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Abstract: Connection between electric power networks is essential to cover any deficit in the gen-
eration of power from any of them. The exchange powers of the plants during load disturbance
should not be violated beyond their specified values. This can be achieved by installing load fre-
quency control (LFC); therefore, this paper proposes a new metaheuristic-based approach using
a skill optimization algorithm (SOA) to design a fractional-order proportional integral derivative
(FOPID)-LFC approach with multi-interconnected systems. The target is minimizing the integral
time absolute error (ITAE) of frequency and exchange power violations. Two power systems are
investigated. The first one has two connected plants of photovoltaic (PV) and thermal units. The
second system contains four plants, namely, PV, wind turbine, and two thermal plants, with governor
dead-band (GDB) and generation rate constraints (GRC). Different load disturbances are analyzed in
both considered systems. Extensive comparisons to the use of chef-based optimization algorithm
(CBOA), jumping spider optimization algorithm (JSOA), Bonobo optimization (BO), Tasmanian devil
optimization (TDO), and Atomic orbital search (AOS) are conducted. Moreover, statistical tests
of Friedman ANOVA table, Wilcoxon rank test, Friedman rank test, and Kruskal Wallis test are
implemented. Regarding the two interconnected areas, the proposed SOA achieved the minimum
fitness value of 1.8779 pu during 10% disturbance on thermal plant. In addition, it outperformed all
other approaches in the case of 1% disturbance on the first area as it achieved ITAE of 0.0327 pu. The
obtained results proved the competence and reliability of the proposed SOA in designing an efficient
FOPID-LFC in multi-interconnected power systems with multiple sources.

Keywords: LFC; PV plant; wind energy; multi-interconnected system; renewable energy; skill
optimization algorithm

1. Introduction

Achieving stability of power system operation is essential to guarantee the continuity
of customer services, especially during load disturbances. The frequency of the power
system is greatly affected by the load violation. This problem arises in multi-interconnected
systems, as the load violation causes a change in both frequency and exchange of power
between the connected plants. Therefore, load frequency control (LFC) is essential to banish
the violations in both frequency and tie-line power [1–3]. Many researchers have dealt with
designing the LFC in multi-area multi-sources, which may be conventional or renewable
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energy. Yousri et al. [4] introduced Harris Hawks optimization (HHO)-based methodology
to obtain the optimal gains of LFC-proportional-integral (PI) inserted in interconnected
systems with renewable energy sources (RESs). The authors considered the integral time
absolute error (ITAE) as the target to be minimized. Ali et al. [5] recommended multi-
verse optimizer (MVO) as an efficient tool to design the model predictive control (MPC)
LFC inserted in six-interconnected systems with renewables-based plants with storage
systems. Moreover, the effect of generation rate constraint (GRC) and governor dead
band (GDB) zones for thermal plant have been considered. Fathy et al. [6] designed the
fractional-order proportional integral derivative (FOPID) LFC via movable damped wave
algorithm (MDVA) to banish the variations of frequency deviations and tie-line powers
of an interconnected system with RESs during load disturbance. Moreover, ITAE was the
target in the considered optimization problem. In [7], the optimal gains of PI and PID-LFC
have been determined via particle swarm optimizer (PSO); the designed controller has
been used with hybrid solar-wind-micro-hydro interconnected systems. An extensive
review of many approaches employed in designing LFC with solar-wind interconnected
systems has been conducted in [8]. Additionally, the authors designed the FOPID-controller
via the flower pollination algorithm (FPA). Fathy et al. [9] presented LFC simulated via
an adaptive neuro fuzzy inference system (ANFIS) trained by antlion optimizer (ALO)
installed in two and four-interconnected power plants with renewable energy sources.
The authors considered the ITAE of frequency and tie-line power deviations as the fitness
function to be minimized. Many reported techniques assigned to design LFC insertion
in classical and modern power systems have been reviewed in [10], including nonlinear
models, controller parameter identification, soft computing approaches, integration of
renewable energy sources, future trends, and challenges. In [11], LFC designed via decen-
tralized MPC has been installed within the Egyptian power system with traditional and
renewable-based plants. The considered renewable-based plants were the wind farms of
Zafarana and Gabel El-Zeit, and Benban solar plant. Additionally, both GRC and GDB of
thermal plants have been considered. In [12], the authors identified the optimal parameters
of proportional-derivative LFC with a cascaded filter via coyote optimization algorithm
(COA); the controller has been used with renewable energy-based plants. Arora et al. [13]
introduced an approach-based on moth flame optimizer (MFO) to minimize the frequency
constraints of renewable energy generation systems via installing LFC. A comprehensive
review of different LFC structures in both single and multi-interconnected systems has been
reported in [14–17]. Takayama et al. [18] introduced a coordination method between the
LFC and economic dispatching control (EDC) for large-scale renewable energy generation
plants. Additionally, the optimal size of a battery storage system was analyzed based
on the presented LFC and EDC. An improved twin delayed deep deterministic policy
gradient deep reinforcement learning-based LFC has been introduced and incorporated
in RESs with variable loads and electric vehicles [19]. The integral absolute error (IAE) of
the frequency and exchange power deviations was selected as the target to be minimized.
In [20], the marine predators algorithm (MPA) has been presented to find the parameters of
LFC-PID inserted in interconnected systems with RESs and storage systems. An enhanced
COA has been employed to design PI-PI and PD with filter-based LFC installed with RESs-
based interconnected system [21]. The Ziegler–Nichols method has been used by Subham
et al. [22] to adjust the parameters of automatic LFC-PID inserted in hybrid power systems.
Moreover, hardware-in-loop based OP4510 has been simulated to assess the presented
controller. PI, PID, and fuzzy-based LFC have been presented to mitigate the frequency
and tie-line power violations of interconnected systems with renewable energy sources [23].
In [24], a hybrid approach comprising anopheles search algorithm and artificial intelligence
techniques has been introduced to design PID-LFC incorporated in a triple interconnected
hybrid system including solar, biomass, and fuel cell-based plants. Masuta et al. [25]
presented a coordinated LFC for conventional power plants, battery energy storage system,
heat pump water heater, and electric vehicles in addition to renewable energy sources.
Dutta et al. [26] introduced an emotional controller for LFC inserted in a two area hybrid
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power system with solar and biomass generating sources in addition to electric vehicles.
Salp swarm algorithm (SSA) has been used to tune the parameters of LFC-PID inserted in a
multi-area hybrid power system with renewable energy sources [27]. A sliding mode-based
LFC has been incorporated in a multi-area interconnected system with integrated RESs [28];
moreover, the authors investigated the system asymptotic stability via Lyapunov theory
on the basis of a linear matrix inequality technique. In [29], the authors identified the
optimal gains of FOPID-LFC using an improved chaotic atom search optimizer (IASO);
the controller was inserted in a multi-area system with multi-hybrid sources such that the
ITAE of the frequency and exchange power violations is minimized. A multi-area hybrid
source interconnected system including photovoltaics (PV), diesel engines, micro hydro
generating units, and fuel cells as storage system has been established and controlled via
fuzzy logic-based LFC [30]. Three types of LFC controllers were introduced in [31]: cas-
caded fractional order controller, three degrees of freedom PID, and tilt integral derivative
one. The presented controllers have been installed in an interconnected power system with
wind generation systems. Moreover, equilibrium optimizer (EO) has been employed to
tune the gains of different controllers. A fractional order two degrees of freedom-based
LFC has been designed using Quasi-oppositional HHO to achieve stable frequency for two
identical area power systems including PV, biogas unit, wind turbine, and thermal power
plant [32]. Xu et al. [33] presented an artificial sheep algorithm-based LFC installed in an
interconnected-area with RESs. In [34], the author used teaching learning-based optimizer
(TLBO) to get the optimal parameters of automatic LFC incorporated in a multi-source
system of thermal, hydro, and gas plants. The authors used different fitness functions
such as integral squared error (ISE), IAE, integral time squared error (ITSE), and ITAE to
assess the presented approach. A reference offset governor approach has been used by
Tedesco et al. [35] to simulate the LFC in a multi-area microgrid with renewable energy
sources. A power control approach of hybrid renewable energy systems has been intro-
duced in [36]. A parallel buck-boost converter controlled via fuzzy logic control has been
constructed and installed in a hybrid renewable energy-based system [37].

