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Abstract: Since the 21st century, China has made many explorations to alleviate the increasingly
serious air pollution problem. This study analyses the spatio-temporal evolution characteristics and
future development of PM2.5 concentration in the Changsha–Zhuzhou–Xiangtan urban agglomeration
from 2008 to 2019. In addition, the driving mechanism of spatial differentiation of PM2.5 concentration
in this urban agglomeration was also investigated. The results were as follows. Firstly, the PM2.5

concentration showed a trend of gradual decline between 2008 and 2019. Secondly, the PM2.5

concentration distribution was high in the northwest and low in the southeast. Thirdly, PM2.5

concentration showed a strong spatial agglomeration. Fourth, except for some rural areas of Chaling
County and Yanling County, the concentration of PM2.5 in other areas was very likely to continue the
past trend of gradual decline. Finally, natural and meteorological conditions played a leading role in
the evolution of PM2.5 concentration. The influence of socioeconomic factors is small now, but the
trend is increasing. To improve air quality deeply, policymakers need to promote comprehensive
control of regional air pollution by simultaneously reducing emissions and taking comprehensive
treatment. They also need to strengthen supervision to prevent excessive pollution in some rural
areas from worsening air quality in the surrounding areas.

Keywords: resource-saving and environment-friendly society; air pollution; Hurst index

1. Introduction

In recent years, haze weather has occurred frequently in China, and high-intensity air
pollution has disturbed most cities, which has brought a serious threat to the sustainable
economic and social development and the health of the people [1]. A high concentration of
PM2.5 is an important factor affecting the formation of haze. PM2.5 in the air comes from
socioeconomic factors such as urbanization dust, coal combustion, and automobile exhaust
emissions. The concentration of PM2.5 is also closely related to natural and meteorological
conditions such as topography, vegetation coverage, air pressure, humidity, and precipi-
tation [2,3]. Therefore, it is important to promote the comprehensive management of the
regional atmospheric environment, to ensure sustainable socioeconomic development, and
to safeguard the health of people by exploring the evolution law and drive mechanism of
PM2.5.

Since 2008, there have been more and more researchers showing their concern with the
theme of PM2.5. On the spatial scale, they are mainly focused on single cities [4,5], urban
agglomeration [6–8], basins [9–11], and countries [12,13]. For example, Zhou et al. [14]
analysed the characteristics and driving factors of the spatio-temporal evolution of PM2.5
concentration in China from 2000 to 2011. Luna et al. [15] performed a spatial and temporal
assessment of PM2.5 in the ambient air of Colombia. In the research content, the analyses
are mainly regarding the physical and chemical properties, spatio-temporal evolution
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trend, spatial heterogeneity, spatial agglomeration, influencing factors, and governance
measures of PM2.5 [16–22]. For example, Li et al. [23] analysed the spatiotemporal evolution
trend of PM2.5 concentration on the global scale. Jin et al. [24] analysed the relationship
between the satellite-retrieved aerosol optical depth (AOD) and the PM2.5 concentration, as
well as their spatio-temporal heterogeneity in the eastern United States from 2003 to 2017.
Carmona et al. [25] analysed the influence of meteorological factors on PM2.5 concentration
in northeastern Mexico. Casallas et al. [26] assessed the impact of policy implementation
on PM2.5 in northwestern South America at different scales. In terms of research methods,
the Moran index [27], geographical detector [28], spatial econometric model [29], land use
regression (LUR) [30], geographically weighted regression (GWR) [31], data envelopment
analysis (DEA) [32], generalized additive model (GAM) [33], STIRPAT [34] and LOESS [35],
etc., were mainly used. For example, Xia et al. [36] used geographically weighted regression
and a geographical detector to analyse the changing trend and determinants of PM2.5
concentration in the Yangtze River Economic Belt from 2000 to 2017. Londoño Ciro and
Cañón Barriga [37] used geographically weighted regression and spatial econometric
models to characterize the temporal and spatial distribution of the urban area of the city of
Medellín-Colombia’s PM2.5 concentration from 2013 to 2014. Kim et al. [38] evaluated the
effect of the Particulate Matter Comprehensive Plan introduced by the Korean government
to improve air quality, and proposed improvement measures. Generally speaking, the
current studies mainly pay attention to the temporal and spatial distribution, evolution
trend, influencing factors, and comprehensive governance of PM2.5 on the city, specific
topography, or national scales, but there is little literature studying the effectiveness of
comprehensive reform experimental areas in atmospheric environmental governance with
PM2.5.

Changsha–Zhuzhou–Xiangtan urban agglomeration is taken as the study area by this
paper, which is one of the first comprehensive reform pilot areas for the construction of a
resource-saving and environment-friendly society (also called a Two Oriented Society) in
China. On the basis of the raster data of PM2.5 concentration from 2008 to 2019, retrieved
from NASA atmospheric remote sensing images, we were concerned with problems of
the construction of Two Oriented Society in this urban agglomeration from the grid scale,
such as the temporal and spatial evolution characteristics, future development trends and
driving factors of PM2.5 concentration. We used the gravity model, Moran index, Hurst
index, and geographical detector in this study. It provides decision-making reference for
the prevention and control of air pollution and the sustainable development of the economy
and society.

