimal point. Therefore, the main
contributions of this work are summarized as follows:

1. Due to the nonlinearity of the relationships governing the elements of energy produc-
tion in the microgrid (such as the diesel generator fuel relationship), it is impossible to
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achieve the global optimal point with non-linear methods. The best solution is to use
an exact linear model to reach the global optimal point. Therefore, an accurate linear
model based on the piecewise linear approximation method for microgrid energy
management is presented in this paper.

2. In order to have closer simulation results to reality, all network costs and limitations
should be considered, which have been given less attention in recent studies. Therefore,
in this article, the costs related to the emission, the cost of battery degradation, the cost
of providing thermal load, the connection with the upstream network, the restrictions
associated with the presence of electric vehicles, interruptible load, etc., are considered.

3. With the increasing penetration of RESs and the crucial role of stochastic parameters
such as load demand, and electricity price in the energy management of MGs, the
accuracy of forecasting these parameters has a decisive impact on the total cost of MGs.
In this regard, a method based on deep long-short term memory (LSTM) networks is
utilized to model these parameters.

Table 1. Comparison of EMS in the literature review.

Ref DG CHP WT EV ES Methodology Objective Function

[11] 3 7 3 7 3 Fmincon Multi-Objective

[6] 3 7 3 3 3 MILP Minimizing distribution
grid losses

[4] 3 7 3 7 3 QTLBO Optimizing energy flow
in microgrids

[1] 7 7 3 7 3 ABC Minimizing cost
[13] 7 3 3 7 3 MILP Minimizing cost
[17] 3 7 3 3 3 MILP Maximizing profit
[14] 7 3 3 7 3 MILP Multi-Objective
[12] 3 7 3 7 3 CCP Minimizing cost
[18] 3 7 3 7 3 MILP Minimizing cost
[19] 3 7 7 7 3 MILP Minimizing cost
[20] 3 7 3 7 3 DNN/RL Maximizing profit
[21] 7 7 7 3 3 LSTM-DL Multi-Objective
[22] 7 7 3 7 3 Cooperative game Multi-Objective
This paper 3 3 3 3 3 MILP Minimizing total cost

The rest of this paper is organized as follows: the mathematical model is presented
in Section 2. Section 3 shows the simulation result and sensitivity analysis. Finally, the
conclusion is provided in Section 4.

2. Mathematical Model

In this paper, the objective of EMS is to minimize the day ahead energy cost. The cost
function of the system is shown in Equation (1).

Cost Function = ∑
t
(TCbuy

t + TCIL
t )︸ ︷︷ ︸

(1)

+ ∑
t
(∑

h
TCCHP

h,t + ∑
r

TCRBA
h,t )︸ ︷︷ ︸

(2)

+∑
t

∑
d

TCDG
d,t︸ ︷︷ ︸

(3)

+ ∑
t
(∑

w
TCW

w,t ∑
e

TCBatt
e,t )︸ ︷︷ ︸

(4)

(1)

The first part of Equation (1) represents the change of cost and interruptible load. The
amount TCbuy

t can be positive or negative depending on the amount of buying or selling
from the network. TCIL

t indicates the amount of cost paid by the consumer; in the form
of a contract, it is paid for by disconnecting the load at certain hours. The second part
shows the cost of Combined Heat and Power (CHP) and Rubbish Burning Agent (RBA).
The third part shows the cost of diesel generators, and the fourth part shows the costs of
wind turbine maintenance and degradation cost of energy storage.
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2.1. Upstream Network

Connection with the global electricity grid allows excess electrical energy to be sold.
In addition, when renewable energy production is low, or consumption is high, the grid
will purchase the required energy. Equation (2) shows the cost paid or received from the
network for the exchange power, and Equation (3) shows the minimum and maximum of
exchanged power [13].

TCbuy
t = Pbuy

t × Cbuy
t × ∆t (2)

Pbuy
min ≤ Pbuy

t ≤ Pbuy
max (3)

2.2. Interruptible Load

Interruptible Load (IL) is an optional contract for consumption reduction between
the consumer and the producer to provide power during peak hours. The total cost of the
interruptible load is shown in Equations (4) and (5) [22].