The reported methods employed many metaheuristic optimizers and other artificial
intelligence techniques, such as fuzzy logic and ANFIS, in designing the LFC. Many of
the used optimizers are unable to obtain the desired results due to getting stuck in local
optima. Moreover, the others need several parameters that should be defined by the
user. Furthermore, the artificial intelligence-based approaches are not accurate due to
the imprecise defined data, and also, they require excessive data for training. All these
shortcomings are taken in consideration when conducting the present analysis.

The aim of this work is to design a FOIPD controller based LFC via a recent approach
using the skill optimization algorithm (SOA). The algorithm is responsible for identifying
the unknown parameters of the considered controller such that the integral time absolute
error of the frequency and exchange power deviations is minimized.

The work contributions can be listed as follows:

• A new skill optimization algorithm (SOA)-based methodology is proposed to design
FOPID-LFC installed with interconnected systems with RESs.

• Two power systems are investigated, PV/thermal and thermal/wind turbine/thermal/PV,
at different load disturbances.

• An extensive comparison of CBOA, JSOA, BO, TDO, and AOS is conducted.
• Statistical tests of Friedman ANOVA table, Wilcoxon rank test, Friedman rank test,

and Kruskal Wallis test are implemented.
• The competence and reliability of the proposed SOA are confirmed via the obtained results.

The paper is organized as follows: Section 2 presents the mathematical model of the
interconnected system. Section 3 explains the main principle of a fractional-order PID
controller (FOPID). The proposed skill optimization algorithm is presented in Section 4,
while Section 5 introduces a formulation using the proposed optimization problem. The
numerical analysis is given in Section 6, while Section 7 handles the conclusions.
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2. Model of Interconnected Systems

Two multi-interconnected multi-sources systems are constructed and analyzed in this
work. The first one covers two areas with photovoltaic (PV) with maximum power point
tracker (PV) and thermal plants. The second system has four-interconnected plants com-
prising PV, wind turbine (WT), and two thermal units with GDB and GRC. Many reported
works have been conducted to model PV and WT-based generating systems [38–40]. The
considered systems are investigated under different load disturbances, and the mathemati-
cal model of each plant is presented in this section.

2.1. PV Plant Model

The PV generation system comprises solar cells that may be configured in series
and/or parallel to generate the required power and cover the customer′s needs. The
generated power from the PV system is affected by the variation in weather conditions
such as irradiance and temperature. Hence, the PV panel output voltage can be written as
follows [41]:

Vpv =

(
nsεkT

Q

)
ln
(npGIph − I + np Io

np Io

)
−
(

ns IRs

np

)
(1)

where I and Vpv denote the PV panel output current and voltage, ns and np are the number
of series and parallel cells, ε is the factor of completion, k represents the Boltzmann constant,
T is the PV panel temperature, Q represents the electron charge, G is the irradiance in
W/m2, Iph and Io are the photo and saturation currents, and Rs denotes the cell series
resistance. The characteristics of the PV panel are nonlinear. The PV panel power-voltage
(P-V) curve has a unique global maximum power (GMP) as shown in Figure 1, and it is
essential to monitor this point to enhance the PV panel performance and maximize its
efficiency. This target is achieved via MPPT which tunes the duty cycle of the DC-DC
converter at the PV panel terminals. Many approaches have been used in simulating the
MPPT; one of the most popular is called incremental conductance (INC) [42], which is used
in this work.

Sustainability 2022, 14, 14999 5 of 25 
 

𝐺2 = (

𝑀1
𝐿𝐶⁄

𝑆2 + (
1
𝑅𝐶)

𝑆 +
1
𝐿𝐶

)(
1 − 𝑒

−𝑆𝑇𝑠
2⁄

1 + 𝑒
−𝑆𝑇𝑠

2⁄
)(

𝑀2

1 + 𝑆𝑇𝑠
) (4) 

where 𝜔 represents the angular frequency of the grid, 𝑅, 𝐶, and 𝐿 denote the output 

resistance, capacitance, and inductance of the converter, 𝑇𝑠  represents the simulation 

time, 𝑀1 and 𝑀2 represent the voltage gains of the buck converter and inverter, respec-

tively. 

 

Figure 1. I-V and P-V characteristics of PV panel. 