2. Materials and Methods
2.1. Description of Changsha–Zhuzhou–Xiangtan Urban Agglomeration

Changsha–Zhuzhou–Xiangtan urban agglomeration is situated in the central and
eastern parts of Hunan Province, including Changsha, Zhuzhou, and Xiangtan. The total
area is about 2.8×104 km2, which is a part of the region in the middle reaches of the Yangtze
River (Figure 1). In 2018, the GDP of this region accounted for 41.98% of Hunan’s GDP. It is
the core growth pole of Hunan’s economic development. With the rapid development of the
economy, this region is also the most intense area of resource consumption and ecological
destruction in Hunan Province. It is the key area for air pollution prevention and control
in China. Changsha–Zhuzhou–Xiangtan urban agglomeration has a high topography
to the east, south, and west, and a low topography to the north. It is a typical humid
subtropical monsoon climate with distinct rains and heat in the same period, four seasons,
rich precipitation, and uneven seasonal distribution. It is controlled by tropical depression
in the summer, and has abundant precipitation. The wind direction is mostly southeast,
which is conducive to the diffusion of PM2.5. Winter is controlled by Mongolian high
pressure, with less precipitation and mostly northwest wind, which easily leads to PM2.5
accumulation. In addition, it is an important heavy industrial base in China, involving
many high-energy and high-pollution industries, such as iron and steel, non-ferrous metals,
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construction machinery, automotive and parts, petrochemical, rail transit, and equipment
manufacturing. Moreover, the main urban areas of Changsha, Zhuzhou, and Xiangtan are
not more than 40 km apart, which also leads to the accumulation of PM2.5 in the region. The
government’s analysis of PM2.5 sources shows that the contribution rate of motor vehicle
exhaust to PM2.5 concentration is close to 25%, and that of industrial emissions is about 20%.
The contribution rates of coal fume, dining fume, and fume are 11.6–12.9%, 10.2–14.3%,
and 13.3–16.3%, respectively [39]. In 2009, the average annual PM2.5 concentration was
62.26 µg/m3, which was much higher than the 10 µg/m3 standard set in the air quality
guidelines issued by the World Health Organization (WHO) in 2005. The construction of
the pilot area for the comprehensive reform of a Two Oriented Society provides not only a
major opportunity but also an arduous challenge for the environmental protection work.
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2.2. Data 
The data used in this study includes PM2.5 concentration raster data, Changsha–

Zhuzhou–Xiangtan urban agglomeration administrative boundary vector data, and 
driving factor data. (1) The annual PM2.5 concentration raster data are retrieved from 
NASA Socioeconomic Data and Applications Centre (https://sedac.ciesin.columbia.edu/, 
accessed on 2 March 2022), from 2008 to 2019. Hammer et al. [40] verified their high ac-
curacy (a resolution of 0.01°×0.01°, R2 = 0.81). Then, the raster data were smoothed for 
three years to ensure their stationarity and reliability. Hourly and monthly PM2.5 con-
centration data were collected by reconstructing 6-hourly PM2.5 datasets from 1960 to 
2020 in China from Zenodo (https://zenodo.org/, accessed on 2 March 2022.). (2) The 
administrative boundary vector data were taken from the Resource and Environmental 

Figure 1. Geographic location of Changsha–Zhuzhou–Xiangtan urban agglomeration (1–11 stands
for Furong District, Tianxin District, Yuelu District, Kaifu District, Yuhua District, Hetang District,
Lousong District, Shifeng District, Tianyuan District, Yuhu District, and Yuetang district, respec-
tively.).

2.2. Data

The data used in this study includes PM2.5 concentration raster data, Changsha–
Zhuzhou–Xiangtan urban agglomeration administrative boundary vector data, and driving
factor data. (1) The annual PM2.5 concentration raster data are retrieved from NASA
Socioeconomic Data and Applications Centre (https://sedac.ciesin.columbia.edu/, ac-
cessed on 2 March 2022), from 2008 to 2019. Hammer et al. [40] verified their high accuracy
(a resolution of 0.01◦ × 0.01◦, R2 = 0.81). Then, the raster data were smoothed for three years
to ensure their stationarity and reliability. Hourly and monthly PM2.5 concentration data
were collected by reconstructing 6-hourly PM2.5 datasets from 1960 to 2020 in China from
Zenodo (https://zenodo.org/, accessed on 2 March 2022.). (2) The administrative bound-
ary vector data were taken from the Resource and Environmental Science and Data Centre
of the Chinese Academy of Sciences (https://www.resdc.cn/, accessed on 2 March 2022).
On the basis of the administrative boundary vector data, this study uses the fishing net tool
of ArcGIS software to create a 3 km× 3 km grid (a total of 3392 grids), calculates the average
PM2.5 concentration of each grid in each year, and establishes the spatial and temporal
database of PM2.5 concentration. (3) Driving factor data: eco-environmental quality data
from China’s historical 1 km resolution eco-environmental quality data (EEQ) from Zenodo;

https://sedac.ciesin.columbia.edu/
https://zenodo.org/
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night-time light index data from an extended time-series (2000–2018) of global NPP-VIIRS-
like night-time light data from the Harvard Dataverse platform [41]; population density
raster data from Scientific Data World Pop dataset (https://hub.worldpop.org/, accessed
on 2 March 2022); altitude; leaf area index (LAI); normalized difference vegetation index
(NDVI); and net primary productivity (NPP) data from the Resource and Environmental
Science and Data Centre of the Chinese Academy of Sciences. The meteorological data of
wind speed, pressure, precipitation rate, specific humidity, and temperature from China’s
meteorological forcing dataset (1979–2018) of the National Tibetan Plateau Data Centre
were also used [42].

2.3. Methods
2.3.1. Gravity Model

The centre of gravity in geography refers to a point in regional space. The forces acting
on the point in all directions remain relatively balanced. The movement of the centre of
gravity can be used to reflect the changes in the spatial distribution of geographical objects
and phenomena. Zhou et al. [14] studied spatial cluster characteristics of PM2.5 in China
using a gravity model. In our study, the centre of gravity is calculated in order to reveal the
PM2.5 pollution spatial migration process. Weight PM2.5 concentration centre of gravity in
the study area is calculated by Equation (1):

X =
∑n

i=1(Wi × Si × Xi)

∑n
i=1(Wi × Si)

, Y =
∑n

i=1(Wi × Si ×Yi)

∑n
i=1(Wi × Si)

(1)

In this equation, X is the longitude of the PM2.5 pollution centre of gravity. Y is
the latitude of the PM2.5 pollution centre of gravity. n is the total number of grids in the
study area, and i is the grid serial number. Xi and Yi are the longitude and latitude of the
geometric centre of grid i, respectively. Wi represents the PM2.5 concentration of grid i,
and Si represents the area of grid i.