TCIL
t = aRBA × PIL

t (4)

0 ≤ PIL
t ≤ PIn f lex

t (5)

2.3. Combined Heat and Power

In the proposed structure, the CHP is responsible for supplying the thermal load and
part of the electrical power; the heat exchanger is considered a gas turbine that converts
the chemical energy of natural gas into electricity by using a generator. The calorific
value released by fuel combustion can be used to provide thermal load. The boiler is also
used as an auxiliary power source to supply excess thermal energy. Moreover, to increase
system flexibility, thermal storage is considered. Equations (6)–(8) represent fuel, emission,
and total cost of CHP. Moreover, Equations (9)–(12) indicate the constraints related to
thermal power provision and Equations (14)–(17) show the admissible range for the heat
variables [17].

TCCHP
h,t = FCCHP

h,t + ECCHP
h,t (6)

FCCHP
h,t = ( f Boiler

h,t + f CHP
h,t )ρNG (7)

ECCHP
h,t = ∑

p
Exp,h × EFp,h × ( f Boiler

h,t + f CHP
h,t ) (8)

HBoiler
h,t = f Boiler

h,t ηBoiler
h (9)

HCHP
h,t =

f CHP
h,t αCHP

h

1 + αCHP
h

(10)

PCHP
h,t =

f CHP
h,t

1 + αCHP
h

(11)

HD
t = ∑

h
HBoiler

h,t + HCHP
h,t + H f

h,t (12)

Hs
h,t − H f

h,t = Hs
h,t+1 (13)

Hs
h,t ≤ HS,MAX

h (14)

Hs
h,0 = Hs

h,24 (15)

f Boiler
h,t ≤ f Boiler,MAX

h (16)

f CHP
h,t ≤ f CHP,MAX

h (17)
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2.4. Rubbish Burning Agent

RBA is an electrical power generation unit based on burning urban solid waste.
Equations (18)–(20) demonstrate the fuel, emission, and total cost of RBA, and Equation (21)
defines the value of generated power by RBA [13].

TCRBA
r,t = FCRBA

r,t + ECRBA
r,t (18)

FCRBA
r,t = PRBA

r,t × ρRBA × ∆t (19)

ECRBA
r,t = ∑

p
Exp,r × EFp,r ×

(
PRBA

r,t

)
(20)

PRBA
r,t =

∝RBA
T hvRBA f RBA

r,t

∆t
(21)

2.5. Diesel Generator

Diesel generators are typically used when batteries are discharged, and renewable
resources are not available. In other words, diesel generators can be used in emergencies to
compensate the energy shortage due to their durability, low initial cost, and quick start-up.
The start-up, fuel, and maintenance costs could be considered in the diesel generator model.
Equation (22) indicates the total cost of diesel generator usage, which consists of three
parts: fuel, start-up, and emission costs, shown in Equations (23)–(25). The constraints of
ramp-up and ramp-down rates are represented in Equations (27) and (28). In addition,
Equations (29)–(33) show the constraints of diesel generator up and down minimum time.
In addition, the relationships in [23] have been used to linearize the fuel consumption cost.

TCDG
d,t = FCDG

d,t + SCDG
d,t + ECDG

d,t (22)

FCDG
d,t = (aDG

d (PDG
d,t )

2
+ bDG

d (PDG
d,t ) + cDG

d )ud,t (23)

SCDG
d,t = SUCd(ud,t − u′d,t) (24)

ECDG
d,t = ∑

p
(Exp,d × EFp,d)× PDG

d,t (25)

PDG,MIN
d ud,t ≤ PDG

d,t ≤ PDG,MAX
d ud,t (26)

PDG
d,t − PDG

d,t−1 ≤ (ud,t − u′d,t)PDG,MIN
d + (1− ud,t + u′d,t)RURd (27)

PDG
d,t−1 − PDG

d,t ≤ (ud,t−1 − u′d,t−1)PDG,MIN
d + (1− ud,t−1 + u′d,t−1)RDRd (28)

NDG,on
d,t−1 + ud,t − (1− ud,t)M ≤ NDG,on

d,t ≤ NDG,on
d,t−1 + ud,t (29)

NDG,on
d,t ≤ ud,t M (30)