2.2. Model of WT 

The wind turbine (WT) operation is characterized by the coefficient of power (𝐶𝑝); 

this depends on important parameters known as the tip ratio (λ) and the pitch angle of 

blade (β). The WT output power can be maximized by keeping the value of the tip speed 

ratio at its optimum value. The value of λ can be calculated as [44], 

𝜆 =
𝜔𝑡𝑟

𝑉𝑤
 (5) 

where 𝜔𝑡 is the mechanical angular speed of the turbine, 𝑟 denotes the radius of the 

turbine, and 𝑉𝑤 is the wind speed. The wind power can be calculated as [45], 

𝑃𝑊 =
1

2
𝜌𝐴𝐶𝑝(𝜆, 𝛽)𝑉𝑊

3 (6) 

where 𝜌 is the air density and 𝐴 denotes the swept area of turbine blades. The value of 

the power coefficient can be expressed as follows:  

𝐶𝑝 = (0.44 − 0.0167𝛽) sin (
𝜋(𝜆 − 2)

15 − 0.3𝛽
) − 0.00184(𝜆 − 3)𝛽 (7) 

The wind turbine output power can be calculated as [46], 

𝑃𝑚 = 𝐶𝑝(𝜆, 𝛽)𝑃𝑊 (8) 

The WT output power variations versus the rotor speed are shown in Figure 2.  

The wind plant transfer function can be expressed as [47], 
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) (9) 

Figure 1. I-V and P-V characteristics of PV panel.
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This approach depends on the derivative of the PV power to the voltage in three
considered regions which are GMP right, GMP, and GMP left as follows:

dPpv
dVpv

> 0 At right o f GMP
dPpv
dVpv

= 0 At GMP
dPpv
dVpv

> 0 At le f t o f GMP

(2)

where Ppv represents the PV module output power. Finally, the PV generating unit includ-
ing PV panel, DC-DC converter, MPPT, and inverter can be represented as two cascaded
blocks with two gains as follows [43]:

G1 =

(
S2

S2 + ω2

)(
Vpv
(
S2 + ω2)(S2 + 2ω2)
kS2(S2 + 4ω2)

)(
1− e−STs

STs

)
(3)

G2 =

 M1
LC

S2 +
(

1
RC

)
S + 1

LC

(1− e
−STs

2

1 + e
−STs

2

)(
M2

1 + STs

)
(4)

where ω represents the angular frequency of the grid, R, C, and L denote the output
resistance, capacitance, and inductance of the converter, Ts represents the simulation time,
M1 and M2 represent the voltage gains of the buck converter and inverter, respectively.

2.2. Model of WT

The wind turbine (WT) operation is characterized by the coefficient of power (Cp); this
depends on important parameters known as the tip ratio (λ) and the pitch angle of blade
(β). The WT output power can be maximized by keeping the value of the tip speed ratio at
its optimum value. The value of λ can be calculated as [44],

λ =
ωtr
Vw

(5)

where ωt is the mechanical angular speed of the turbine, r denotes the radius of the turbine,
and Vw is the wind speed. The wind power can be calculated as [45],

PW =
1
2

ρACp(λ, β)VW
3 (6)

where ρ is the air density and A denotes the swept area of turbine blades. The value of the
power coefficient can be expressed as follows:

Cp = (0.44− 0.0167β) sin
(

π(λ− 2)
15− 0.3β

)
− 0.00184(λ− 3)β (7)

The wind turbine output power can be calculated as [46],

Pm = Cp(λ, β)PW (8)

The WT output power variations versus the rotor speed are shown in Figure 2.
The wind plant transfer function can be expressed as [47],

GWT(s) =

(
Kpw1

(
1 + sTpw1

)
1 + s

)(
Kpw2

1 + sTpw2

)(
Kpw3

1 + s

)
(9)

where Kpw1, Kpw2, and Kpw3 denote the wind plant gains while Tpw1, Tpw2, and Tpw3 are the
wind plant time constants.
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Figure 2. WT output power versus the rotor speed.

2.3. Thermal Plant Model

A thermal generating unit contains a steam turbine as prime mover, speed governor,
reheater, and generating unit. The transfer functions of all these components can be written
as follows [48]:

Gt =
Kt

1 + TtS
(10)

Gg =
Kg

1 + TgS
(11)

Gr =
1 + KrTrS

1 + TrS
(12)

Ggen =
Kp

1 + TpS
(13)

where Gt, Gg, Gr, and Ggen denote the turbine, governor, reheater, and generator transfer
functions, respectively, Kt, Kg, Kr, and Kp denote the gains of turbine, governor, reheater,
and generator, respectively, Tt, Tg, Tr, and Tp are the time constants of the stated compo-
nents, respectively. As stated before, the authors considered two interconnected multi-
source power systems. The first one is a PV/thermal system, and Figure 3 shows the block
diagram of the connected system. The second system is thermal/WT/thermal/PV system;
both GDB and GRC of thermal units are considered; the architecture of such a system is
shown in Figure 4.

Sustainability 2022, 14, 14999 7 of 25 
 

 

Figure 3. The considered PV/thermal connected power system. 

. 

Figure 4. The architecture of thermal/WT/thermal/PV system. 

3. Fractional-Order PID Controller (FOPID) 

A fractional-order PID controller (FOPID) was presented in [49]; it has superior per-

formance compared to the conventional PID for closed-loop systems. FOPID is different 

from the conventional PID as the order of its integral and derivative is not an integer. This 

gives the controller more freedom in the controller tuning, resulting in a better dynamic 

performance of FOPID than the conventional PID. Five parameters are used to identify 

such a controller, kp, ki, kd, λd, and μ, and the controller transfer function can be expressed 

as, 

𝐺𝑐 = 𝑘𝑝 +
𝑘𝑖
𝑆𝜆𝑑

+ 𝑘𝑑𝑆
𝜇 , 𝜆, 𝜇 > 0 (14) 

By solving Equation (12), one can get the controller output as follows: 

𝑢(𝑡) = 𝑘𝑝𝑒(𝑡) + 𝑘𝑖𝐷
−𝜆𝑑𝑒(𝑡) + 𝑘𝑑𝐷

−𝜇𝑒(𝑡) (15) 

where 𝑒(𝑡) denotes the input of FOPID; the controller is inserted before the plant to feed 

it with the reference input such that the error between the reference input and the plant 

actual output is minimized. The FOPID performance can be enhanced via tuning the pa-

rameters 𝜆𝑑  and 𝜇.  which is This is the approach proposed here.  

Figure 3. The considered PV/thermal connected power system.