2.3.2. Spatial Autocorrelation

We used the global Moran’s I index to test the average similarity of the spatial correla-
tion of PM2.5 concentration in adjacent areas based on the size of the index. The calculation
is performed using Equations (2) and (3):

S0 =
n

∑
i=1

n

∑
j=1

wij (2)

I =
n
S0
×

∑n
i=1 ∑n

j=1 wij
(
Ci − C

)(
Cj − C

)
∑n

i=1
(
Ci − C

)2 (3)

where I is the global Moran index and I ∈ [−1, 1]. When I ∈ (0, 1], it shows that the
research unit has a positive spatial autocorrelation; the higher the value is, the stronger the
spatial aggregation of PM2.5 concentration is. When I ∈ [−1, 0), it shows that the research
unit has a negative spatial autocorrelation; the smaller the value is, the stronger the spatial
discreteness of PM2.5 concentration is. When I = 0, there is no correlation between study
units. n is the number of study units. Ci and Cj denote the PM2.5 concentration values of
the i and j study units, respectively. C is the average PM2.5 concentration of all study units.
wij is the spatial weight value (when unit i is next to j, wij = 1; when not adjacent, wij = 0,).

Local Moran’s I is used to reveal the local spatial autocorrelation of PM2.5 concentra-
tion, that is, the degree of correlation between the PM2.5 concentration of a study unit and
the adjacent unit. The calculation equation is shown in Equation (4).

Ii =
n
(
Ci − C

)
∑n

i=1
(
Ci − C

)2

m

∑
j=1

wij
(
Cj − C

)
, (i 6= j) (4)

https://hub.worldpop.org/
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where Ii is the local Moran index; n is the total number of spatial units; m is the num-
ber of cities geographically adjacent to the spatial unit i; Ci and Cj represent the PM2.5

concentration of the spatial unit i and spatial unit j, respectively; C is the average PM2.5
concentration of all spatial units; and wij is the spatial weight value. At the same time,
the standardized counter Z is often used to test the significance of the Moran index. The
standardized counter of the Moran index is defined as Equation (5):

Z(I) =
[I − E(I)]√

Var(I)
(5)

where Z (I) is the significance level of global Moran’s I, Var (I) is the variance of global
Moran’s I, and E (I) is the mathematical expectation of global Moran’s I. Taking 99%
confidence as an example, when Z (I) < −2.58, it shows that PM2.5 concentration has
the characteristics of negative correlation in spatial distribution, including “low–high”
correlation and “high–low” correlation; when −2.58 ≤ Z (I) ≤ 2.58, it shows that PM2.5
concentration has no spatial autocorrelation and an independent random distribution.
When Z (I) > 2.58, it shows that PM2.5 concentration presents the characteristics of
positive correlation in spatial distribution, including “high–high” aggregation and “low–
low” aggregation, which is also called hot spot and cold spot distribution.

2.3.3. Hurst Index

In this study, the Hurst index (H) is used to predict the future evolution trend of PM2.5
concentration in various portions of the study area. The Hurst index is proposed by the
British scholar Hurst to quantitatively describe the long-range similarity or persistence
of the time series. Generally, it is calculated by the method of R/S. The time series for
obtaining the response at times t1, t1, . . . , tn are T1, T1, . . . , Tn. For any positive integer
τ ≥ 1, the average of the time series is calculated by Equation (6):

〈T〉τ =
1
τ

τ

∑
t=1

T(t), τ = 1, 2, 3, . . . , n (6)

The cumulative deviation expressed by X(t) is calculated by Equation (7):

X(t, τ) =
t

∑
µ=1

(T(µ)− 〈T〉τ) 1 ≤ t ≤ τ (7)

The difference between the maximum X(t) value and the minimum X(t) value corre-
sponding to the same τ value is turned into a range, which is recorded as Equation (8):

R(τ) = max
1≤t≤τ

X(t, τ)− min
1≤t≤τ

X(t, τ), τ = 1, 2, 3, . . . , n (8)

The standard deviation S(τ) is calculated by Equation (9):

S(τ) =

[
1
τ

τ

∑
t=1

(T(t)− 〈T〉τ)
2

]2

τ = 1, 2, 3, . . . , n (9)

The final R/S is calculated by Equation (10):

R/S = (τ/2)H (10)

where H is the Hurst index. When 0.5 < H < 1, it means that the long-term correlation
feature of the sequence is positive persistence, and the future change trend is the same as the
current change trend. The closer to 1 the H value is, the stronger the positive persistence is.
When 0 < H < 0.5, it means that the long-term correlation of the time series is characterized
by anti-persistence. The future change trend is opposite to the current change trend. The
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closer to 0 the H value is, the stronger the anti-persistence is. When H = 0.5, it means that
the future change trend of the time series is random and independent of the present.

2.3.4. Geographical Detector

Spatial differentiation is one of the basic characteristics of geographical phenomena
and the spatial expression of natural and socio-economic processes. As a powerful tool
to detect spatial differentiation and reveal the driving factors of spatial differentiation,
the geographical detector has the characteristics of a nonlinear hypothesis, elegant form,
and clear physical meaning. At present, it has been widely used in the fields of ecology,
meteorology, hydrology, social economy, and so on [43]. The geographical detector covers
four aspects: interactive detection, ecological detection, factor detection, and risk detec-
tion. The principle is to analyse the spatial stratification heterogeneity of each factor by
comparing the interlayer variance and total variance of each factor, in order to explore
the driving force of each factor on the dependent variable. This paper mainly uses factor
detection and interactive detection to calculate the explanation degree of factors to the
spatial differentiation of PM2.5 concentration in the study area. It also reveals its spatial
differentiation mechanism.

Factor detection uses q statistics to characterize the explanatory power of each factor
for the dependent variable. The value of q means that the independent variable X explains
100× q% of the spatial differentiation of PM2.5 concentration. The expression is shown in
Equations (11) and (12):

q = 1− ∑L
h=1 Nhσ2

h
Nσ2 = 1− SSW

SST
(11)

SSW = ∑L
h=1Nhσ2

h , SST = Nσ2 (12)

where h is the stratification of independent variable X or PM2.5 concentration Y; Nh and
N are the number of units in layer h and the whole area, respectively; and σ2

h and σ2 are
the variance of the layer h and Y values of the whole region. SSW and SST are the sum
of intra-layer variance and total variance of the whole region, respectively. The value
range of q is between 0–1. The larger its value is, the higher the explanatory degree of the
independent variable to the dependent variable is.