NDG,on
d,t−1 ≥ TDG,on

d (ud,t−1 − ud,t) (31)

NDG,off
d,t−1 + 1− ud,t − ud,t M ≤ NDG,off

d,t ≤ NDG,off
d,t−1 + 1− ud,t (32)

NDG,off
d,t ≤ (1− ud,t)M (33)

2.6. Wind Turbine

A wind turbine is used to convert kinetic energy to electrical energy. Therefore, it
is considered a source of electrical energy production. The gearbox is an essential part
of most wind turbines. The gears convert slow rotation of rotor blades into high-speed
shaft rotation, and electrical power is produced. Equation (34) defines the cost of wind
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turbine maintenance. Equation (35) is the wind turbine’s amount of power, depending on
the wind speed.

TCW
w,t = (O&Mw)× PW

w,t (34)

PW
w,t =


Pwmax

w vR
w < vt < vCOUT

w
Pwmax

w (vt− vCIN
w )

vR
w− vCIN

w
vCIN

w < vt < vR
w

0 vt < vCIN
w , vt > vCOUT

w

(35)

2.7. Energy Storage

In a MG, a battery is used for energy storage due to the unpredictability and inter-
mittent nature of renewable energy sources. In this condition, the battery acts as a backup
during off-peak hours and reduces cost during peak hours. The energy storage can be
charged or discharged at any time. In modeling a battery, minimum and maximum power,
charge, and discharge level can be considered. The ES replacement and degradation costs
are shown in Equation (36); constraints of charge and discharge levels are defined in
Equations (37)–(39). The ES’s State Of Charge (SOC) is indicated in Equation (41) per hour,
and Equation (42) shows the acceptable range of SOC [22].

TCe,t = aES
e

(
PCH

e,t + PDCH
e,t

)
+ bES

e (36)

PState
e,t = PDCH

e,t − PCH
e,t (37)

0 ≤ PCH
e,t ≤ PMAX,CH

e uES,CH
e,t (38)

0 ≤ PDCH
e,t ≤ PMAX,DCH

e uES,DCH
e,t (39)

uES,DCH
e,t + uES,CH

e,t ≤ 1 (40)

SOCES
e,t = SOCES

e,t−1 + (PCH
e,t ηES,CH

e − PES,DCH
e,t /ηEs,DCH

e )∆t (41)

SOCES,MIN
e ≤ SOCES

e,t ≤ SOCES,MAX
e (42)

2.8. Electrical Vehicle

With the worldwide spread of electrical vehicles, the amount of power consumed by
EVs has increased significantly. Equations (43) and (44) present the SOC of the EVs and
the charge of EVs at the departure time, and Equation (45) shows the maximum of EV’s
SOC per hour. The charging rate of EVs should be limited, and Equation (46) shows the
maximum amount of power absorbed by electrical vehicles [24].

SOCEV
v,t = SOCEV

v,t−1 + (PEV
v,t ηEV,CH

v )∆t (43)

SOCEV,initial
v + ∑

t∈Av

PEV
v,t ηEV,CH

v ≥ 0.9 BCv ∀v (44)

SOCEV
v,t ≤ BCv (45)

0 ≤ PEV
v,t ≤ CRv t ∈ Av (46)

2.9. Power Balanced Constraint

The total electrical power production must supply the load demand and power con-
sumption of electrical vehicles each hour of the day. On the other hand, according to
interruptible load, the delivery power can be less in some hours than the amount of
demand.

∑d PDG
d,t + ∑h PCHP

h,t + ∑w Pw
w,t + ∑r PRBA

r,t + ∑e PES,DCH
e,t −∑r PES,CH

e,t + Pbuy
t =

(Pload
t − PIL

t ) + ∑v PEV
v,t

(47)
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3. Simulation
3.1. Case Study Definition

To find the minimum value for the cost function, a network with three DG, two ES, one
CHP, one RBA, and two WT is considered as shown in Figure 1. The proposed network is
connected with the upstream network. Two hundred and ten electrical vehicles are located
with PQ buses, and the information related to arrival, EV trade information, departure EV
time, and initial charge is obtained from article 43. In addition, the main grid elements
information is in Tables 2 and 3. To solve the optimization problem, GAMS software version
28.2 and Cplex Solver have been used.
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Figure 1. Proposed network diagram.