Sustainability 2022, 14, 14999 7 of 25

Sustainability 2022, 14, 14999 7 of 25 
 

 

Figure 3. The considered PV/thermal connected power system. 

. 

Figure 4. The architecture of thermal/WT/thermal/PV system. 

3. Fractional-Order PID Controller (FOPID) 

A fractional-order PID controller (FOPID) was presented in [49]; it has superior per-

formance compared to the conventional PID for closed-loop systems. FOPID is different 

from the conventional PID as the order of its integral and derivative is not an integer. This 

gives the controller more freedom in the controller tuning, resulting in a better dynamic 

performance of FOPID than the conventional PID. Five parameters are used to identify 

such a controller, kp, ki, kd, λd, and μ, and the controller transfer function can be expressed 

as, 

𝐺𝑐 = 𝑘𝑝 +
𝑘𝑖
𝑆𝜆𝑑

+ 𝑘𝑑𝑆
𝜇 , 𝜆, 𝜇 > 0 (14) 

By solving Equation (12), one can get the controller output as follows: 

𝑢(𝑡) = 𝑘𝑝𝑒(𝑡) + 𝑘𝑖𝐷
−𝜆𝑑𝑒(𝑡) + 𝑘𝑑𝐷

−𝜇𝑒(𝑡) (15) 

where 𝑒(𝑡) denotes the input of FOPID; the controller is inserted before the plant to feed 

it with the reference input such that the error between the reference input and the plant 

actual output is minimized. The FOPID performance can be enhanced via tuning the pa-

rameters 𝜆𝑑  and 𝜇.  which is This is the approach proposed here.  

Figure 4. The architecture of thermal/WT/thermal/PV system.

3. Fractional-Order PID Controller (FOPID)

A fractional-order PID controller (FOPID) was presented in [49]; it has superior per-
formance compared to the conventional PID for closed-loop systems. FOPID is different
from the conventional PID as the order of its integral and derivative is not an integer. This
gives the controller more freedom in the controller tuning, resulting in a better dynamic
performance of FOPID than the conventional PID. Five parameters are used to identify such
a controller, kp, ki, kd, λd, and µ, and the controller transfer function can be expressed as,

Gc = kp +
ki

Sλd
+ kdSµ, λ, µ > 0 (14)

By solving Equation (12), one can get the controller output as follows:

u(t) = kpe(t) + kiD−λd e(t) + kdD−µe(t) (15)

where e(t) denotes the input of FOPID; the controller is inserted before the plant to feed it
with the reference input such that the error between the reference input and the plant actual
output is minimized. The FOPID performance can be enhanced via tuning the parameters
λd and µ. which is This is the approach proposed here.

The FOPID controller is simulated in Simulink via FOMCON Toolbox. It depends on
fractional-order calculus to model, design, and control the system. There are block sets
provided by this toolbox from which PIλDµ (FOPID) controller can operate.

4. The Proposed Skill Optimization Algorithm

The skill optimization algorithm (SOA) was introduced by Givi1 et al. [50]. It is
inspired by human efforts to develop enhanced skills. In life, the people (members of SAO)
strive to improve their skills via learning. The approach begins by initializing the members
randomly. The population matrix of SOA can be formulated as follows:

X =



X1
...

Xi
...

XN

 =



x1,1 . . . x1,d . . . x1,m
...

...
...

...
...

xi,1 . . . xi,d . . . xi,m
...

...
...

...
...

xN,1 . . . xN,d . . . xN,m

 (16)

where Xi is the ith candidate, xi,d denotes the dth variable value proposed via the ith member
of the population, N represents the number of members, and m denotes the number of
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considered variables. Each row in the population matrix represents the candidate solution;
the fitness function of each one is calculated and expressed as follows:

F =



F1
...
Fi
...

FN

 =



F(X1)
...

F(Xi)
...

F(XN)

 (17)

where Fi denotes the fitness value of the ith candidate solution; the best fitness value
recognizes the best member and vice versa. During the iterative process followed in SOA,
the fitness values are updated in addition to the worst and best members. Two phases are
followed in SOA to update the population members, which are exploration and exploitation.
In the first stage, the skill learning process is conducted via experts, while the second stage
depends on the activities and individual efforts. The main objective of the exploration
phase is to search for the global solution in the search space via moving the algorithm
members under the guidance of other members. The original optimal area is identified
properly when the exploration power is increased. On the other hand, the exploitation
phase aims at local search, which helps in converging better solutions.

4.1. Exploration Phase

In this phase, the population member strives to enhance his skill via an expert member
who has a good condition based on fitness value. The expert member is selected randomly
from the members with better fitness values than the considered member. It guides the
population member to different locations in the search space via learning the skill to do
this. The new location is accepted when its fitness value is improved, this can be modeled
as follows:

xP1
i,d = xi,d + rand× (Ei,d − I × xi,d), Ei = Xki f Fk < Fi (18)

xi,d =

{
xP1

i,d i f FP1
i < Fi

xi, d i f FP1
i ≥ Fi

(19)

where xP1
i,d denotes the updated position of member i, d in the first phase (P1), FP1

i,d is the
fitness value of xP1

i,d , Ei represents the selected expert member, Ei,d is the dth dimension of
the expert member, rand is a random number in range [0, 1], and I represents a random
number that has a value of either 1 or 2.

4.2. Exploitation Phase

In this phase, each member strives to enhance the skill gained in the exploration
phase via individual activity and practice. It is modeled as a local search to increase
the exploitation such that the member tries to enhance his fitness value. This can be
conducted as,

xP2
i,d =

{
xi,d +

1−2×rand×xi,d
t i f rand < 0.5

xi,d +
LBj+rand(UBj−LBj)

t i f rand < 0.5
(20)

xi,d =

{
xP2

i,d i f FP2
i < Fi

xi, d i f FP2
i ≥ Fi

(21)

where xP2
i,d is the updated position of member i, d in the second phase (P1), FP2

i,d represents
the fitness value of xP2

i,d , t is the number of iterations, UBj and LBj are the upper and lower
limits of the jth variable. The steps followed in SOA are given in Figure 5.
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5. The Proposed Optimization Problem

The problem of designing an LFC inserted in interconnected RESs is formulated as an
optimization problem with a constrained fitness function, the formulation of the proposed
optimization problem and the solution methodology is presented in this section.