Interaction detection is used to identify the interaction between different factors,
that is, to evaluate whether the joint action of the two factors will enhance or weaken
the explanatory power of dependent variables. When q(x1 ∩ x2) < min(q(x1), q(x2)),
it indicates that the type of the two-factor interaction is nonlinear weakening. When
min(q(x1), q(x2)) < q(x1 ∩ x2) < max(q(x1), q(x2)), it indicates that the type of the two-
factor interaction is unidirectional weakening. When q(x1 ∩ x2) > max(q(x1), q(x2)), it
indicates that the type of the two-factor interaction is a bidirectional enhancement. When
q(x1 ∩ x2) > q(x1) + q(x2), it indicates that the type of the two-factor interaction is a
nonlinear enhancement. When q(x1 ∩ x2) = q(x1) + q(x2), it indicates that the two factors
are independent of each other.

3. Results
3.1. Spatio-Temporal Evolution Characteristics of PM2.5 Concentration
3.1.1. Characteristics of Time Evolution

The concentration of PM2.5 showed an inverted U-shaped trend from 2009 to 2018
(Figure 2). Before 2011, the average annual PM2.5 concentration showed an upward trend,
from 62.26 µg/m3 in 2009 to 63.6 µg/m3 in 2011, with an average annual growth rate
of 1.08%. In 2011, the State Council successively issued the Circular on the Planning of
National Main Functional Areas and the Circular on the 12th Five-year Plan of National
Environmental Protection. Since then, documents on the prevention and control of air
pollution in key areas have been issued, such as the 12th Five-year Plan and the Environ-
mental Air Quality Standard, and the average annual PM2.5 concentration has shown a
steady downward trend. It dropped from 63.6 µg/m3 in 2011 to 41.4 µg/m3 in 2018, with
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an average annual decrease of 4.99%, indicating that the decline in PM2.5 concentration is
closely related to the national environmental functional zoning for air pollution prevention
and control, environmental quality monitoring and assessment system, pollution reduction
statistics, monitoring and assessment system, and comprehensive control of a variety of air
pollutants. In particular, after the State Council approved the implementation of the Action
Plan for the Prevention and Control of Air Pollution in 2014 and the notice of the 13th
Five-Year Plan issued in 2016, the concentration of PM2.5 decreased significantly by 7.98%
and 10.95%, respectively, in 2013 and 2016. According to the air quality guidelines issued
by the World Health Organization (WHO) in 2009 and the PM2.5 concentration standard
classified by China’s Environmental Air Quality Standard (GB3095–2012), and combined
with the actual situation of this urban agglomeration, the PM2.5 concentration grade of this
area is divided into six grades. The area ratio of each PM2.5 concentration grade from 2009
to 2018 (Figure 2) is calculated. Meanwhile, a linear fitting model (y = −2.6734x + 69.305)
is constructed in years.

The results show the following. (1) The proportion of areas with PM2.5 concentration
which is lower than 35 µg/m3 (the average annual limit of China Environmental Air Quality
Standard) increased from 0% in 2009 to 10.38% in 2018. The proportion of areas where it
is higher than 75 µg/m3 increased from 0% in 2009 to 2.36% in 2011, and then decreased
rapidly to 0% in 2013. (2) The proportion of areas with a PM2.5 concentration which is lower
than 50 µg/m3 increased from 11% in 2013 to 99.73% in 2018, showing an increase of more
than eight times, which was the most obvious increase in 2017–2018. (3) The proportion
of areas with PM2.5 concentrations between 50–75 µg/m3 decreased from 88.74% in 2009
to 0.27% in 2018, with the most obvious decrease in 2013–2017. (4) Compared with 2009,
the PM2.5 concentration in all areas decreased by various degrees in 2018. The biggest
areas, where the PM2.5 concentration decreased by two grades, accounts for 90.63%. The
following areas where the PM2.5 concentration decreased by three grades account for 7.84%,
and the last areas, where the PM2.5 concentration decreased by one grade, account for
1.53%. (5) According to the linear fitting model (µg/m3), the PM2.5 concentration shows a
significant decline (negative) trend ranging from −3.32 to −2.03 µg/m3 per year. (6) The
PM2.5 concentration is low in the daytime and higher at night. The highest concentration
occurs at 8:00 in the morning. Because there is an obvious temperature inversion in the
lower atmosphere at night, it is easy for PM2.5 to accumulate [44]. In addition, the morning
is the peak time for people to travel, and there is a significant amount of vehicle exhaust
emissions, leading to the highest PM2.5 concentration. (7) The PM2.5 concentration is
highest in the winter and lowest in the summer. We believe that this is related to terrain
conditions and wind patterns. The study area is typically located in the inland, with a
horseshoe-shaped structure with the opening facing north. The dominant wind direction
of the city throughout the year is northwest. The urban wind speed is relatively small in
autumn and winter, which is not conducive to the diffusion of air pollutants. However,
affected by the southeast monsoon in the summer, it is conducive to PM2.5 diffusion [45].