Table 2. DGs and CHP data.

DGs Data

Bus. No aDG
d

(
$/KWh2

)
bDG

d ($/KWh) cDG
d ($/h) PDG,Max

d (Kw) PDG,Min
d (KW) SUCd($)

B8 2.4 × 10−5 4.7 × 10−5 1.9 × 10−5 500 50 45
B18 2.4 × 10−5 4.8 × 10−5 2 × 10−5 700 65 45
B21 2.6 × 10−5 5 × 10−5 2.3 × 10−5 900 90 15
CHP Data

Bus. No αCHP
h ηBoiler

h f Boiler,MAX
h f CHP,MAX

h HS,MAX
h HS

h,0
B14 2 0.8 2000 2000 800 257

Table 3. ESs, RBA, and WTs data.

ES Data

Bus. No ηES,CH
e ηES,DCH

e PMAX,CH
e PMAX,DCH

e SOCES,MIN
e SOCES,MIN

e

B4 0.86 0.86 50 50 250 10
B15 0.86 0.86 150 150 750 50

RBA Data

Bus. No ∝RBA
T ρRBA hvRBA PRBA,Max

e PRBA,Min
e o

B20 0.3 0.02 0.51 50 6

WT Data

Bus. No O&Mw Pwmax
w vCIN

w vR
w vCOUT

w
B19 0.01 500 3 9 25
B5 0.01 500 3 9 25
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3.2. Uncertainty Modeling

Recurrent neural networks (RNNs) are different from conventional neural networks in
terms of functionality. This difference is that the information from the last moment affects
the decision made in the current moment, so recurrent neural networks are used as one
of the best options for predicting time data. Considering that the current consumption
of the residential load is affected by the data of the last moment, the use of recurrent
neural networks is a desirable solution. Because of the efficient nature of recurrent neural
networks, there are vanishing limits and gradient explosions for long-term learning. The
meaning of the disappearance of the gradient is the reduction of the soft gradient with the
increase of the time interval, which leads to the convergence of the gradient towards zero.
In addition, due to not normalizing the gradient in the learning process, it is possible to
increase the gradient too much. To overcome these problems, Long-Short Term Memory
(LSTM) neural networks have been created.

LSTM neural networks consist of three gates: forgetting, input, and output, which
allow studying time series with a larger horizon. The forgetting gate and the input gate
respectively determine the importance of the previous processing and the current input
in the current processing, while the output gate will determine the result of the current
processing. With reducing the size of system modeling, different stochastic parameters are
becoming more important. It is not surprising that this issue is more crucial in MGs, which
are also designed to operate in islanding mode. Consequently, in this paper the LSTM
network, a promising tool in time series forecasting tasks, is utilized [25]. The general
formulation of deep LSTM networks is presented in reference [24]. In this paper, the hourly
data of Ontario province for electricity price, load demand, and wind speed for three years
(1 January 2019, to 30 December 2021) are used as a dataset [26]. The previous 48-hour
data are utilized to forecast each stochastic parameter. For the training, validation, and
testing, the total dataset is divided into 80%, 10%, and 10%, respectively. The whole process
of implementing LSTM networks is done in MATLAB software version 2019a by Deep
Network Designer Toolbox [27]. The LSTM based forecasting framework shown is in
Figure 2.
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Figure 2. The LSTM based forecasting framework.

The day ahead forecasted electricity demand and heat demand are presented in
Figure 3. In addition, the predicted electricity price and wind speed are shown in Figure 4.