5.1. The Fitness Function

In this work, the authors considered the integral time absolute error (ITAE) of fre-
quency and exchange power violations as the target to be minimized. ITAE integrates the
time multiplied by absolute error over a specified time; the ITAE tuning crops systems that
settle abundantly more rapidly than the other tuning methods that use IAE and ISE. The
considered variables to be identified are the FOPID parameters, kp, ki, kd, λd, and µ.

The fitness function can be written as follows [6]:

Minimize ITAE =
∫ t

0

(
(∑ na

i=1|∆Fi + ∆Ptie,i|).t
)

dt (22)
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where ∆Fi and Ptie,i are the violations in ith area frequency and exchange power, respectively,
t denotes the specified time, and na is the number of interconnected plants. The constraints
accompanying the optimization problem can be written as,

kp
min ≤ kp < kp

max

ki
min ≤ ki < ki

max

kd
min ≤ kd < kd

max

λd
min ≤ λd < λd

max

µmin ≤ µ < µmax

(23)

where min and max denote the minimum and maximum limits of the scaling variable, and
have been set in the range 0.1–2 [51].

5.2. The SOA-Based Solution Methodology

The SOA-based methodology is responsible for identifying the optimal parameters
of FOPID, resulting in minimum ITAE. The controller with the best parameters has a
small input signal (e(t)) which is the difference between the plant′s actual output (y(t)) and
reference input (w(t)). The controller feeds the power plant with the required signal that
helps in mitigating the violations in both frequency and exchange power. The configuration
of a power plant with the proposed SOA-FOPID is shown in Figure 6. The adapted
parameters of the FOPID controller are kp, ki, kd, λd, and µ. They are identified via the
proposed SOA to minimize the error signal (e(t)).
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6. Numerical Analysis

In this work, the designed FOPID via SOA is investigated via two interconnected multi-
source power systems. The first system is a PV plant connected to a thermal generating
unit. The second system contains four power systems, namely, two thermal generation
plants, a wind turbine, and PV. Additionally, the effect of GDB and GRC are considered
in the thermal plants. Furthermore, different load disturbances have been analyzed in
both considered systems. The proposed SOA is compared to other approaches using the
chef-based optimization algorithm (CBOA), jumping spider optimization algorithm (JSOA),
Bonobo optimization (BO), Tasmanian devil optimization (TDO), and Atomic orbital search
(AOS). All approaches are implemented for 50 population size, 100 iterations, and 10
independent runs.

6.1. Two-Interconnected Power System

The two-part interconnected power system with the proposed FOPID is modeled in
Simulink/Matlab. The system configuration is shown in Figure 7. The system parameters
given in [9] are used in this work. The PV plant and thermal generator capacities are
500 MW and 2000 MW, respectively. The adapted parameters of the FOPID controller
installed with the PV plant are kp1, ki1, kd1, λd1, and µ1, while those of the controller of the
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thermal plant are kp2, ki2, kd2, λd2, and µ2. The source of contingency is a sudden change in
the load in one area, which leads to high oscillations in the power system frequency and
exchange power. This oscillation must be damped via LFC.
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The first considered load disturbance is 10% on the PV plant. The optimal gains
of the FOPID and the value of the best fitness function obtained via the proposed SOA
and the others during ∆PL1 = 10% are tabulated in Table 1. The results reveal that the
best fitness value is 6.7506 obtained via the proposed SOA; the TDO comes in the second
rank achieving ITAE of 6.7558. On the other hand, the worst optimizer is AOS, with a
fitness value of 8.0539. Moreover, the elapsed time of each optimizer is measured. The
proposed SOA is not the best in terms of computational time; however, it achieved the
best fitness value which is the target of solving the considered problem. The variations
of fitness value versus the iteration number for all considered approaches are shown in
Figure 8. Moreover, the statistical parameters that assess the optimizer performance during
the iteration process are given in Table 2. As the reader can see, the proposed SOA achieved
the best variance and standard deviation (Std. dev.) with values of 1.1083 and 0.5277,
respectively, outperforming all other optimizers. Furthermore, the time responses of ∆F1,
∆F2, and ∆Ptie for the PV/thermal system at ∆PL1 = 10% are shown in Figure 9. The curves
confirm the preference for the FOPID designed via the proposed SOA in such a case.

Table 1. FOPID parameters at ∆PL1 = 10% in PV/thermal system.

CBOA JSOA BO TDO AOS SOA

kp1 1.0000 1.0000 1.0000 0.99998 1.0000 1.0000
ki1 1.0000 1.0000 1.0000 0.48677 0.97191 0.9971
kd1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
λd1 0.7725 0.23273 0.64308 0.33975 0.98977 0.35946
µ1 0.65477 1.0000 0.69726 0.83521 0.65565 0.87552
kp2 1.0000 1.0000 1.0000 0.26872 0.99882 0.99059
ki2 1.0000 1.0000 1.0000 0.99909 1.0000 0.8911
kd2 0.22547 1.0000 0.086092 0.99938 1.0000 0.13447
λd2 0.53196 1.0000 0.00000 0.20817 1.0000 0.87058
µ2 0.83065 1.0000 0.53543 0.77218 1.0000 0.977

Elapsed time (Sec.) 8924.533 3868.488 4265.285 6622.671 4707.0259 8151.158

Fitness value 7.1173 8.0539 6.9705 6.7558 8.0943 6.7506
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To confirm the proposed SOA validity, statistical tests were conducted using the
Friedman ANOVA table, Wilcoxon rank test, Friedman rank test, and Kruskal Wallis test.
The results of these tests are tabulated in Table 3. The Wilcoxon test results revealed that,
JSOA and AOS reject the null equal medians while CBOA, BO, and TDO accept the null
equal medians. Therefore, the SOA has a significant difference from the other approaches.
Regarding the Friedman rank test, the SOA came in the first rank with a value of 3.2, then
CBOA, TDO, BO, AOS, and JSOA came next to the proposed approach. The p-values for
the Friedman, ANOVA, and Kruskal Wallis tests were 6.8140e-05, 0.0308, and 1.3583e-04,
respectively. The Friedman test p-value confirmed the significant difference in column
means, while Kruskal Wallis p-value revealed the rejection of the null hypothesis of data
with the same distribution. The fitness functions during separate trials via ANOVA Wallis
for the PV/thermal system at ∆PL1 = 10% are shown in Figure 10. Regarding the boxplots
given in Figure 10, the penguins obtained via the proposed SOA, TDO, and CBOA have
the smallest flippers, while the others have larger flippers. This confirms that CBOA, TDO,
and the proposed SOA reject the null hypothesis.
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Table 3. Statistical tests of Friedman ANOVA, Wilcoxon rank, Friedman rank, and Kruskal Wallis for
PV/thermal system at ∆PL1 = 10%.