3.1.2. Spatial Evolution Characteristics of the PM2.5

On the basis of the PM2.5 concentration data of Changsha–Zhuzhou–Xiangtan urban
agglomeration from 2009 to 2018, 3 km × 3 km fishing nets (a total of 3392 grids) were
created by using ArcGIS software, the average annual PM2.5 concentration of each grid
was calculated, and the spatial distribution maps of PM2.5 concentration in 2009, 2011, and
2018 of this study area (Figure 3) were drawn. From 2009 to 2018, the spatial distribution of
PM2.5 concentration was quite different, showing a spatial distribution pattern which was
high in the west and low in the east, high in the north and low in the south, and decreasing
from northwest to southeast. Regional differences showed the characteristics of expanding
at first, and then shrinking. Taking 50 µg/m3 (the third grade PM2.5 concentration limit)
as the dividing point, the PM2.5 concentration is divided into a high-value area and a
low-value area.
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The spatial distribution difference of PM2.5 concentration is mainly reflected as follows.
(1) The PM2.5 concentration has obvious agglomeration and distribution characteristics. The
high-value areas are primarily scattered in the low-lying and economically developed areas
such as Xiangtan City, Changsha City, and Zhuzhou City in the northwest, and the low-
value areas are primarily scattered in the high-lying areas of Liuyang, You County, Chaling
County, and Yanling County in the east and south, indicating that PM2.5 concentration is
closely related to topography and economic development. (2) In 2009, 89% of this urban
agglomeration was in the area with a high PM2.5 concentration, and 0.27% of the areas
had a PM2.5 concentration over 75 µg/m3, which is distributed in the main urban area of
Ningxiang City. The whole territory of Yanling County is a low-value area, and some low-
value areas are also distributed in some high-lying areas of Chaling County and You County.
(3) The high-value area of PM2.5 concentration showed a trend of diffusion from 2009 to 2011.
In 2011, 90.3% of the areas were high-value areas, and 2.36% were higher than 75 µg/m3,
primarily distributed in the main urban areas and agricultural areas of Ningxiang City and
Wangcheng District. (4) In 2018, 99.73% of areas had low PM2.5 concentration, indicating
that the air pollution control actions taken by the government achieved practical results in
key areas after the introduction of a series of policies including the 12th Five-Year Plan for
the Prevention and Control of Air Pollution. With the development of the social economy,
the concentration of PM2.5 increased at first, and then decreased. It is worth noting that
0.27% of the areas still had a PM2.5 concentration over 50 µg/m3, scattered in the heavily
populated areas of districts and counties in the northwest of this urban agglomeration
in 2018.

3.2. Spatio-Temporal Migration Characteristics of PM2.5 Concentration

In geography, the geographical centre of gravity is the vector resultant point that
describes the geographical attributes or the distribution of things [46]. In this study, on the
basis of the annual PM2.5 concentration grid data of Changsha—Zhuzhou–Xiangtan urban
agglomeration, the longitude and latitude coordinates of the annual PM2.5 concentration
centre of gravity are calculated by Equation (1), and the result is shown in Figure 4. The
results show that the centre of gravity of PM2.5 concentration from 2009 to 2018 was situated
in Lukou District of Zhuzhou City, and the interannual change is obvious. From 2009 to
2011, the centre of gravity moved about 0.58 km to the east-north of 24.8◦, with an average
annual moving distance of about 0.57 km. According to “Hunan Province 13th Five-Year
Plan for Environmental Protection,” compiled by the Ecology and Environment Department
of Hunan (EEDH), the economy of Changsha–Zhuzhou–Xiangtan urban agglomeration
was in a stage of rapid development, with an average annual gross domestic product
growth rate of 22.09%. There were too many enterprises with high pollution and energy
consumption during this stage. They further increased the concentration of PM2.5 in this
region [47]. From 2011 to 2014, the centre of gravity moved about 1.25 km to the southwest,
with an average annual shift of 0.61 km. During this period, Changsha–Zhuzhou–Xiangtan
urban agglomeration issued and implemented “Environmental Co-governance Planning
for Changsha–Zhuzhou–Xiangtan urban agglomeration (2010–2020).” It advocated for
the vigorous development of clean energy sources such as natural gas, wind energy, and
solar energy, and, meanwhile, reduced the proportion of coal used in primary energy,
and carried out comprehensive control actions for pollutants such as sulphur dioxide as
well as smoke and dust produced by the iron and steel, non-ferrous, chemical, building
materials, and other industries [48]. From 2014 to 2018, the centre of gravity moved
2.36 km to the southeast by 34.37◦, with an average annual shift of 0.78 km. During the
implementation of “the 13th Five-Year Plan for Eco-environmental Protection,” Hunan
Province successively issued a series of policies and regulations, such as the “Regulations
on Responsibility for Eco-environmental Protection in Hunan Province” and the “Measures
for Responsibility for Major Eco-environmental Problems (Events) in Hunan Province,”
which improved the system for the prevention and control of atmospheric pollution. They
closed more than 1000 highly polluting enterprises and further optimized the industrial
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structure. Emissions of sulphur dioxide and nitrogen oxides decreased by 28.7% and
18.8%, respectively, compared with 2015. Significant achievements have been made in the
prevention and control of air pollution [49].
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3.3. Spatial Agglomeration Characteristics of PM2.5 Concentration
3.3.1. Global Spatial Autocorrelation Feature

According to the global Moran’s I calculation equations and using ArcGIS’s Spatial
statistics tools, it was calculated that the statistical values of Moran’s I of PM2.5 concen-
tration of Changsha–Zhuzhou–Xiangtan urban agglomeration in 2009, 2011, 2013, 2015,
and 2018 were 0.986 (Z = 79.80), 0.984 (Z = 79.66), 0.988 (Z = 79.97), 0.984 (Z = 79.69), and
0.983 (Z = 79.58), respectively. The results show that the statistical values of Moran’s I are
all positive and greater than 0.98, and that it has passed the significance test threshold level
of 1%. They also show that the PM2.5 concentration has a strong spatial correlation, and
that areas with high PM2.5 concentrations are often distributed together.

3.3.2. Local Spatial Autocorrelation Analysis

Using ArcGIS clustering and outlier analysis tools, we calculated the local Moran’s
I (Figure 5) of 3392 grids of the study area in 2009, 2011, 2013, 2015, and 2018. The grid
cells showing significant local spatial autocorrelation were divided into four types: High–
High Cluster, High–Low Outlier, Low–High Outlier, and Low–Low Cluster. The results
show that the concentration of PM2.5 in more and more areas of the region from 2009
to 2018 showed strong spatial aggregation. The types of spatial aggregation are “High–
High Cluster” and “Low–Low Cluster,” showing a strong positive autocorrelation. The
proportion of hot spots increased from 28.57% in 2009 to 29.39% in 2018, with an average
annual increase of 0.29%. The proportion of cold spot areas increased from 19.13% in
2009 to 23.29% in 2018, with an average annual increase of 2.17%. The proportion of cold
spot areas and hot spot areas showed an upward trend, and the rising speed of cold spot
areas was faster. From a spatial point of view, the hot spot areas were concentrated in the
areas with heavy industrial pollution and vehicle exhaust emissions, such as the whole of
Xiangtan City and the west of Changsha City. The cold spot areas were concentrated in the
high-lying and underdeveloped areas, such as the south of Zhuzhou City and the east of
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Liuyang City. The southwest of Chaling County was a cold spot distribution area in 2009
and 2011, but it had no characteristic point distribution in 2018. Agricultural non-point
source pollution and straw burning may be the reasons for the deterioration of air quality
in this area [50]. The southeast of Liuyang City had no characteristic point distribution in
2009 and 2011, but in 2018, it was a cold spot distribution area. The air quality has been
significantly improved, indicating that the prevention and control of air pollution in this
area has achieved remarkable results [51].
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3.4. Future Development Trend of PM2.5 Concentration