3.3. Results

Figure 5a shows the components of the proposed microgrid, which includes the
active production power of RBA, WT, DG, CHP, and the active power transmission of ES.
Figure 5b shows the exchange of power between the upstream network and microgrid.
Figure 5c shows the amount of accumulated energy absorbed by electrical vehicles. Due to
low electricity price and low consumption load in the time period of 00.00 to 04.00, and
availability of electrical vehicles and renewable energy production, charging and energy
storage operations are carried out in ES. According to Figure 6b, SOC related to ES reaches
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its maximum value at the end of the period. From 00.00 to 02.00, the microgrid purchases
energy from the upstream network to charge electrical vehicles. However, from 03.00
to 07.00, due to an increase in supply-to-demand ratio, the microgrid sells energy to the
upstream network. With the rise in demand on the one hand and the decrease in wind
turbine production, on the other hand, electricity is purchased from the upstream network
from 08:00 to 00.00, and considering the high electricity price in the time above frame,
electrical vehicles will not be charged.
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Based on Figure 6b, the amount of SOC related to IS will reach its minimum value
from 06.00 to 07.00 because the selling price is high in this period. Electrical vehicle charge
and storage operations will be stopped before 15.00. In the time from 15.00 to 17.00, due
to demand and price reduction of electricity, the energy storage process will be done in
ES. In addition, the electrical vehicles which did not get charged in time period of 16.00 to
00.00, will be charged. The reasons for increase in electricity purchasing in time period of
15.00 to 17.00 are the charging of electrical vehicles and energy storage. In the time frame
between 18.00 and 23.00, a load increase is observed, and by 22.00, consumption will have
a downward trend. Figure 6a shows the amount of energy in the thermal storage and the
boiler’s production power and CHP. The sum of energies in the three units mentioned
above should supply the heat demand of the network. In addition, the CHP unit will
produce electric power every hour along with thermal power supply, as shown in Figure 6a.
Figure 6c shows the cumulative cost of energy storage and energy production sources. The
suitable wind speed for generating electrical power (according to the shape of the wind
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speed) exists only in the period of 01.00 to 06.00. During the remaining hours of the day,
DG will be in the network, so DG will include a large share of the final cost.
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Examining the sensitivity of electricity prices to the penetration rate of renewable
energy sources is vital due to the desire to replace fossil fuels. The sensitivity of the
production cost of each energy production source and the total cost of energy production in
the microgrid to the penetration rate of renewable energy sources is shown in Figure 7. The
proposed optimal model has been implemented each time to manage different operational
strategies with different input parameters. According to Figure 7, changing the wind energy
penetration coefficient has been used to check the sustainability of the proposed network.
The cost associated with generating energy from distributed generation sources and energy
purchased from the upstream grid will decrease with increasing penetration. On the other
hand, the maintenance cost of the wind turbine will clearly increase with the increase in
production. In addition, the cost of production by other energy sources will change little.
The reason for this is the increase in the sale of electrical energy to the upstream network and
the decrease in the need for energy production by scattered production sources. Therefore,
the total cost of energy production will decrease almost linearly.
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4. Conclusions

This study presented an energy management system (EMS) for a microgrid consisting
of DG, ES, wind turbine, EVs, RBA, and CHP. To obtain a suitable model for estimating the
amount of wind turbine production based on meteorological data, the amount of the day
ahead load, and electricity price, the LSTM network has been employed.

To achieve the global optimal point, the model must be linearized with the help of the
piecewise linear method. The final cost of energy production in the state of connection to
the grid is $1549.35. The share of the highest cost among energy production sources (with
51% of the total cost) is related to the diesel generator. In addition, the effect of increasing
the penetration rate of renewable energies on the total Cost has been investigated. By
increasing the penetration coefficient of wind energy up to 30% of the total power, the total
cost will be reduced by 30.9%.
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Abbreviations

1. Indexes ηEV,CH
v , ηBoiler

h
Charging efficiency of v-th EV and
h-th boiler

Av Set of times that v-th EV is available ρRBA, ρNG Price of gas and rubbish burning
agent fuel

p
Index for emission types (NOx or CO2
or SO2)

∆t Period of time
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r Index for rubbish burning agent ∝RBA
T Efficiency of Rubbish burning agent

t Index for time (hour) αCHP
h

The parameter in production
characteristic equations of CHP

v, d, w, e, h
Index for EV, DG, WT, ES, and
CHP unit ηES,CH

e , ηES,DCH
e

Efficiency of charging and
discharging ES

2. Parameters 3. Variables

aDG
d , bDG

d , cDG
d DG fuel cost function coefficients

ECDG
d,t , ECCHP

h,t ,
ECRBA

r,t
Emission cost of DG, CHP, RBA

aES
e , bES

e ESs cost coefficients f Boiler
h,t , f CHP

h,t
Fuel utilization in boiler and CHIP
at time t (kW)