CBOA JSOA BO TDO AOS SOA

Wilcoxon rank test
p-value 0.7913 0.0090 0.1405 0.1212 0.0073 -

h-value 0 1 0 0 1 -

Null hypothesis rejection ×
√

× ×
√

-

Friedman rank 4.4 9.6 8.1 5.0 8.7 3.2

Friedman test p-value 6.8140e-05

p-value based on ANOVA 0.0308

p-value based on Kruskal Wallis test 1.3583e-04
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∆PL1 = 10%.

A second load disturbance of 10% is assumed at the thermal plant: the optimal
parameters of the controllers via SOA and others are given in Table 4 in addition to the
other approaches. The proposed SOA succeeded in achieving the best ITAE of 1.8779,
outperforming all considered approaches. The worst approach is JSOA, with a fitness value
of 3.8959.

Table 4. FOPID parameters at ∆PL2 = 10% in PV/thermal system.

CBOA JSOA BO TDO AOS SOA

kp1 0.36569 0.1000 0.1000 0.10003 0.11668 0.1001
ki1 0.1 1.0000 0.1000 0.10485 0.10334 0.1
kd1 0.3708 0.1000 0.71061 0.99984 0.11471 0.14113
λd1 0.8262 1.0000 0.61687 0.67797 0.72813 0.20952
µ1 0.92171 0.90165 0.99761 0.94303 0.96683 0.78574
kp2 0.87133 1.0000 0.99612 0.20311 0.11802 0.39052
ki2 1.0000 1.0000 1.0000 0.99984 0.99783 1.0000
kd2 1.0000 1.0000 1.0000 0.99577 0.96641 1.0000
λd2 0.28196 1.0000 0.2517 0.10308 0.96431 0.28383
µ2 0.95274 0.1000 0.99088 0.87324 0.11028 0.73404

Fitness
value 2.9092 3.8959 2.0181 2.0489 2.4266 1.8779

The performances of the approaches during the iterative process are shown in Figure 11;
the curves confirmed the preference for the proposed SOA. The time responses of frequency
and power exchange are given in Figure 12. The proposed SOA-based methodology
achieved excellent performance for the PV/thermal interconnected power system subjected
to different load disturbances.
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6.2. Four Interconnected Power System

Most power systems have many generating units, which may be conventional and/or
renewable energy. In this section, the authors analyze the proposed LFC-FOPID with a
thermal/WT/thermal/PV system; the GDB and GRC of thermal units are considered (see
Figure 4). This configuration is constructed in Simulink/Matlab, as shown in Figure 13. In
such a system, four FOPID controllers are installed with the four considered plants. The
controller with the first thermal plant has adapted parameters of kp1, ki1, kd1, λd1, and µ1,
while the second with the wind energy plant (Area 2) has kp2, ki2, kd2, λd2, and µ2. The third
controller is installed with the second thermal plant (Area 3), it has adapted parameters
of kp3, ki3, kd3, λd3, and µ3. The last controller is installed with the PV plant (Area 4) with
parameters of kp4, ki4, kd4, λd4, and µ4. These parameters are identified via the proposed
SOA. The first considered disturbance is 1% on the first thermal plant; the results obtained
in such a case are tabulated in Table 5. The obtained results revealed that, the proposed
SOA achieved the first rank in term of fitness value with a value of 0.0327, TDO comes
in the second rank with a fitness value of 0.0368, while the worst optimizer is BO with
ITAE of 0.3565. Moreover, the time responses of frequency and exchange power violations
obtained via all considered approaches are shown in Figure 14; the zoomed curves show
the better performance of SOA compared to the others. The time response performance
specifications of frequency and tie-line power violations, including rise time (tr), settling
time (ts), minimum settling time (ts,min), maximum settling time (ts,max), overshoot (OS),
undershoot (Us), and peak time (tp) are calculated and given in Table 6. These parameters
are helpful in clarifying the preference for the proposed SOA in achieving system stability
after an acceptable time.
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Table 5. FOPID parameters at ∆PL1 = 1% in thermal/WT/thermal/PV system.

CBOA JSOA BO TDO AOS SOA

kp1 0.030335 0.015797 1.0000 0.01 0.013113 0.027242
ki1 0.013487 0.020344 0.010001 0.102469 0.150434 0.014646
kd1 0.01 0.01 0.0100 0.01 0.033762 0.032416
λd1 0.016799 0.01 0.999969 0.010007 0.0100 0.031366
µ1 0.033807 0.01 0.010001 0.01 0.0100 0.03194
kp2 0.054376 0.01 0.278846 0.010621 0.059971 0.024249
ki2 0.014237 0.01 0.253138 0.029362 0.0100 0.032453
kd2 0.010332 0.064301 0.066672 0.01001 0.0100 0.023304
λd2 0.014425 0.01 0.482488 0.493617 0.025474 0.012931
µ2 0.032054 0.01 0.0100 0.119511 0.02015 0.030971
kp3 0.023032 0.01 0.834948 0.018221 0.05298 0.012431
ki3 0.025541 0.016533 0.858446 0.010075 0.085947 0.025044
kd3 0.088584 0.065911 1.0000 0.170223 0.034121 0.031075
λd3 0.01 0.106448 0.642914 0.167097 0.0100 0.030966
µ3 0.042053 0.012318 0.444737 0.01 0.32664 0.012818
kp4 0.01 0.02 0.0100 0.036939 0.012773 0.018763
ki4 0.01134 0.015331 0.020992 0.010394 0.032627 0.019244
kd4 0.028713 0.01 0.47806 0.01 0.011926 0.015534
λd4 0.076208 0.028389 0.0100 0.012869 0.010865 0.0312
µ4 0.01 0.018096 1.000 0.098181 0.253268 0.032036

Elapsed time (Sec.) 10,889.171 6675.141 6287.736 10,042.1075 6630.9976 9471.469

Fitness value 0.0511 0.06301 0.3565 0.0368 0.0571 0.0327
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Figure 14. The time responses of (a) ∆F1, ∆F2 (b) ∆F3, ∆F4, (c) ∆Ptie1, ∆Ptie2, and (d) ∆Ptie3, ∆Ptie4 of
thermal/WT/thermal/PV system at ∆PL1 = 1%.