On the basis of the PM2.5 concentration data of the study area from 2009 to 2018,
each grid Hurst index is calculated with the aid of Equation (6–10). Combined with the
characteristics of the Hurst index and natural breakpoint method, the results are classified
in Figure 6. It can be noted that the Hurst index of each area of this region ranges from 0.46
to 0.97. The regional difference is obvious. The high-value areas are mainly distributed in
Xiangtan City and Changsha City. The low value areas are mainly distributed in Zhuzhou
City, as well as in the central and eastern parts of Changsha City. The areas with a Hurst
index greater than 0.5 account for 99.76%, indicating that the PM2.5 concentration in most
areas is positively persistent. There is an obvious Hurst phenomenon, that is, the future
PM2.5 concentration in most areas of this region is very likely to continue the trend of
a gradual decline in PM2.5 concentration which has been observed in the past [52]. It
should be noted that the Hurst index of 0.24% of the areas is less than 0.5. These are
mainly distributed in some rural areas of Chaling County and Yanling County, indicating
that the non-point source pollution caused by agricultural development will lead to the
future evolution of PM2.5 concentration in these areas. The future trend is contrary to the
continuous decline in PM2.5 concentration in the past.

3.5. Spatial Differentiation Mechanism of PM2.5 Concentration

The spatial difference of PM2.5 concentration in Changsha–Zhuzhou–Xiangtan urban
agglomeration is significant. The reasons are difficult to discern, and the driving factors
may be various. Past research has found that the driving factors are related to natural
factors, such as topography, vegetation, and forest fires. They are also related to human
factors, such as industrial soot emissions, coal burning, and motor vehicle exhaust. At the
same time, they are also closely related to meteorological factors like rainfall, temperature,
and air pressure. In this study, we formulated the rules for screening driving factors for
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spatial differentiation of PM2.5 concentration in this urban agglomeration based on the
relevant research results [53,54], and considering the actual situation of the study area and
the availability of data. We selected the following 13 driving factors which contributed
greatly to the spatial differentiation of PM2.5 concentration from three aspects: natural
conditions, socio-economic conditions, and meteorology. These are altitude (X1), slope (X2),
eco-environmental quality (EEQ) (X3), normalized difference vegetation index (NDVI) (X4),
leaf area index (LAI) (X5), net primary productivity (NPP) (X6), population density (X7),
night-time light index (X8), wind speed (X9), pressure (X10), precipitation rate (X11), specific
humidity (X12), and temperature (X13).

Sustainability 2022, 14, x FOR PEER REVIEW 13 of 20 
 

 
Figure 6. Hurst index of Changsha–Zhuzhou–Xiangtan Urban agglomeration in 2009–2018. 

3.5. Spatial Differentiation Mechanism of PM2.5 Concentration 
The spatial difference of PM2.5 concentration in Changsha–Zhuzhou–Xiangtan urban 

agglomeration is significant. The reasons are difficult to discern, and the driving factors 
may be various. Past research has found that the driving factors are related to natural 
factors, such as topography, vegetation, and forest fires. They are also related to human 
factors, such as industrial soot emissions, coal burning, and motor vehicle exhaust. At the 
same time, they are also closely related to meteorological factors like rainfall, tempera-
ture, and air pressure. In this study, we formulated the rules for screening driving factors 
for spatial differentiation of PM2.5 concentration in this urban agglomeration based on the 
relevant research results [53,54], and considering the actual situation of the study area 
and the availability of data. We selected the following 13 driving factors which contrib-
uted greatly to the spatial differentiation of PM2.5 concentration from three aspects: nat-
ural conditions, socio-economic conditions, and meteorology. These are altitude (X1), 
slope (X2), eco-environmental quality (EEQ) (X3), normalized difference vegetation index 
(NDVI) (X4), leaf area index (LAI) (X5), net primary productivity (NPP) (X6), population 
density (X7), night-time light index (X8), wind speed (X9), pressure (X10), precipitation rate 
(X11), specific humidity (X12), and temperature (X13). 

3.5.1. Factor Detection 
In order to more accurately analyse the driving factors of spatial differentiation of 

PM2.5 concentration in Changsha–Zhuzhou–Xiangtan urban agglomeration, this study 
used ArcGIS software to create a 3 km × 3 km fishing net (with a total of 3392 grids), and 
calculated the observations of the 13 driving factors in each grid. Then, we used the Jenks 
natural breakpoint method to divide the observations of the driving factors in each grid 
into six categories. In the end, we imported the discrete data into the geographic detector 
for factor detection and interactive detection. The factor detection results can be seen in 
Table 1. 

Figure 6. Hurst index of Changsha–Zhuzhou–Xiangtan Urban agglomeration in 2009–2018.

3.5.1. Factor Detection

In order to more accurately analyse the driving factors of spatial differentiation of
PM2.5 concentration in Changsha–Zhuzhou–Xiangtan urban agglomeration, this study
used ArcGIS software to create a 3 km × 3 km fishing net (with a total of 3392 grids), and
calculated the observations of the 13 driving factors in each grid. Then, we used the Jenks
natural breakpoint method to divide the observations of the driving factors in each grid
into six categories. In the end, we imported the discrete data into the geographic detector
for factor detection and interactive detection. The factor detection results can be seen in
Table 1.