BCv Battery capacity of v-th EV (kWh)
FCDG

d,t , FCCHP
h,t ,

FCRBA
r,t

Fuel cost of DG, CHP, RBA

CRv
Rated charger capacity for e-th
EV (kW) HBoiler

h,t , HCHP
h,t

Produced heat by boiler and CHP at
time t (kWh)

Exp,d, Exp,h, Exp,r

Externality DG, CHP and RBA Cost
of p-th
pollution type (lb/kWh)

Hs
h,t

Heat cumulative in heat tank at
time t (kWh)

EFp,d, EFp,h, EFp,r

Emission factor of p-th pollution
type for
DG, CHP and RBA ($/lb)

NDG,on
d,t , NDG,off

d,t
On_time and off_time of d_th DG at
hour (t)

f Boiler,MAX
h ,

f CHP,MAX
h

Maximum fuel input of boiler and
CHP (kW) Pbuy

t Exchanged power

HD
t Heat demand for vpp at time t (kWh) PIL

t Amount of interruptible load
HS,MAX

h Maximum capacity of heating storage PIn f lex
t Inflexible load of MGs at time t

O&Mw
Operation and maintenance cost of
wind turbine

PRBA
r,t

Electrical power of rubbish
burning agent

PDG,MIN
d , PDG,MAX

d
Lower and upper limits of active
power generation of DG (kW)

PCH
e,t , PDCH

e,t
Electrical power of charge and
discharge ES (kW)

PMAX,DCH
e

PMAX,CH
e

Maximum limit for ES charge and
discharge (kW)

PDG
d,t Electrical power of diesel generator

Pbuy
min , Pbuy

max
Maximum and minimum of
exchanged power

SCDG
d,t Start-up cost of DG

RURd, RDRd
Ramp-up and Ramp-down rate limit of
d-th DG (kW) SOCES

e,t , SOCEV
v,t SOC of ES and EV in hour t (kWh)

SOCES,MIN
e ,

SOCES,MAX
e

Maximum and minimum State of
Charge for ES

TCDG
d,t , TCW

w,t,
TCCHP

h,t , TCRBA
r,t ,

TCbuy
t , TCIL

t

Cost of DG, W, CHP, RBA,
buy and IL

SOCEV,initial
v Initial SOC of v-th EV (kWh) ud,t, u′d,t

Binary variables for
commitment state
of DG d in hour t

SUCd Start-up cost of DG

vCIN
w , vCOUT

w , vR
w

Cut in, cut out, and a nominal speed of
wind turbine w (m/s)

uES,CH
e,t , uES,DCH

e,t
Binary variables for the state of charge
and discharge of ES

References
1. Kamarposhti, M.A.; Colak, I.; Eguchi, K. Optimal energy management of distributed generation in micro-grids using artificial bee

colony algorithm. Math. Biosci. Eng. 2021, 18, 7402–7418. [CrossRef] [PubMed]
2. Fan, S.; He, G.; Zhou, X.; Cui, M. Online Optimization for Networked Distributed Energy Resources with Time-Coupling

Constraints. IEEE Trans. Smart Grid 2020, 12, 251–267. [CrossRef]
3. Guo, C.; Wang, X.; Zheng, Y.; Zhang, F. Real-time optimal energy management of microgrid with uncertainties based on deep

reinforcement learning. Energy 2021, 238, 121873. [CrossRef]

http://doi.org/10.3934/mbe.2021366
http://www.ncbi.nlm.nih.gov/pubmed/34814255
http://doi.org/10.1109/TSG.2020.3010866
http://doi.org/10.1016/j.energy.2021.121873


Sustainability 2022, 14, 15036 14 of 14

4. Raghav, L.P.; Kumar, R.S.; Raju, D.K.; Singh, A.R. Optimal Energy Management of Microgrids Using Quantum Teaching Learning
Based Algorithm. IEEE Trans. Smart Grid 2021, 12, 4834–4842. [CrossRef]

5. Javed, M.S.; Song, A.; Ma, T. Techno-economic assessment of a stand-alone hybrid solar-wind-battery system for a remote island
using genetic algorithm. Energy 2019, 176, 704–717. [CrossRef]
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