Table 6. Performance specifications of ∆F1, ∆F2, ∆F3, ∆F4, ∆Ptie1, ∆Ptie2, ∆Ptie3, and ∆Ptie4 of four
interconnected system at ∆PL1 = 1%.

∆F1

tr (Sec.) ts (Sec.) ts,min (Sec.) ts,max (Sec.) Os (pu) Us (pu) tp (Sec.)

CBOA 0.218126 112.4181 −0.05914 0.042865 17530.68 12779.44 3.967595
JSOA 0.42883 112.3608 −0.05925 0.041337 2430.683 1765.517 3.976048

BO 5.394888 99.65318 −0.04436 0.064188 533.3823 782.7876 6.314557
TDO 0.259345 116.7282 −0.05873 0.040585 10456.03 7294.803 3.943959
AOS 0.369491 116.4693 −0.05909 0.043968 3735.791 2854.158 3.967459
SOA 0.213651 116.1438 −0.05913 0.044413 18632.35 14071.23 3.966584

∆F2

tr (Sec.) ts (Sec.) ts,min (Sec.) ts,max (Sec.) Os (pu) Us (pu) tp (Sec.)

CBOA 0.002726 124.7015 −0.09662 0.065934 47160.75 32251.03 6.758115
JSOA 0.029639 124.4023 −0.09886 0.064269 4352.023 2894.324 6.707654

BO 0.004961 99.71404 −0.04461 0.077011 37488.43 37156.86 73.48295
TDO 0.005394 133.0857 −0.08998 0.063528 22146.13 15705.53 6.754989
AOS 0.018928 132.897 −0.09696 0.067587 6734.498 4764.106 6.739581
SOA 0.002528 132.5271 −0.09692 0.067685 51019.06 35699.57 6.745544

∆F3

tr (Sec.) ts (Sec.) ts,min (Sec.) ts,max (Sec.) Os (pu) Us (pu) tp (Sec.)

CBOA 0.243729 135.2427 −0.08438 0.057852 17936.97 12365.7 4.385474
JSOA 0.432962 134.8931 −0.08456 0.05576 3334.456 2264.804 4.394015

BO 0.661445 99.91756 −0.06307 0.087805 744.1215 1175.131 76.12008
TDO 0.281637 135.799 −0.08369 0.056156 11618.06 7862.521 4.354946
AOS 0.378296 135.5671 −0.0844 0.058481 4932.842 3487.269 4.386527
SOA 0.240396 135.5081 −0.08441 0.059358 18688.96 13212.79 4.385127

∆F4

tr (Sec.) ts (Sec.) ts,min (Sec.) ts,max (Sec.) Os (pu) Us (pu) tp (Sec.)

CBOA 0.646564 129.2411 −0.00681 0.003278 2336.508 1173.331 9.174419
JSOA 1.339719 125.0202 −0.00841 0.001541 265.737 67.00468 9.349339

BO 77.84681 99.29976 0.013333 0.019746 21.57953 28.14631 84.9515
TDO 0.772649 137.297 −0.00538 0.003661 1025.934 766.6746 5.254582
AOS 1.150486 136.6 −0.00596 0.002898 308.7192 198.8507 9.114361
SOA 0.625838 126.1221 −0.00607 0.00385 2357.405 1559.14 9.069103
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Table 6. Cont.

∆Ptie-1

tr (Sec.) ts (Sec.) ts,min (Sec.) ts,max (Sec.) Os (pu) Us (pu) tp (Sec.)

CBOA 0.000637 118.5854 −0.00452 0.003022 161006.8 170204.2 2.364085
JSOA 0.049687 118.455 −0.0046 0.004776 36540.76 35302.54 2.36612

BO 0.882234 99.87703 −0.01834 −0.00146 104.4635 0 7.694692
TDO 0.013741 118.7534 −0.00409 0.004767 505700.3 433561.9 2.360746
AOS 0.035581 125.6115 −0.00461 0.004773 71280.16 68873.31 2.36558
SOA 0.000582 118.6747 −0.00459 0.003083 178819.4 186219 2.366509

∆Ptie-2

tr (Sec.) ts (Sec.) ts,min (Sec.) ts,max (Sec.) Os (pu) Us (pu) tp (Sec.)

CBOA 6.057111 125.7488 −0.02237 −0.01003 49.54956 0 8.337896
JSOA 6.007973 125.6896 −0.0224 −0.01006 49.87361 0 8.2875

BO 1.163071 99.60019 −0.01051 0.011322 179.7168 259.602 80.0753
TDO 6.183642 125.8925 −0.02206 −0.01013 47.45189 0 8.469989
AOS 6.040323 125.8636 −0.02244 −0.00994 50.11094 0 8.328108
SOA 6.046111 125.7889 −0.02242 −0.00996 49.86594 0 8.331606

∆Ptie-3

tr (Sec.) ts (Sec.) ts,min (Sec.) ts,max (Sec.) Os (pu) Us (pu) tp (Sec.)

CBOA 0.004796 159.2212 −0.00745 0.00622 26006.25 21791.22 11.3151
JSOA 0.002346 159.1255 −0.00744 0.00625 53840.32 45316.67 11.271

BO 1.105488 99.86355 −0.00686 0.005781 50.67886 178.6869 9.799218
TDO 0.003439 159.3877 −0.00722 0.006008 33852.81 29085.48 11.43047
AOS 0.003184 159.2393 −0.00752 0.00634 39593.22 33481.55 11.30361
SOA 0.004757 159.2366 −0.00751 0.006278 26456.8 22202.1 11.30935

∆Ptie-4

tr (Sec.) ts (Sec.) ts,min (Sec.) ts,max (Sec.) Os (pu) Us (pu) tp (Sec.)

CBOA 3.811909 99.87232 0.00929 0.02338 55.94675 0 10.6354
JSOA 3.795319 99.11462 0.00931 0.023423 56.73186 0 10.57403

BO 0.472669 98.00973 −0.00196 0.024023 2113.074 180.1916 12.07693
TDO 3.871557 110.1162 0.009571 0.022714 51.59852 0 10.77417
AOS 3.765408 109.9693 0.009032 0.023574 57.54973 0 10.62046
SOA 3.789229 100.6543 0.009114 0.023548 57.07933 0 10.63256

It is essential to investigate the designed FOPID controller via the proposed SOA
during variable disturbances. Therefore, the second disturbance considered in the four
interconnected power systems is variable step one, as shown in Figure 15. The time
responses of the frequency and tie-line power violations for this case are shown in Figure 16.
The proposed FOPID controllers succeeded in achieving a stable system by banishing the
changes in frequencies and exchange powers occurring during that disturbance.
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 tr (Sec.) ts (Sec.) ts,min (Sec.) ts,max (Sec.) Os (pu) Us (pu) tp (Sec.) 