Table 1. Factor detection result analysis over 5 years.

Driving Factor
2009 2011 2013 2015 2018

Average Value
q p q p q p q p q p

Natural condition

Altitude (X1) 0.55 0.00 0.55 0.00 0.50 0.00 0.50 0.00 0.58 0.00

0.40

Slope (X2) 0.42 0.00 0.41 0.00 0.39 0.00 0.40 0.00 0.45 0.00
Eco-environmental quality (X3) 0.49 0.00 0.44 0.00 0.45 0.00 0.47 0.00 0.53 0.00

NDVI (X4) 0.20 0.00 0.27 0.00 0.36 0.00 0.34 0.00 0.31 0.00
LAI (X5) 0.55 0.00 0.54 0.00 0.53 0.00 0.54 0.00 0.60 0.00
NPP (X6) 0.11 0.00 0.09 0.00 0.12 0.00 0.12 0.00 0.13 0.00

Socioeconomic status
Population density (X7) 0.09 0.01 0.09 0.00 0.08 0.03 0.08 0.20 0.10 0.15

0.08Night-time light index (X8) 0.03 1.00 0.05 0.99 0.07 0.36 0.07 0.67 0.14 0.00

Meteorology

Wind speed (X9) 0.39 0.00 0.09 0.00 0.11 0.00 0.18 0.00 0.07 0.00

0.32
Pressure (X10) 0.54 0.00 0.55 0.00 0.50 0.00 0.49 0.00 0.58 0.00

Precipitation rate (X11) 0.14 0.00 0.57 0.00 0.53 0.00 0.52 0.00 0.42 0.00
Specific humidity (X12) 0.24 0.00 0.11 0.00 0.09 0.00 0.26 0.00 0.21 0.00

Temperature (X13) 0.28 0.00 0.32 0.00 0.30 0.00 0.29 0.00 0.30 0.00

Note: q represents the driving force of each driving factor, and p represents the significant level of each driving
factor.
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The driving effect of night-time light index (X8) in 2009, 2011, 2013, and 2015 and that of
population density (X7) in 2015 and 2018 were not significant, while the other driving factors had
a significant impact on the spatial differentiation of PM2.5. The driving forces for each factor are
quite different. According to the five-year average Q value, the explanatory power of each driving
factor to the spatial differentiation of PM2.5 concentration was as follows: LAI (0.564) > altitude
(0.559) > pressure (0.556) > eco-environmental quality (0.487) > slope (0.426) > precipitation
rate (0.377) > temperature (0.299) > NDVI (0.260) > specific humidity (0.188) > wind speed
(0.185) > NPP (0.108) > population density (0.093) > night-time light index (0.072).

The average Q value of the natural condition driving factor was 0.40, which shows an
upward trend, indicating that it plays a dominant role in the spatial differentiation of PM2.5
concentration. The average Q value of meteorological driving factors was 0.32. Its annual
change is small, which indicates that it plays a key role in the spatial differentiation of PM2.5
concentration. The average Q value of the driving factors for the socio-economic status was
only 0.08, which is relatively low. However, in 2009–2018, the average Q value increased by
95.04%, which meant that it was a rapid driving force for the spatial difference of PM2.5.

From the point of view of natural conditions, the western and northern parts of this
urban agglomeration have low topography and gentle slope. PM2.5 gathers easily here,
and does not easily spread due to the surrounding mountains, which leads to the increase
in PM2.5 concentration in the area. Low vegetation coverage and vegetation quality are also
important reasons for the high PM2.5 concentration in this region. Vegetation can directly
reduce the concentration of PM2.5 in the air by adsorption and blocking, or it can indirectly
reduce the concentration of PM2.5 by leaf transpiration, increasing atmospheric humidity,
and absorbing and transforming sulphur, lead, and other metals and nonmetals in the air.
Increasing vegetation coverage and improving vegetation quality are important ways to
reduce PM2.5 concentration.

In terms of social and economic conditions, population density and night-time light
index are the driving factors for regional population and economic vitality. Their driving
force for the PM2.5 spatial differentiation is weak, but they are on the rise. The reasons are
as follows: The secondary industry accounted for a high proportion in Xiangxiang City,
Xiangtan County, Ningxiang City, and other areas at the initial stage of the establishment
of the Two Oriented Society. Industrial soot emissions are significant, and contribute
greatly to the PM2.5 concentration. In contrast, the population density in these areas is
relatively low. Its influence on PM2.5 concentration is also relatively small. With the gradual
progress of the construction of the Two Oriented Society, the industrial structure of this
urban agglomeration is gradually upgraded and rationalized. Polluting enterprises are
optimized and eliminated, and industrial pollution decreases year by year. Its driving force
on PM2.5 concentration gradually decreases. Meanwhile, the driving force of population
and economic vitality increases rapidly.

From a meteorological point of view, pressure has the strongest driving force on the
spatial differentiation of PM2.5 concentration (Q > 0.5). Air pressure is the atmospheric
pressure acting on a unit area, which is closely associated with the situation of atmo-
spheric circulation. The surrounding high-pressure air masses flow to the centre when
the local surface is controlled by low pressure, resulting in an updraft in the centre. The
increasing wind force is advantageous to the upward evacuation of pollutants, and the
PM2.5 concentration is lower. On the contrary, there is a downdraft in the centre if the
ground is controlled by high pressure, which inhibits the upward diffusion of pollutants.
Under the control of stable high pressure, pollutants accumulate and PM2.5 concentration
increases [55]. The average driving forces of precipitation rate and temperature are 0.377
and 0.299, respectively, which are also at a high level. Precipitation can effectively reduce
the concentration of PM2.5, but the process is slow. The driving forces of wind speed
and specific humidity are relatively low. Previous studies have pointed out that wind
direction affects the long-distance transport of PM2.5 [56]; the government’s analysis of
the source of PM2.5 concentration also indicates that about 10% of the fine particles in the
Changsha–Zhuzhou–Xiangtan urban agglomeration come from the surrounding areas [39].
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3.5.2. Interactive Detection