CBOA 3.811909 99.87232 0.00929 0.02338 55.94675 0 10.6354 

JSOA 3.795319 99.11462 0.00931 0.023423 56.73186 0 10.57403 

BO 0.472669 98.00973 −0.00196 0.024023 2113.074 180.1916 12.07693 

TDO 3.871557 110.1162 0.009571 0.022714 51.59852 0 10.77417 

AOS 3.765408 109.9693 0.009032 0.023574 57.54973 0 10.62046 

SOA 3.789229 100.6543 0.009114 0.023548 57.07933 0 10.63256 

It is essential to investigate the designed FOPID controller via the proposed SOA 

during variable disturbances. Therefore, the second disturbance considered in the four 

interconnected power systems is variable step one, as shown in Figure 15. The time re-

sponses of the frequency and tie-line power violations for this case are shown in Figure 

16. The proposed FOPID controllers succeeded in achieving a stable system by banishing 

the changes in frequencies and exchange powers occurring during that disturbance.  

Finally, the authors recommend the SOA as an efficient tool to design FOPID-LFC 

installed in multi-interconnected multi-sources power systems, as the obtained results 

confirmed its preferability in all studied load disturbances. 

 

Figure 15. Pattern of variable disturbance. Figure 15. Pattern of variable disturbance.



Sustainability 2022, 14, 14999 21 of 25
Sustainability 2022, 14, 14999 21 of 25 
 

 

 

 

Figure 16. Cont.



Sustainability 2022, 14, 14999 22 of 25Sustainability 2022, 14, 14999 22 of 25 
 

 

Figure 16. The time responses of frequency and exchange power violations for thermal/WT/ther-

mal/PV system with variable disturbance in area 1. 
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stalled with an interconnected system, including renewable energy sources. The target is 
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Two-area and four-area power systems are analyzed. The first system has photovoltaic 

and thermal plants, while the second one comprises photovoltaic, wind turbine, and two 

thermal plants with governor dead-band and generation rate constraints. In the photovol-

taic/thermal system, two disturbances are analyzed, which are 10% on the first plant and 

the same on the thermal plant. In the thermal/wind turbine/thermal/photovoltaic system, 

1% and variable load disturbances on the first thermal area are simulated. The proposed 

algorithm is compared to chef-based optimization algorithm, jumping spider optimiza-
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rank test, Friedman rank test, and Kruskal Wallis test) to assess the proposed approach. 

The best fitness values are obtained via the proposed approach with values of 1.8779 pu 

and 0.0327 pu for the two and four areas models, respectively. The capability and robust-

ness of the proposed controller designed via the proposed approach are confirmed. Ac-

celerating the response of the designed controllers in a multi-interconnected area via a 

hybrid optimization approach is recommended for future work. Moreover, investigating 

the stability of the system will be considered in the next paper. 
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Figure 16. The time responses of frequency and exchange power violations for ther-
mal/WT/thermal/PV system with variable disturbance in area 1.

Finally, the authors recommend the SOA as an efficient tool to design FOPID-LFC
installed in multi-interconnected multi-sources power systems, as the obtained results
confirmed its preferability in all studied load disturbances.

7. Conclusions

This work introduces a recent skill optimization algorithm to identify the optimal
parameters of fractional-order proportional integral derivative load frequency control in-
stalled with an interconnected system, including renewable energy sources. The target is
to mitigate the integral time absolute error of frequency and exchange power violations.
Two-area and four-area power systems are analyzed. The first system has photovoltaic
and thermal plants, while the second one comprises photovoltaic, wind turbine, and two
thermal plants with governor dead-band and generation rate constraints. In the photo-
voltaic/thermal system, two disturbances are analyzed, which are 10% on the first plant and
the same on the thermal plant. In the thermal/wind turbine/thermal/photovoltaic system,
1% and variable load disturbances on the first thermal area are simulated. The proposed
algorithm is compared to chef-based optimization algorithm, jumping spider optimization
algorithm, Bonobo optimization, Tasmanian devil optimization, and Atomic orbital search.
The authors also conducted statistical tests (Friedman ANOVA table, Wilcoxon rank test,
Friedman rank test, and Kruskal Wallis test) to assess the proposed approach. The best
fitness values are obtained via the proposed approach with values of 1.8779 pu and 0.0327
pu for the two and four areas models, respectively. The capability and robustness of the
proposed controller designed via the proposed approach are confirmed. Accelerating the
response of the designed controllers in a multi-interconnected area via a hybrid optimiza-
tion approach is recommended for future work. Moreover, investigating the stability of the
system will be considered in the next paper.
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Nomenclature

I PV panel output current r Radius of turbine
Vpv PV panel output voltage Vw Wind speed
ns Number of series cells ρ Air density
np Number of parallel cells A Swept area of turbine blades
ε Factor of completion Gt Steam turbine transfer function
k Boltzmann constant Gg Governor transfer function
T PV panel temperature Gr Reheater transfer function
Q Electron charge Ggen Generator transfer function
G Irradiance in W/m2 Kt Steam turbine gain
Iph Photo current Kg Governor gain
Io Saturation current Kr Reheater gain
Rs Cell series resistance Kp Generator gain
Ppv PV module output power Tt Steam turbine time constant
ω Angular frequency of grid Tg Governor time constant
R Converter output resistance Tr Reheater time constant
C Converter output capacitance Tp Generator time constant
L Converter output inductance kp, ki, kd, λd, and µ Parameters of FOPID controller
Ts Simulation time Kpw1, Kpw2, and Kpw3 Wind plant gains
M1 Buck converter voltage gain Tpw1, Tpw2, and Tpw3 Wind plant time constants
M2 Inverter converter voltage gain e(t) FOPID controller input
Cp Power coefficient ∆Fi Violations in ith area frequency
λ Tip ratio Ptie,i Violations in ith area exchange power
β Pitch angle of blade t Specified time
ωt Mechanical angular speed of turbine na Number of interconnected plants
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