The interactive detection results of spatial differentiation of PM2.5 concentration in
Changsha–Zhuzhou–Xiangtan urban agglomeration (Figure 7) show that the driving force of
the interaction of any two driving factors on the spatial differentiation of PM2.5 concentration
is greater than that of a single driving factor. The main types of pairwise interaction are
two-factor enhancement and nonlinear enhancement, indicating that the spatial differentiation
of PM2.5 concentration is not caused by a single influence factor; it is the result of the joint
action of different factors [57]. Among them, the driving force of pressure ∩ specific humidity
was the strongest, and the q value of this factor interaction was the highest at 0.75 in 2009.
The q value of wind speed ∩ precipitation rate reached 0.89 in 2011 and 2015, which was the
strongest driving force for the spatial differentiation of PM2.5 concentration. The driving force
of LAI ∩ precipitation rate was the strongest in 2018, and the q value of this factor interaction
was at its highest at 0.76. The driving forces of the following two-factor interactions on the
spatial differentiation of PM2.5 concentration are greater than 0.8: altitude ∩ precipitation rate,
LAI ∩ precipitation rate, and pressure ∩ precipitation rate in 2011 and 2013, and specific
humidity ∩ precipitation rate in 2015. It also can be seen that the driving force of two factors
is stronger than that of a single factor in the spatial differentiation of PM2.5 concentration,
although other driving factors all have forces less than 0.8.
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4. Discussion

The Environmental Kuznets Curve (EKC) theory shows that environmental pollu-
tion presents an inverted U-shaped development trend with the development of social
economy [58]. Our study confirms this point of view.

Past research has suggested that population density is positively associated with PM2.5
concentration [59]. In this study, we noted that there is a prominent positive correlation
between population density and PM2.5 concentration. That is, the higher the population
density, the higher the PM2.5 concentration [60]. Taking Changsha–Zhuzhou–Xiangtan
urban agglomeration as the study area, we found that the correlation between night-time
light index and PM2.5 is not high (only 0.034 in 2009), but this correlation showed an
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upward trend, reaching 0.135 in 2018. It can be seen from the results that the effect of
different indexes on PM2.5 concentration changed with the change in time and region. The
dominant factors in spatial differentiation of PM2.5 concentration are meteorological factors,
natural conditions, and socio-economic status [61]. Our study shows that natural condi-
tions are the dominant factor affecting PM2.5 concentration, followed by meteorological
factors, and, finally, social and economic conditions, in which leaf area index (LAI) has
the strongest driving force on the spatial differentiation of PM2.5 concentration [62]. As
for the source of PM2.5, previous studies have pointed out that the high concentration of
PM2.5 in the northwest of this urban agglomeration mainly comes from industrial emis-
sions from thermal power, iron and steel, non-ferrous smelting, and cement industries.
Sudden air pollution incidents are often related to straw burning [63]. Therefore, this urban
agglomeration needs to speed up the pace of industrial transformation and upgrading,
reduce the share of enterprises with high energy consumption and high pollution, and
strengthen the management and control of straw burning and non-point source pollution
in agricultural production [64]. Population density and the night light index reflect the
degree of traffic exhaust to a certain extent. Under the condition of data limitation, based
on the strong correlation among them, we used population density and night light index
instead of traffic exhaust to study its impact on PM2.5 concentration. In fact, traffic exhaust
is an important source of PM2.5 concentration. We will further study the mechanism by
which traffic exhaust affects the change in PM2.5 concentration and its centre of gravity in
the future, with the help of these sources such as Waze, Google, or NOx.

Poor air quality not only seriously restricts the sustainable development of the social
economy, but also threatens the health of people. Changsha–Zhuzhou–Xiangtan urban
agglomeration is a key area for the prevention and control of air pollution in China. Since
2011, the joint prevention and control of air pollution in this region has achieved remarkable
results, and the quality of air has been dramatically improved. Its achievements in building
a resource-saving and environment-friendly society are undeniable [65]. However, it is
worth noting that the decline rate of PM2.5 concentration in the region has slowed signif-
icantly since 2016, possibly due to coal combustion, industrial pollution emissions, and
motor vehicle exhaust emissions [39]. Furthermore, our study showed that the abnormal
development trend of PM2.5 concentration in some agricultural areas of this urban agglom-
eration is becoming more and more significant. The government needs to make more efforts
to reach the goal of an annual average PM2.5 concentration of less than 35 µg/m3 by 2025,
which was set in the “Fourteenth Five-Year Plan for Ecological Environment Protection.”

5. Conclusions

This paper systematically analyses the spatial and temporal evolution characteristics
and the future development trend of PM2.5 concentration in Changsha–Zhuzhou–Xiangtan
urban agglomeration from 2009 to 2018 by using the gravity model, spatial autocorrelation,
Hurst index, and GIS spatial analysis methods. It also reveals the driving mechanism of
the spatial differentiation of PM2.5 concentration from the aspects of natural conditions,
meteorological factors, and social and economic conditions.

The results of our study indicate that the concentration of PM2.5 showed an inverted
U-shaped trend from 2009 to 2018, rising from 62.26 µg/m3 in 2009 to 63.6 µg/m3 in 2011,
and then decreasing to 41.4 µg/m3 in 2018. The spatial distribution of PM2.5 concentration
shows significant differences and aggregation. The high-value area is primarily scattered
in the northwest region, with low elevation and a developed economy, while the low-value
area is primarily scattered in the southeast region, with high altitude and an underdevel-
oped economy. From 2009 to 2018, the spatial centre of gravity of PM2.5 concentration
showed an overall trend of moving to the southeast. In addition, the concentration of
PM2.5 in most areas will continue the trend of gradual decline which has been seen the
past, except in some rural areas of Chaling and Yanling counties. This may be due to the
increase of PM2.5 concentration caused by straw burning, waste incineration, mining, and
large-scale project construction.
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The geographical detection results regarding the spatial differentiation of PM2.5 con-
centration show that natural condition driving factors, as well as meteorological driving
factors, have a significant influence on the spatial differentiation of PM2.5 concentration
in this urban agglomeration, while the influence of socio-economic factors is small, but
rapidly increasing.
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